collective.py 10.9 KB
Newer Older
K
kuizhiqing 已提交
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
#
K
kuizhiqing 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
K
kuizhiqing 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
K
kuizhiqing 已提交
9 10 11 12 13 14 15
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
16
import os
K
kuizhiqing 已提交
17

18 19 20
from ..context.device import DeviceType
from .controller import ControleMode, Controller

K
kuizhiqing 已提交
21 22

class CollectiveController(Controller):
23 24 25 26
    def __init__(self, ctx):
        self._tuner_run_mode = None  # 'tuner_only', 'run_only', 'tuner_and_run'
        super().__init__(ctx)

K
kuizhiqing 已提交
27 28
    @classmethod
    def enable(cls, ctx):
K
kuizhiqing 已提交
29
        # collective is the default mode
K
kuizhiqing 已提交
30
        if ctx:
31
            ctx.logger.debug(f"{cls.__name__} enabled")
K
kuizhiqing 已提交
32
            ctx.args.run_mode = ControleMode.COLLECTIVE
K
kuizhiqing 已提交
33 34 35 36 37
            return True
        else:
            return False

    def build_pod(self):
38 39 40
        skip_run = self._build_pod_with_tuner()
        if skip_run:
            return
41 42 43 44 45
        if (
            self.ctx.args.master is None
            and self.ctx.args.start_port
            and self.ctx.args.ips
        ):
C
Chitsing KUI 已提交
46
            return self._build_pod_with_args()
K
kuizhiqing 已提交
47
        else:
C
Chitsing KUI 已提交
48
            return self._build_pod_with_master()
K
kuizhiqing 已提交
49

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    def _build_pod_with_tuner(self):
        auto_parallel_config = self.ctx.args.auto_parallel_config
        if auto_parallel_config is not None:
            if not os.path.exists(auto_parallel_config):
                self.ctx.logger.warning("auto_parallel_conf not exists!")
            if not auto_parallel_config.endswith(".json"):
                self.ctx.logger.warning(
                    "auto_parallel_config should be a json format file!"
                )

            with open(auto_parallel_config, 'r') as robj:
                auto_parallel_data = json.loads(robj.read())
                self._tuner_run_mode = auto_parallel_data.get(
                    "tuner_run_mode", 'tuner_and_run'
                )

            self.ctx.logger.info(f"tuner_run_mode is: {self._tuner_run_mode}")
            endpoint = f"127.0.0.1:{self.ctx.node.get_free_port()}"
            pod_replicas = self.pod_replicas()
            if self._tuner_run_mode in ['tuner_only', 'tuner_and_run']:
                e = {
                    "PADDLE_AUTO_PARALLEL_CONFIG": self.ctx.args.auto_parallel_config,
                    "PADDLE_TRAINERS_NUM": "1",
                    "PADDLE_TRAINER_ENDPOINTS": endpoint,
                    "PADDLE_TRAINER_ID": "0",
                    "PADDLE_CURRENT_ENDPOINT": endpoint,
                    "FLAGS_selected_gpus": "0",
                    "PADDLE_AUTO_PARALLEL_STAGE": "tuner",
                    "PADDLE_GLOBAL_SIZE": "{}".format(
                        pod_replicas * int(self.ctx.args.nnodes)
                    ),
                    "PADDLE_LOCAL_SIZE": f"{pod_replicas}",
                }
                log_file = "tuner.log"
                self.add_container(envs=e, log_file=log_file, is_init=True)

                if self._tuner_run_mode == 'tuner_only':
                    return True
        return False

K
kuizhiqing 已提交
90 91 92 93 94 95 96 97 98 99
    def _build_pod_with_args(self):
        self.pod.replicas = self.pod_replicas()

        start_port = int(self.ctx.args.start_port)
        ips = self.ctx.args.ips.split(',')

        job_endpoints = [
            f"{h}:{p+start_port}" for h in ips for p in range(self.pod.replicas)
        ]

100
        self.ctx.logger.debug(f"job endpoints: {job_endpoints}")
K
kuizhiqing 已提交
101

102 103 104 105 106
        rank_offset = (
            ips.index(self.ctx.node.ip) * self.pod.replicas
            if self.ctx.node.ip in ips
            else 0
        )
K
kuizhiqing 已提交
107 108 109 110 111

        self.save_pod_log(job_endpoints)

        selected_dev_key = self.ctx.node.device.get_selected_device_key()
        selected_dev_list = self.ctx.node.device.get_selected_devices(
112 113
            self.ctx.args.devices
        )
K
kuizhiqing 已提交
114 115 116

        for i in range(self.pod.replicas):
            e = {
117 118 119 120 121
                "PADDLE_GLOBAL_SIZE": f"{len(job_endpoints)}",
                "PADDLE_LOCAL_SIZE": f"{self.pod.replicas}",
                "PADDLE_GLOBAL_RANK": f"{i + rank_offset}",
                "PADDLE_LOCAL_RANK": f"{i}",
                "PADDLE_NNODES": f"{len(ips)}",
122
                # compatible env
K
kuizhiqing 已提交
123
                "PADDLE_CURRENT_ENDPOINT": job_endpoints[i + rank_offset],
124 125
                "PADDLE_TRAINER_ID": f"{i + rank_offset}",
                "PADDLE_TRAINERS_NUM": f"{len(job_endpoints)}",
K
kuizhiqing 已提交
126 127
                "PADDLE_RANK_IN_NODE": str(i),
            }
128 129 130
            if len(",".join(job_endpoints)) < 120 * 1024:
                e.update({"PADDLE_TRAINER_ENDPOINTS": ",".join(job_endpoints)})

131 132 133 134 135 136 137
            if self._tuner_run_mode is not None:
                e.update(
                    {
                        "PADDLE_AUTO_PARALLEL_CONFIG": self.ctx.args.auto_parallel_config,
                        "PADDLE_AUTO_PARALLEL_STAGE": "run",
                    }
                )
K
kuizhiqing 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
            if len(selected_dev_list) > 0:
                if self.ctx.node.device.dtype == DeviceType.CUSTOM_DEVICE:
                    e.update(self.ctx.node.device.get_custom_device_envs())
                if self.pod.replicas == 1:
                    e.update({selected_dev_key: ",".join(selected_dev_list)})
                else:
                    e.update({selected_dev_key: selected_dev_list[i]})
            else:
                e.update({'PADDLE_DISTRI_BACKEND': 'gloo'})

            log_file = f"workerlog.{i}"
            self.add_container(envs=e, log_file=log_file)

        return True

    def _build_pod_with_master(self):
K
kuizhiqing 已提交
154 155 156
        self.pod.replicas = self.pod_replicas()

        # rank will be reset when restart
K
kuizhiqing 已提交
157
        self.pod.rank = int(self.ctx.args.rank)
K
kuizhiqing 已提交
158 159 160 161 162

        port = self.ctx.node.get_free_port()

        # compatible
        endpoints = [
163
            f"{self.ctx.node.ip}:{p}"
K
kuizhiqing 已提交
164 165 166
            for p in self.ctx.node.get_free_ports(self.pod.replicas)
        ]

167 168 169 170 171 172
        data = json.dumps(
            {
                'name': self.pod.name,
                'rank': self.pod.rank,
                'replicas': self.pod.replicas,
                'dtype': self.ctx.node.device.dtype,
173
                'candidate': f'{self.ctx.node.ip}:{port}',
174 175 176 177 178
                'endpoints': ",".join(endpoints),
            }
        )

        peer_list, rank = self.master.sync_peers(
179
            f'/{self.job.id}/info',
180 181 182 183 184
            self.pod.name,
            data,
            self.job.replicas,
            self.pod.rank,
        )
K
kuizhiqing 已提交
185 186 187 188 189 190 191
        self.pod.rank = rank

        if len(peer_list) < 1:
            return False

        peer_list = [json.loads(i) for i in peer_list]

192
        self.ctx.logger.debug(f"sync peers done {peer_list}")
K
kuizhiqing 已提交
193 194 195 196 197 198 199 200 201 202 203
        self.save_pod_log(peer_list)

        global_size = sum([i['replicas'] for i in peer_list])
        rank_offset = sum([i['replicas'] for i in peer_list[:rank]])
        '''
        The new designed collective need nothing but a master endpoint
        '''
        collective_master = peer_list[0]['candidate']

        job_endpoints = [i['endpoints'] for i in peer_list]

204
        # self.pod.reset()
K
kuizhiqing 已提交
205 206
        selected_dev_key = self.ctx.node.device.get_selected_device_key()
        selected_dev_list = self.ctx.node.device.get_selected_devices(
207 208
            self.ctx.args.devices
        )
K
kuizhiqing 已提交
209 210 211
        for i in range(self.pod.replicas):
            e = {
                "PADDLE_MASTER": collective_master,
212 213 214 215 216
                "PADDLE_GLOBAL_SIZE": f"{global_size}",
                "PADDLE_LOCAL_SIZE": f"{self.pod.replicas}",
                "PADDLE_GLOBAL_RANK": f"{i + rank_offset}",
                "PADDLE_LOCAL_RANK": f"{i}",
                "PADDLE_NNODES": f"{self.job.replicas}",
217
                # compatible env
K
kuizhiqing 已提交
218
                "PADDLE_CURRENT_ENDPOINT": endpoints[i],
219 220
                "PADDLE_TRAINER_ID": f"{i + rank_offset}",
                "PADDLE_TRAINERS_NUM": f"{global_size}",
K
kuizhiqing 已提交
221 222
                "PADDLE_RANK_IN_NODE": str(i),
            }
223 224 225
            if len(",".join(job_endpoints)) < 120 * 1024:
                e.update({"PADDLE_TRAINER_ENDPOINTS": ",".join(job_endpoints)})

226 227 228 229 230 231 232
            if self._tuner_run_mode is not None:
                e.update(
                    {
                        "PADDLE_AUTO_PARALLEL_CONFIG": self.ctx.args.auto_parallel_config,
                        "PADDLE_AUTO_PARALLEL_STAGE": "run",
                    }
                )
233
            if len(selected_dev_list) > 0:
234 235
                if self.ctx.node.device.dtype == DeviceType.CUSTOM_DEVICE:
                    e.update(self.ctx.node.device.get_custom_device_envs())
236 237 238 239
                if self.pod.replicas == 1:
                    e.update({selected_dev_key: ",".join(selected_dev_list)})
                else:
                    e.update({selected_dev_key: selected_dev_list[i]})
240
            else:
241 242
                e.update({'PADDLE_DISTRI_BACKEND': 'gloo'})

243 244 245
            # log_file = "{}.{}.{}.log".format(self.job.id, self.pod.name, i)
            log_file = f"workerlog.{i}"
            self.add_container(envs=e, log_file=log_file)
K
kuizhiqing 已提交
246 247 248 249 250 251 252 253

        return True


class CollectiveElasticController(CollectiveController):
    @classmethod
    def enable(cls, ctx):
        if ctx.args.master and ctx.args.master.startswith("etcd://"):
254
            ctx.logger.debug(f"{cls.__name__} enabled")
K
kuizhiqing 已提交
255
            ctx.args.run_mode = ControleMode.COLLECTIVE
K
kuizhiqing 已提交
256 257 258 259 260 261 262
            return True
        else:
            return False

    def register(self):
        if self.job.id == 'default':
            self.ctx.logger.warning(
263 264
                'Using default job name may cause conflict, add --job_id in args'
            )
K
kuizhiqing 已提交
265 266 267 268

        self.master.register_heartbeat(self.job.id, self.pod.name)

    def run(self):
K
kuizhiqing 已提交
269 270
        timeout = int(self.ctx.args.elastic_timeout)
        timeout = timeout if self.job.elastic else timeout * 10
K
kuizhiqing 已提交
271 272 273 274 275
        self.register()

        while self.pod.restart <= self.ctx.args.max_restart:
            self.build_job()

276 277
            self.ctx.logger.info("Waiting peer ready...")

278 279 280
            ok, replicas = self.master.wait_peer_ready(
                self.job.replicas_min, self.job.replicas_max, timeout
            )
K
kuizhiqing 已提交
281 282 283
            if ok:
                self.job.replicas = replicas
            else:
284
                self.ctx.logger.warning(f"peer not ready {self.job}")
285 286 287 288 289 290 291
                if self.ctx.is_auto_tuner_mode():
                    self.ctx.logger.info(
                        "Failed to start peer, auto tuner exit."
                    )
                    import sys

                    sys.exit(-1)
K
kuizhiqing 已提交
292 293
                break

294
            self.ctx.logger.debug(f"Run {self.job}")
K
kuizhiqing 已提交
295 296 297 298 299 300

            if not self.build_pod():
                continue

            self.master.set_status(self.ctx.status.RUNNING)

301
            self.deploy_pod()
K
kuizhiqing 已提交
302 303 304 305

            if self.watch():
                break

306
        self.ctx.logger.debug(f"Job done {self.job}")