elementwise_kernel.h 5.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/phi/core/dense_tensor.h"
Y
YuanRisheng 已提交
18
#include "paddle/phi/infermeta/binary.h"
19 20 21 22

namespace phi {

template <typename T, typename Context>
Y
YuanRisheng 已提交
23 24 25 26 27
void FMaxKernel(const Context& dev_ctx,
                const DenseTensor& x,
                const DenseTensor& y,
                int axis,
                DenseTensor* out);
28 29

template <typename T, typename Context>
Y
YuanRisheng 已提交
30 31 32 33 34
void FMinKernel(const Context& dev_ctx,
                const DenseTensor& x,
                const DenseTensor& y,
                int axis,
                DenseTensor* out);
35

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
template <typename T, typename Context>
void MaximumRawKernel(const Context& dev_ctx,
                      const DenseTensor& x,
                      const DenseTensor& y,
                      int axis,
                      DenseTensor* out);

template <typename T, typename Context>
void MaximumKernel(const Context& dev_ctx,
                   const DenseTensor& x,
                   const DenseTensor& y,
                   DenseTensor* out);

template <typename T, typename Context>
void MinimumRawKernel(const Context& dev_ctx,
                      const DenseTensor& x,
                      const DenseTensor& y,
                      int axis,
                      DenseTensor* out);

template <typename T, typename Context>
void MinimumKernel(const Context& dev_ctx,
                   const DenseTensor& x,
                   const DenseTensor& y,
                   DenseTensor* out);

template <typename T, typename Context>
void ModuloRawKernel(const Context& dev_ctx,
                     const DenseTensor& x,
                     const DenseTensor& y,
                     int axis,
                     DenseTensor* out);

template <typename T, typename Context>
void ModuloKernel(const Context& dev_ctx,
                  const DenseTensor& x,
                  const DenseTensor& y,
                  DenseTensor* out);

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
template <typename T, typename Context>
void FloorDivideRawKernel(const Context& dev_ctx,
                          const DenseTensor& x,
                          const DenseTensor& y,
                          int axis,
                          DenseTensor* out);

template <typename T, typename Context>
void FloorDivideKernel(const Context& dev_ctx,
                       const DenseTensor& x,
                       const DenseTensor& y,
                       DenseTensor* out);

template <typename T, typename Context>
void ElementwisePowRawKernel(const Context& dev_ctx,
                             const DenseTensor& x,
                             const DenseTensor& y,
                             int axis,
                             DenseTensor* out);

template <typename T, typename Context>
void ElementwisePowKernel(const Context& dev_ctx,
                          const DenseTensor& x,
                          const DenseTensor& y,
                          DenseTensor* out);

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
template <typename T, typename Context>
DenseTensor Maximum(const Context& dev_ctx,
                    const DenseTensor& x,
                    const DenseTensor& y) {
  DenseTensor dense_out;
  MetaTensor meta_out(&dense_out);
  ElementwiseInferMeta(x, y, &meta_out);
  MaximumKernel<T, Context>(dev_ctx, x, y, &dense_out);
  return dense_out;
}

template <typename T, typename Context>
DenseTensor Minimum(const Context& dev_ctx,
                    const DenseTensor& x,
                    const DenseTensor& y) {
  DenseTensor dense_out;
  MetaTensor meta_out(&dense_out);
  ElementwiseInferMeta(x, y, &meta_out);
  MinimumKernel<T, Context>(dev_ctx, x, y, &dense_out);
  return dense_out;
}

template <typename T, typename Context>
DenseTensor Modulo(const Context& dev_ctx,
                   const DenseTensor& x,
                   const DenseTensor& y) {
  DenseTensor dense_out;
  MetaTensor meta_out(&dense_out);
  ElementwiseInferMeta(x, y, &meta_out);
  ModuloKernel<T, Context>(dev_ctx, x, y, &dense_out);
  return dense_out;
}
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155

template <typename T, typename Context>
DenseTensor FloorDivide(const Context& dev_ctx,
                        const DenseTensor& x,
                        const DenseTensor& y) {
  DenseTensor dense_out;
  MetaTensor meta_out(&dense_out);
  ElementwiseInferMeta(x, y, &meta_out);
  FloorDivideKernel<T, Context>(dev_ctx, x, y, &dense_out);
  return dense_out;
}

template <typename T, typename Context>
DenseTensor ElementwisePow(const Context& dev_ctx,
                           const DenseTensor& x,
                           const DenseTensor& y) {
  DenseTensor dense_out;
  MetaTensor meta_out(&dense_out);
  ElementwiseInferMeta(x, y, &meta_out);
  ElementwisePowKernel<T, Context>(dev_ctx, x, y, &dense_out);
  return dense_out;
}

156
}  // namespace phi