var_desc.h 5.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
F
fengjiayi 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include <algorithm>
18
#include <atomic>
19
#include <string>
F
fengjiayi 已提交
20
#include <vector>
W
wanghuancoder 已提交
21

Y
Yu Yang 已提交
22
#include "glog/logging.h"
23
#include "paddle/fluid/framework/attribute.h"
Y
Yi Wang 已提交
24
#include "paddle/fluid/framework/framework.pb.h"
25
#include "paddle/fluid/framework/type_defs.h"
F
fengjiayi 已提交
26 27 28 29 30 31 32 33 34 35

namespace paddle {
namespace framework {

// convert between std::vector and protobuf repeated.
template <typename T>
inline std::vector<T> RepeatedToVector(
    const google::protobuf::RepeatedField<T> &repeated_field) {
  std::vector<T> ret;
  ret.reserve(repeated_field.size());
36 37
  std::copy(
      repeated_field.begin(), repeated_field.end(), std::back_inserter(ret));
F
fengjiayi 已提交
38 39 40 41 42 43
  return ret;
}

template <typename T, typename RepeatedField>
inline void VectorToRepeated(const std::vector<T> &vec,
                             RepeatedField *repeated_field) {
F
fengjiayi 已提交
44
  repeated_field->Clear();
F
fengjiayi 已提交
45 46 47 48 49 50 51 52 53 54
  repeated_field->Reserve(vec.size());
  for (const auto &elem : vec) {
    *repeated_field->Add() = elem;
  }
}

// Specialize vector<bool>.
template <typename RepeatedField>
inline void VectorToRepeated(const std::vector<bool> &vec,
                             RepeatedField *repeated_field) {
F
fengjiayi 已提交
55
  repeated_field->Clear();
F
fengjiayi 已提交
56 57 58 59 60 61
  repeated_field->Reserve(vec.size());
  for (auto elem : vec) {
    *repeated_field->Add() = elem;
  }
}

Y
Yu Yang 已提交
62
class VarDesc {
F
fengjiayi 已提交
63
 public:
Y
Yu Yang 已提交
64
  explicit VarDesc(const std::string &name) {
65
    desc_.set_name(name);
X
Xin Pan 已提交
66
    // TODO(paddle-dev): Why default to lodtensor.
67
    desc_.mutable_type()->set_type(proto::VarType::LOD_TENSOR);
68
  }
F
fengjiayi 已提交
69

Y
Yu Yang 已提交
70
  explicit VarDesc(const proto::VarDesc &desc) : desc_(desc) {}
71

72 73 74 75 76
  // Explicitly implement the copy constructor for auto parallel
  VarDesc(const VarDesc &other)
      : desc_(other.desc_),
        attrs_(other.attrs_),
        original_id_(other.original_id_) {}
77 78 79 80 81 82
  VarDesc &operator=(const VarDesc &other) {
    desc_ = other.desc_;
    attrs_ = other.attrs_;
    original_id_ = other.original_id_;
    return *this;
  }
83

84
  proto::VarDesc *Proto() { return &desc_; }
F
fengjiayi 已提交
85

86 87
  const proto::VarDesc *Proto() const { return &desc_; }

F
fengjiayi 已提交
88 89
  std::string Name() const { return desc_.name(); }

90 91
  void SetName(std::string name) { desc_.set_name(name); }

F
fengjiayi 已提交
92 93 94 95
  void SetTensorDescNum(size_t num);

  size_t GetTensorDescNum() const;

F
fengjiayi 已提交
96 97
  void SetShape(const std::vector<int64_t> &dims);

F
fengjiayi 已提交
98
  void SetShapes(const std::vector<std::vector<int64_t>> &multiple_dims);
F
fengjiayi 已提交
99 100 101 102 103

  std::vector<int64_t> GetShape() const;

  std::vector<std::vector<int64_t>> GetShapes() const;

104
  void SetDataType(proto::VarType::Type data_type);
F
fengjiayi 已提交
105

106 107
  void SetDataTypes(
      const std::vector<proto::VarType::Type> &multiple_data_type);
F
fengjiayi 已提交
108

109
  proto::VarType::Type GetDataType() const;
F
fengjiayi 已提交
110

111 112
  size_t ElementSize() const;

113
  std::vector<proto::VarType::Type> GetDataTypes() const;
F
fengjiayi 已提交
114

Y
Stash  
Yu Yang 已提交
115 116
  void SetLoDLevel(int32_t lod_level);

F
fengjiayi 已提交
117 118
  void SetLoDLevels(const std::vector<int32_t> &multiple_lod_level);

119
  int32_t GetLoDLevel() const;
Y
Stash  
Yu Yang 已提交
120

F
fengjiayi 已提交
121 122
  std::vector<int32_t> GetLoDLevels() const;

123
  proto::VarType::Type GetType() const;
Y
Yu Yang 已提交
124

125
  void SetType(proto::VarType::Type type);
Y
Yu Yang 已提交
126

127 128 129 130
  bool Persistable() const { return desc_.persistable(); }

  void SetPersistable(bool persistable) { desc_.set_persistable(persistable); }

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
  bool IsParameter() const { return desc_.is_parameter(); }

  void SetIsParameter(bool is_parameter) {
    desc_.set_is_parameter(is_parameter);
  }

  void ClearIsParameter() { desc_.clear_is_parameter(); }

  bool HasIsParameter() const { return desc_.has_is_parameter(); }

  bool StopGradient() const { return desc_.stop_gradient(); }

  void SetStopGradient(bool stop_gradient) {
    desc_.set_stop_gradient(stop_gradient);
  }

  void ClearStopGradient() { desc_.clear_stop_gradient(); }

  bool HasStopGradient() const { return desc_.has_stop_gradient(); }

H
Huihuang Zheng 已提交
151 152 153 154 155 156
  bool NeedCheckFeed() const { return desc_.need_check_feed(); }

  void SetNeedCheckFeed(bool need_check_feed) {
    desc_.set_need_check_feed(need_check_feed);
  }

157 158 159 160 161 162 163 164 165 166 167
  bool HasAttr(const std::string &name) const {
    return attrs_.find(name) != attrs_.end();
  }

  std::vector<std::string> AttrNames() const;

  void SetAttr(const std::string &name, const Attribute &v);
  void RemoveAttr(const std::string &name);

  Attribute GetAttr(const std::string &name) const;

168
  // The Id() and OriginalId() are only used for auto parallel.
169
  uint64_t Id() const { return id_; }
170 171
  uint64_t OriginalId() const { return original_id_; }
  void SetOriginalId(uint64_t original_id) { original_id_ = original_id; }
172

F
fengjiayi 已提交
173
 private:
174 175 176 177
  const proto::VarType::TensorDesc &tensor_desc() const;
  std::vector<proto::VarType::TensorDesc> tensor_descs() const;
  proto::VarType::TensorDesc *mutable_tensor_desc();
  std::vector<proto::VarType::TensorDesc *> mutable_tensor_descs();
Y
Yu Yang 已提交
178

179 180 181 182 183 184 185
  // This thread-safe implementation seems to be redudent since the neural
  // networks are usually constructed in a single thread.
  static uint64_t GenerateId() {
    static std::atomic<std::uint64_t> uid{0};
    return ++uid;
  }

186
  proto::VarDesc desc_;
187
  AttributeMap attrs_;
188 189

  // Note: the id_ is unique for all VarDesc (only for auto parallel).
190
  uint64_t id_ = GenerateId();
191 192 193 194 195
  // Note: the orignal_id_ is used for referring to the original VarDesc
  // that the current VarDesc is built from (only for auto parallel).
  // The default original_id_ is same as the id_, which means the
  // current VarDesc is not built from the other one.
  uint64_t original_id_ = id_;
F
fengjiayi 已提交
196
};
197 198

bool operator==(const VarDesc &left, const VarDesc &right);
F
fengjiayi 已提交
199 200
}  // namespace framework
}  // namespace paddle