one_hot_op.cc 4.2 KB
Newer Older
1
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Y
Yang yaming 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/one_hot_op.h"
16 17
#include <string>
#include <vector>
Y
Yi Wang 已提交
18
#include "paddle/fluid/framework/framework.pb.h"
Y
Yang yaming 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

namespace paddle {
namespace operators {

class OneHotOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of OneHotOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of OneHotOp should not be null.");

    auto x_dims = ctx->GetInputDim("X");
    PADDLE_ENFORCE_GE(x_dims.size(), 2,
                      "Rank of Input(X) should be at least 2.");
35 36 37 38
    if (ctx->IsRuntime() || x_dims[x_dims.size() - 1] > 0) {
      PADDLE_ENFORCE_GE(x_dims[x_dims.size() - 1], 1U,
                        "Last dimension of Input(X) should be 1.");
    }
Y
Yang yaming 已提交
39 40

    framework::DDim out_dims(x_dims);
41 42 43 44 45
    int depth = ctx->Attrs().Get<int>("depth");
    if (ctx->HasInput("depth_tensor")) {
      depth = -1;
    }

Y
Yang yaming 已提交
46 47 48 49
    out_dims[out_dims.size() - 1] = depth;
    ctx->SetOutputDim("Out", out_dims);
    ctx->ShareLoD("X", /* --> */ "Out");
  }
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
                                   ctx.device_context());
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "depth_tensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
Y
Yang yaming 已提交
67 68 69 70
};

class OneHotOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
71
  void Make() override {
Y
Yang yaming 已提交
72 73 74 75
    AddInput("X",
             "(LoDTensor, LoDTensor<int>) Input variable with rank at least 2. "
             "The last dimension of X should be 1. Each value of X is an index "
             "to indicate the position.");
76 77
    AddInput("depth_tensor", "(Tensor, Tensor<int>), Length of one-hot vector")
        .AsDispensable();
Y
Yang yaming 已提交
78 79 80
    AddOutput("Out",
              "(Tensor, Tensor<float>) Output tensor with same rank as X. "
              "The tensor consists of one-hot representations of values in X.");
81

Y
Yang yaming 已提交
82
    AddAttr<int>("depth",
83 84
                 "A positive integer to specify the length of one-hot vector.")
        .SetDefault(-1);
Y
Yang yaming 已提交
85 86 87
    AddAttr<int>("dtype",
                 "An integer to specify the data type of one-hot "
                 "vector. The default value is FP32.")
88
        .SetDefault(paddle::framework::proto::VarType::FP32);
Y
Yang yaming 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    AddComment(R"DOC(
One Hot Operator. This operator creates the one-hot representations for input
index values. The following example will help to explain the function of this
operator:

X is a LoDTensor:
  X.lod = [[0, 1, 4]]
  X.shape = [4, 1]
  X.data = [[1], [1], [3], [0]]

set depth = 4

Out is a LoDTensor:
  Out.lod = [[0, 1, 4]]
  Out.shape = [4, 4]
  Out.data = [[0., 1., 0., 0.],
              [0., 1., 0., 0.],
              [0., 0., 0., 1.],
              [1., 0., 0., 0.]]
)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(one_hot, ops::OneHotOp, ops::OneHotOpMaker,
                  paddle::framework::EmptyGradOpMaker);
REGISTER_OP_CPU_KERNEL(
    one_hot, ops::OneHotKernel<paddle::platform::CPUDeviceContext, int>,
    ops::OneHotKernel<paddle::platform::CPUDeviceContext, int64_t>);