api_base.py 38.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import re

17
PREFIX_TENSOR_NAME = 'input_'
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
PREFIX_META_TENSOR_NAME = 'meta_'


class BaseAPI(object):
    def __init__(self, api_item_yaml):
        self.api = self.get_api_name(api_item_yaml)

        # inputs:
        #     names : [], list of input names
        #     input_info : {input_name : type}
        # attrs:
        #     names : [], list of attribute names
        #     attr_info : { attr_name : (type, default_values)}
        # outputs:
        #     names : [], list of output names
        #     types : [], list of output types
34
        #     out_size_expr : [], expression for getting size of vector<Tensor>
35 36
        #     return_type : Tensor, vector<Tensor>, ..., the return type of api
        # args_str:
37 38
        #     args_declare : "str" // str of function params with default value. Example: (..., bool flag=false)
        #     args_define : "str" // str of function params without default value. Example: (..., bool flag)
39
        self.inputs, self.attrs, self.outputs, self.args_str, self.optional_vars = self.parse_args(
40 41 42 43 44 45 46
            self.api, api_item_yaml)

        self.is_base_api = True
        if 'invoke' in api_item_yaml:
            self.is_base_api = False
            self.invoke = api_item_yaml['invoke']
        else:
47 48 49
            if 'infer_meta' in api_item_yaml:
                self.infer_meta = self.parse_infer_meta(api_item_yaml[
                    'infer_meta'])
50 51 52 53
            self.kernel = self.parse_kernel(api_item_yaml['kernel'])
            self.support_selected_rows_kernel = False if len(self.kernel[
                'func']) == 1 else True
            self.data_transform = self.parse_data_transform(api_item_yaml)
54 55
            self.inplace_map, self.view_map = self.parse_inplace_and_view(
                api_item_yaml)
56 57 58 59

    def get_api_name(self, api_item_yaml):
        return api_item_yaml['api']

60 61 62
    def get_api_func_name(self):
        return self.api

63
    def parse_args(self, api_name, api_item_yaml):
64 65 66 67 68
        optional_vars = []
        if 'optional' in api_item_yaml:
            optional_vars = [
                item.strip() for item in api_item_yaml['optional'].split(',')
            ]
69
        inputs, attrs, args_str = self.parse_input_and_attr(
70
            api_name, api_item_yaml['args'], optional_vars)
71
        output_type_list, output_names, out_size_expr, return_type = self.parse_output(
72 73 74 75
            api_name, api_item_yaml['output'])
        return inputs, attrs, {
            'names': output_names,
            'types': output_type_list,
76
            'out_size_expr': out_size_expr,
77
            'return_type': return_type
78
        }, args_str, optional_vars
79

80
    def parse_input_and_attr(self, api_name, args_config, optional_vars=[]):
81 82 83 84 85 86 87
        inputs = {'names': [], 'input_info': {}}
        attrs = {'names': [], 'attr_info': {}}
        args_str = args_config.strip()
        assert args_str.startswith('(') and args_str.endswith(')'), \
            f"Args declaration should start with '(' and end with ')', please check the args of {api_name} in yaml."
        args_str = args_str[1:-1]
        args_list = args_str.split(',')
Z
zyfncg 已提交
88 89 90 91
        input_types_map = {
            'Tensor': 'const Tensor&',
            'Tensor[]': 'const std::vector<Tensor>&'
        }
92
        attr_types_map = {
93
            'IntArray': 'const IntArray&',
94
            'Scalar': 'const Scalar&',
95 96 97 98
            'Scalar(int)': 'const Scalar&',
            'Scalar(int64_t)': 'const Scalar&',
            'Scalar(float)': 'const Scalar&',
            'Scalar(dobule)': 'const Scalar&',
99
            'int': 'int',
100 101
            'int32_t': 'int32_t',
            'int64_t': 'int64_t',
102 103 104 105 106
            'long': 'long',
            'size_t': 'size_t',
            'float': 'float',
            'double': 'double',
            'bool': 'bool',
107
            'str': 'const std::string&',
108
            'Place': 'Place',
109 110
            'DataLayout': 'DataLayout',
            'DataType': 'DataType',
111 112
            'int64_t[]': 'const std::vector<int64_t>&',
            'int[]': 'const std::vector<int>&'
113 114
        }
        optional_types_trans = {
H
hong 已提交
115
            'Tensor': 'paddle::optional<const Tensor&>',
116 117
            'Tensor[]': 'const paddle::optional<std::vector<Tensor>>&',
            'int': 'paddle::optional<int>',
118 119
            'int32_t': 'paddle::optional<int32_t>',
            'int64_t': 'paddle::optional<int64_t>',
120 121 122
            'float': 'paddle::optional<float>',
            'double': 'paddle::optional<double>',
            'bool': 'paddle::optional<bool>',
123
            'Place': 'paddle::optional<Place>',
124
            'DataLayout': 'paddle::optional<DataLayout>',
125
            'DataType': 'paddle::optional<DataType>'
126 127
        }

128 129 130 131 132
        args_declare_str = ""
        args_define_str = ""

        for item in args_list:
            item = item.strip()
Z
zyfncg 已提交
133
            type_and_name = item.split(' ')
134 135
            # match the input tensor
            has_input = False
Z
zyfncg 已提交
136 137 138
            for in_type_symbol, in_type in input_types_map.items():
                if type_and_name[0] == in_type_symbol:
                    input_name = type_and_name[1].strip()
139 140 141 142 143
                    assert len(input_name) > 0, \
                        f"The input tensor name should not be empty. Please check the args of {api_name} in yaml."
                    assert len(attrs['names']) == 0, \
                        f"The input Tensor should appear before attributes. please check the position of {api_name}:input({input_name}) in yaml"

144 145 146
                    if input_name in optional_vars:
                        in_type = optional_types_trans[in_type_symbol]

147 148 149 150 151 152 153 154 155 156
                    inputs['names'].append(input_name)
                    inputs['input_info'][input_name] = in_type
                    args_declare_str = args_declare_str + in_type + ' ' + input_name + ', '
                    args_define_str = args_define_str + in_type + ' ' + input_name + ', '
                    has_input = True
                    break
            if has_input:
                continue

            # match the attribute
Z
zyfncg 已提交
157 158 159
            for attr_type_symbol, attr_type in attr_types_map.items():
                if type_and_name[0] == attr_type_symbol:
                    attr_name = item[len(attr_type_symbol):].strip()
160 161 162 163 164 165 166 167
                    assert len(attr_name) > 0, \
                        f"The attribute name should not be empty. Please check the args of {api_name} in yaml."
                    default_value = None
                    if '=' in attr_name:
                        attr_infos = attr_name.split('=')
                        attr_name = attr_infos[0].strip()
                        default_value = attr_infos[1].strip()

168 169 170
                    if attr_name in optional_vars:
                        attr_type = optional_types_trans[attr_type_symbol]

171 172 173 174 175 176 177 178 179 180 181 182 183 184
                    default_value_str = "" if default_value is None else '=' + default_value
                    args_declare_str = args_declare_str + attr_type + ' ' + attr_name + default_value_str + ', '
                    args_define_str = args_define_str + attr_type + ' ' + attr_name + ', '
                    attrs['names'].append(attr_name)
                    attrs['attr_info'][attr_name] = (attr_type, default_value)
                    break

        return inputs, attrs, {
            'args_declare': args_declare_str[:-2],
            'args_define': args_define_str[:-2]
        }

    def parse_output(self, api_name, output_config):
        def parse_output_item(output_item):
Z
zyfncg 已提交
185 186 187 188
            output_type_map = {
                'Tensor': 'Tensor',
                'Tensor[]': 'std::vector<Tensor>'
            }
189 190 191 192 193 194 195 196 197 198 199 200 201 202
            result = re.search(
                r"(?P<out_type>[a-zA-Z0-9_[\]]+)\s*(?P<name>\([a-zA-Z0-9_@]+\))?\s*(?P<expr>\{[^\}]+\})?",
                output_item)
            assert result is not None, f"{api_name} : the output config parse error."
            out_type = result.group('out_type')
            assert out_type in output_type_map, \
                f"{api_name} : Output type error: the output type only support Tensor and Tensor[], \
                  but now is {out_type}."

            out_name = 'out' if result.group('name') is None else result.group(
                'name')[1:-1]
            out_size_expr = None if result.group(
                'expr') is None else result.group('expr')[1:-1]
            return output_type_map[out_type], out_name, out_size_expr
203 204 205 206

        temp_list = output_config.split(',')

        if len(temp_list) == 1:
207 208 209
            out_type, out_name, size_expr = parse_output_item(temp_list[0])
            return [out_type], [out_name], size_expr, self.get_return_type(
                [out_type])
210 211 212 213
        else:
            out_type_list = []
            out_name_list = []
            for output_item in temp_list:
214
                out_type, out_name, size_expr = parse_output_item(output_item)
215 216 217
                out_type_list.append(out_type)
                out_name_list.append(out_name)

218
            return out_type_list, out_name_list, size_expr, self.get_return_type(
219 220
                out_type_list)

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
    def parse_infer_meta(self, infer_meta_config):
        infer_meta = infer_meta_config
        if 'param' not in infer_meta_config:
            infer_meta['param'] = None

        return infer_meta

    def parse_kernel(self, kernel_config):
        # kernel :
        #    func : [], Kernel functions (example: scale, scale_sr)
        #    param : [], Input params of kernel
        #    backend : str, the names of param to choose the kernel backend, default is None
        #    layout : str, the names of param to choose the kernel layout, default is None
        #    data_type : str, the names of param to choose the kernel data_type, default is None
        kernel = {
            'func': [],
            'param': None,
            'backend': None,
            'layout': None,
Z
zyfncg 已提交
240 241
            'data_type': None,
            'use_cudnn': 'false'
242 243 244 245 246 247 248 249 250
        }
        if 'backend' in kernel_config and len(kernel_config['backend']) > 0:
            kernel['backend'] = kernel_config['backend']
        if 'layout' in kernel_config and len(kernel_config['layout']) > 0:
            kernel['layout'] = kernel_config['layout']
        if 'data_type' in kernel_config and len(kernel_config['data_type']) > 0:
            kernel['data_type'] = kernel_config['data_type']
        if 'param' in kernel_config:
            kernel['param'] = kernel_config['param']
Z
zyfncg 已提交
251 252 253 254
        if 'use_cudnn' in kernel_config:
            kernel['use_cudnn'] = kernel_config['use_cudnn']
            if isinstance(kernel['use_cudnn'], bool):
                kernel['use_cudnn'] = str(kernel['use_cudnn']).lower()
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
        kernel['func'] = [
            kernel_fn.strip() for kernel_fn in kernel_config['func'].split(',')
        ]

        if len(kernel['func']) == 2:
            assert kernel['func'][0] == self.api, \
                    f"{self.api} : Kernel func error: If kernel has two func config, the name of first func should be same with api name({self.api}), \
                      but now is {kernel['func'][0]}."
            assert kernel['func'][1].endswith('_sr'), \
                    f"{self.api} : Kernel func error: If kernel has two func config, the name of second func should be a selected_rows kernel (the func name endwith '_sr'), \
                      but now is {kernel['func'][1]}."

        return kernel

    def parse_data_transform(self, api_item_yaml):
        data_transform = {'skip_transform': [], 'support_trans_dtype': []}
        if 'data_transform' in api_item_yaml:
            if 'skip_transform' in api_item_yaml['data_transform']:
                data_transform['skip_transform'] = api_item_yaml[
                    'data_transform']['skip_transform']
            if 'support_trans_dtype' in api_item_yaml['data_transform']:
                data_transform['support_trans_dtype'] = api_item_yaml[
                    'data_transform']['support_trans_dtype']

        return data_transform

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
    def parse_inplace_and_view(self, api_item_yaml):
        inplace_map, view_map = None, None
        for mode in ['inplace', 'view']:
            if mode in api_item_yaml:
                if mode == 'inplace':
                    inplace_map = {}
                else:
                    view_map = {}
                in_out_mapping_list = api_item_yaml[mode].split(',')
                for item in in_out_mapping_list:
                    result = re.search(r"(?P<in>\w+)\s*->\s(?P<out>\w+)", item)
                    in_val = result.group('in')
                    out_val = result.group('out')
                    assert in_val in self.inputs['names'], \
                        f"{self.api} : {mode} input error: the input var name('{in_val}') is not found in the input args of {self.api}."
                    assert out_val in self.outputs['names'], \
                        f"{self.api} : {mode} output error: the output var name('{out_val}') is not found in the output args of {self.api}."

                    if mode == 'inplace':
                        inplace_map[out_val] = in_val
                    else:
                        view_map[out_val] = in_val

        return inplace_map, view_map
305

306 307 308 309 310 311
    # Override by child class
    def get_return_type(self, out_type_list):
        return None

    def gene_api_declaration(self):
        api_declaration = f"""
312
PADDLE_API {self.gene_return_type_code()} {self.get_api_func_name()}({self.args_str['args_declare']});
313 314 315 316
"""

        if self.is_base_api and self.inplace_map is not None:
            api_declaration = api_declaration + f"""
317
PADDLE_API {self.gene_return_type_code()} {self.get_api_func_name() + '_'}({self.args_str['args_declare']});
318 319 320 321
"""

        return api_declaration

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
    # Backward API Override this method
    def gene_kernel_backend_select(self):
        backend_select_code = ""
        if self.kernel['backend'] is not None:
            if '>' in self.kernel['backend']:
                vars_list = self.kernel['backend'].split('>')
                assert len(
                    vars_list
                ) == 2, f"{self.api} api: The number of params to set backend with '>' only allows 2, but received {len(vars_list)}."
                assert (vars_list[0].strip() in self.attrs['names']) and (self.attrs['attr_info'][vars_list[0].strip()][0] == 'Place'), \
                    f"{self.api} api: When use '>' to set kernel backend, the first param should be a attribute with Place type."
                backend_select_code = f"""
  kernel_backend = ParseBackendWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()});
"""

            else:
                backend_args = [
                    ele.strip() for ele in self.kernel['backend'].split(',')
                ]
                backend_select_code = f"""
  kernel_backend = ParseBackend({", ".join(backend_args)});
"""

        return backend_select_code

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
    def gene_kernel_select(self) -> str:
        api = self.api
        input_names = self.inputs['names']
        attrs = self.attrs
        kernel = self.kernel

        kernel_key_item_init = """
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;
"""
        # Check the tensor options
        attr_backend_count = 0
        attr_layout_count = 0
        attr_data_type_count = 0
        for attr_name in attrs['names']:
363
            if attrs['attr_info'][attr_name][0] == 'Place':
364
                assert kernel['backend'] is not None, \
365
                    f"{api} api: When there is a parameter with 'Place' type in attributes, you must set backend of kernel manually."
366 367 368 369 370 371 372 373 374 375 376
                attr_backend_count = attr_backend_count + 1
            if attrs['attr_info'][attr_name][0] == 'DataLayout':
                assert kernel['layout'] is not None, \
                    f"{api} api: When there is a parameter with 'DataLayout' type in attributes, you must set layout of kernel manually."
                attr_layout_count = attr_layout_count + 1
            if attrs['attr_info'][attr_name][0] == 'DataType':
                assert kernel['data_type'] is not None, \
                    f"{api} api: When there is a parameter with 'DataType' type in attributes, you must set data_type of kernel manually."
                attr_data_type_count = attr_data_type_count + 1

        # preprocess kernel configures
377
        kernel_select_code = self.gene_kernel_backend_select()
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421

        if kernel['layout'] is not None:
            if '>' in kernel['layout']:
                vars_list = kernel['layout'].split('>')
                assert len(
                    vars_list
                ) == 2, f"{api} api: The number of params to set layout with '>' only allows 2, but received {len(vars_list)}."
                assert vars_list[0].strip() in attrs['names'] and attrs['attr_info'][vars_list[0].strip()][0] == 'DataLayout', \
                    f"{api} api: When use '>' to set kernel layout, the first param should be a attribute with DataLayout type."
                kernel_select_code = kernel_select_code + f"""
  kernel_layout = ParseLayoutWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()});
"""

            else:
                vars_list = kernel['layout'].split(',')
                assert len(
                    vars_list
                ) == 1, f"{api} api: The number of params to set layout must be 1, but received {len(vars_list)}."
                kernel_select_code = kernel_select_code + f"""
  kernel_layout = ParseLayout({vars_list[0].strip()});
"""

        if kernel['data_type'] is not None:
            if '>' in kernel['data_type']:
                vars_list = kernel['data_type'].split('>')
                assert len(
                    vars_list
                ) == 2, f"{api} api: The number of params to set data_type with '>' only allows 2, but received {len(vars_list)}."
                assert vars_list[0].strip() in attrs['names'] and attrs['attr_info'][vars_list[0].strip()][0] == 'DataType', \
                    f"{api} api: When use '>' to set kernel data_type, the first param should be a attribute with DataType type."
                kernel_select_code = kernel_select_code + f"""
  kernel_data_type = ParseDataTypeWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()});
"""

            else:
                vars_list = kernel['data_type'].split(',')
                assert len(
                    vars_list
                ) == 1, f"{api} api: The number of params to set data_type only allows 2, but received {len(vars_list)}."
                kernel_select_code = kernel_select_code + f"""
  kernel_data_type = ParseDataType({vars_list[0].strip()});
"""

        if len(input_names) == 0:
422 423
            assert attr_backend_count > 0 and attr_data_type_count > 0, \
                f"{api} api: When there is no input tensor, the args must have 'Backend' and 'DataType'."
424 425 426 427 428 429 430 431 432 433 434

        kernel_select_args = ""
        for input_name in input_names:
            kernel_select_args = kernel_select_args + input_name + ", "

        if len(kernel_select_args) > 2:
            kernel_select_args = kernel_select_args[:-2]

        kernel_select_code = kernel_key_item_init + kernel_select_code

        if len(input_names) > 0:
435 436
            if self.support_selected_rows_kernel:
                kernel_select_code = kernel_select_code + f"""
437
  KernelType kernel_type = ParseKernelTypeByInputArgs({", ".join(input_names)});
438 439
"""

440 441 442 443 444
            kernel_select_code = kernel_select_code + f"""
  if (kernel_backend == Backend::UNDEFINED
        || kernel_layout == DataLayout::UNDEFINED
        || kernel_data_type == DataType::UNDEFINED ) {{
    auto kernel_key_set = ParseKernelKeyByInputArgs({kernel_select_args});
445
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
446 447 448 449 450 451 452 453 454 455 456 457 458
    if (kernel_backend == Backend::UNDEFINED) {{
      kernel_backend = kernel_key.backend();
    }}
    if (kernel_layout == DataLayout::UNDEFINED) {{
      kernel_layout = kernel_key.layout();
    }}
    if (kernel_data_type == DataType::UNDEFINED) {{
      kernel_data_type = kernel_key.dtype();
    }}
  }}"""

        return kernel_select_code

459
    def gene_infer_meta(self, kernel_output_names, code_indent) -> str:
460 461 462 463
        input_names = self.inputs['names']
        attr_names = self.attrs['names']
        infer_meta = self.infer_meta

464 465
        infer_meta_params = infer_meta['param'] if infer_meta[
            'param'] is not None else input_names + attr_names
466 467 468 469 470
        # generate meta tensors
        meta_tensor_code = ""
        param_code = ""
        for param in infer_meta_params:
            if param in input_names:
471 472 473 474 475
                if self.inputs['input_info'][param] == "const Tensor&":
                    param_code = param_code + "MakeMetaTensor(*" + PREFIX_TENSOR_NAME + param + "), "
                elif self.inputs['input_info'][
                        param] == "const std::vector<Tensor>&":
                    meta_tensor_code = meta_tensor_code + f"""
476
{code_indent}  auto {param}_meta_vec = MakeMetaTensor({PREFIX_TENSOR_NAME}{param});
477
{code_indent}  std::vector<const phi::MetaTensor*> {param}_metas({param}_meta_vec.size());
478 479 480 481 482 483 484
{code_indent}  for (size_t i = 0; i < {param}_meta_vec.size(); ++i) {{
{code_indent}    {param}_metas[i] = &{param}_meta_vec[i];
{code_indent}  }}
"""

                    param_code = param_code + param + "_metas, "
                elif param in self.optional_vars:
485
                    meta_tensor_code = meta_tensor_code + f"""
H
hong 已提交
486
{code_indent}  paddle::optional<const phi::MetaTensor&> {PREFIX_TENSOR_NAME}meta_ref_{param} = paddle::none;
487 488
{code_indent}  phi::DenseTensor {param}_dt;
{code_indent}  phi::MetaTensor {PREFIX_TENSOR_NAME}meta_tmp_{param}({param}_dt);
H
hong 已提交
489 490 491 492 493 494
{code_indent}  if ({PREFIX_TENSOR_NAME}{param}_ptr) {{
{code_indent}    {PREFIX_TENSOR_NAME}meta_tmp_{param}.set_dtype( {PREFIX_TENSOR_NAME}{param}_ptr->dtype() );
{code_indent}    {PREFIX_TENSOR_NAME}meta_tmp_{param}.set_dims( {PREFIX_TENSOR_NAME}{param}_ptr->dims() );
{code_indent}    {PREFIX_TENSOR_NAME}meta_tmp_{param}.set_layout( {PREFIX_TENSOR_NAME}{param}_ptr->layout() );
{code_indent}    {PREFIX_TENSOR_NAME}meta_ref_{param} =  {PREFIX_TENSOR_NAME}meta_tmp_{param};
{code_indent}  }}\n"""
495 496 497

                    param_code = param_code + f"{PREFIX_TENSOR_NAME}meta_ref_{param}, "
                else:
498 499 500
                    raise ValueError(
                        f"{self.api} : Param of infer_meta error : {self.inputs['input_info'][param]} type is not supported."
                    )
501 502 503 504 505 506 507 508 509
            elif param in attr_names:
                param_code = param_code + param + ", "
            elif isinstance(param, str):
                param_code = param_code + "\"" + param + "\", "
            elif isinstance(param, bool):
                param_code = param_code + str(param).lower() + ", "
            else:
                param_code = param_code + str(param) + ", "

510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
        for i, out_name in enumerate(kernel_output_names):
            if self.outputs['types'][i] == 'std::vector<Tensor>':
                meta_tensor_code = meta_tensor_code + f"""
{code_indent}  auto {out_name}_{PREFIX_META_TENSOR_NAME}vec = MakeMetaTensor({out_name});
{code_indent}  std::vector<phi::MetaTensor*> {out_name}_metas({out_name}_{PREFIX_META_TENSOR_NAME}vec.size());
{code_indent}  for (size_t i = 0; i < {out_name}_{PREFIX_META_TENSOR_NAME}vec.size(); ++i) {{
{code_indent}    {out_name}_metas[i] = &{out_name}_{PREFIX_META_TENSOR_NAME}vec[i];
{code_indent}  }}"""

                param_code = param_code + out_name + '_metas, '
            else:
                meta_tensor_code = meta_tensor_code + code_indent + "  phi::MetaTensor " + out_name.replace(
                    'kernel_',
                    PREFIX_META_TENSOR_NAME) + "(" + out_name + ");\n"
                param_code = param_code + "&" + out_name.replace(
                    'kernel_', PREFIX_META_TENSOR_NAME) + ", "

527 528
        param_code = param_code[:-2]
        return f"""{meta_tensor_code}
529
{code_indent}  phi::{infer_meta['func']}({param_code});
530 531
"""

532
    def get_kernel_args(self, code_indent):
533
        input_trans_map = {
534
            'const Tensor&': 'const phi::DenseTensor&',
535
            'const std::vector<Tensor>&':
536
            'const std::vector<const phi::DenseTensor*>&',
H
hong 已提交
537 538 539
            'const paddle::optional<Tensor&>':
            'paddle::optional<const phi::DenseTensor&>',
            'paddle::optional<const Tensor&>':
540 541 542
            'paddle::optional<const phi::DenseTensor&>',
            'const paddle::optional<std::vector<Tensor>>&':
            'paddle::optional<const std::vector<phi::DenseTensor>&>'
543 544
        }
        out_trans_map = {
545 546
            'Tensor': 'phi::DenseTensor*',
            'std::vector<Tensor>': 'std::vector<phi::DenseTensor*>&'
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
        }
        input_names = self.inputs['names']
        input_infos = self.inputs['input_info']
        kernel_args_type_list = ['const platform::DeviceContext&']

        attr_names = self.attrs['names']
        kernel_param = self.kernel['param']
        if kernel_param is None:
            kernel_param = input_names + attr_names

        input_tensor_code = ""
        for i, input_name in enumerate(input_names):
            # set input code
            if input_name in kernel_param:
                trans_flag = "{}"
                if input_name in self.data_transform['skip_transform']:
                    trans_flag = "{true}"
                elif input_name in self.data_transform['support_trans_dtype']:
                    trans_flag = "{false, true}"
566 567 568 569 570 571 572 573 574
                if input_name in self.optional_vars:
                    input_tensor_code = input_tensor_code + f"""
{code_indent}  {input_trans_map[input_infos[input_name]]} {PREFIX_TENSOR_NAME}{input_name}(paddle::none);
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name}_ptr = PrepareData({input_name}, kernel.InputAt({i}), {trans_flag});
{code_indent}  if ({PREFIX_TENSOR_NAME}{input_name}_ptr) {{
{code_indent}    {PREFIX_TENSOR_NAME}{input_name} = paddle::make_optional<const phi::DenseTensor&>(*{PREFIX_TENSOR_NAME}{input_name}_ptr);
{code_indent}  }}"""

                else:
575 576
                    if self.inputs['input_info'][input_name] == "const Tensor&":
                        input_tensor_code = input_tensor_code + f"""
577
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name} = PrepareData({input_name}, kernel.InputAt({i}), {trans_flag});"""
578

579 580 581 582 583 584 585 586 587 588 589 590
                    elif self.inputs['input_info'][
                            input_name] == "const std::vector<Tensor>&":
                        input_tensor_code = input_tensor_code + f"""
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name}_vec = PrepareData({input_name}, kernel.InputAt({i}), {trans_flag});
{code_indent}  std::vector<const phi::DenseTensor*> {PREFIX_TENSOR_NAME}{input_name}({PREFIX_TENSOR_NAME}{input_name}_vec->size());
{code_indent}  for (size_t i = 0; i < {PREFIX_TENSOR_NAME}{input_name}.size(); ++i) {{
{code_indent}    {PREFIX_TENSOR_NAME}{input_name}[i] = &{PREFIX_TENSOR_NAME}{input_name}_vec->at(i);
{code_indent}  }}"""

                    else:
                        # do nothing
                        pass
591
            else:
592 593 594 595 596 597 598 599 600 601
                if input_name in self.optional_vars:
                    input_tensor_code = input_tensor_code + f"""
{code_indent}  {input_trans_map[input_infos[input_name]]} {PREFIX_TENSOR_NAME}{input_name}(paddle::none);
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name}_ptr = TensorToDenseTensor({input_name});
{code_indent}  if ({PREFIX_TENSOR_NAME}{input_name}_ptr) {{
{code_indent}    {PREFIX_TENSOR_NAME}{input_name} = paddle::make_optional<const phi::DenseTensor&>(*{PREFIX_TENSOR_NAME}{input_name}_ptr);
{code_indent}  }}"""

                else:
                    input_tensor_code = input_tensor_code + f"""
602 603 604 605 606
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name} = TensorToDenseTensor({input_name});"""

        kernel_args = "*dev_ctx, "
        for param in kernel_param:
            if param in input_names:
607 608 609
                if param in self.optional_vars:
                    kernel_args = kernel_args + PREFIX_TENSOR_NAME + param + ", "
                else:
610 611 612
                    if self.inputs['input_info'][param] == "const Tensor&":
                        kernel_args = kernel_args + "*" + PREFIX_TENSOR_NAME + param + ", "
                    elif self.inputs['input_info'][
613
                            param] == "const std::vector<Tensor>&":
614 615 616 617
                        kernel_args = kernel_args + PREFIX_TENSOR_NAME + param + ", "
                    else:
                        # do nothing
                        pass
618 619
                kernel_in_type = input_trans_map[input_infos[param]]
                kernel_args_type_list.append(kernel_in_type)
620 621
            elif param in attr_names:
                # set attr for kernel_context
622 623 624
                if 'IntArray' in self.attrs['attr_info'][param][0]:
                    kernel_args_type_list.append('const phi::IntArray&')
                    param = 'phi::IntArray(' + param + ')'
625
                elif 'Scalar' in self.attrs['attr_info'][param][0]:
626 627
                    kernel_args_type_list.append('const phi::Scalar&')
                    param = 'phi::Scalar(' + param + ')'
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
                else:
                    kernel_args_type_list.append(self.attrs['attr_info'][param][
                        0])
                kernel_args = kernel_args + param + ", "
            elif isinstance(param, bool):
                kernel_args = kernel_args + str(param).lower() + ", "
            else:
                kernel_args = kernel_args + str(param) + ", "

        for out_type in self.outputs['types']:
            kernel_args_type_list.append(out_trans_map[out_type])

        kernel_signature = "void(*)(" + ", ".join(kernel_args_type_list) + ")"

        return input_tensor_code, kernel_args[:-2], kernel_signature

    def get_selected_rows_kernel_args(self, code_indent):
        input_trans_map = {
646
            'const Tensor&': 'const phi::SelectedRows&',
647 648
            'const paddle::optional<Tensor>&':
            'paddle::optional<const phi::SelectedRows&>'
649
        }
650
        out_trans_map = {'Tensor': 'phi::SelectedRows*'}
651 652 653 654 655 656 657 658 659 660 661 662
        input_names = self.inputs['names']
        input_infos = self.inputs['input_info']
        kernel_args_type_list = ['const platform::DeviceContext&']

        attr_names = self.attrs['names']
        kernel_param = self.kernel['param']
        if kernel_param is None:
            kernel_param = input_names + attr_names

        input_tensor_code = ""
        for i, input_name in enumerate(input_names):
            # set input code
663 664 665 666 667 668 669 670 671 672 673
            if input_name in self.optional_vars:
                input_tensor_code = input_tensor_code + f"""

{code_indent}  {input_trans_map[input_infos[input_name]]} {PREFIX_TENSOR_NAME}{input_name}(paddle::none);
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name}_ptr = TensorToSelectedRows({input_name});
{code_indent}  if ({PREFIX_TENSOR_NAME}{input_name}_ptr) {{
{code_indent}    {PREFIX_TENSOR_NAME}{input_name} = paddle::make_optional<const phi::SelectedRows&>(*{PREFIX_TENSOR_NAME}{input_name}_ptr);
{code_indent}  }}"""

            else:
                input_tensor_code = input_tensor_code + f"""
674
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name} = TensorToSelectedRows({input_name});"""
675 676 677 678

        kernel_args = "*dev_ctx, "
        for param in kernel_param:
            if param in input_names:
679 680 681 682 683 684
                if param in self.optional_vars:
                    kernel_args = kernel_args + PREFIX_TENSOR_NAME + param + ", "
                else:
                    kernel_args = kernel_args + "*" + PREFIX_TENSOR_NAME + param + ", "
                kernel_in_type = input_trans_map[input_infos[param]]
                kernel_args_type_list.append(kernel_in_type)
685 686
            elif param in attr_names:
                # set attr for kernel_context
687 688 689
                if 'IntArray' in self.attrs['attr_info'][param][0]:
                    kernel_args_type_list.append('const phi::IntArray&')
                    param = 'phi::IntArray(' + param + ')'
690
                elif 'Scalar' in self.attrs['attr_info'][param][0]:
691 692
                    kernel_args_type_list.append('const phi::Scalar&')
                    param = 'phi::Scalar(' + param + ')'
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
                else:
                    kernel_args_type_list.append(self.attrs['attr_info'][param][
                        0])
                kernel_args = kernel_args + param + ", "
            elif isinstance(param, bool):
                kernel_args = kernel_args + str(param).lower() + ", "
            else:
                kernel_args = kernel_args + str(param) + ", "

        for out_type in self.outputs['types']:
            kernel_args_type_list.append(out_trans_map[out_type])

        kernel_signature = "void(*)(" + ", ".join(kernel_args_type_list) + ")"

        return input_tensor_code, kernel_args[:-2], kernel_signature

709 710 711 712 713 714 715 716
    # Override by child class
    def gene_return_type_code(self):
        return self.outputs['return_type']

    # Override by child class
    def gene_return_code(self):
        return "api_output"

717
    # Override by child class
718 719 720 721 722
    def gene_output(self,
                    output_type_list,
                    set_out_func,
                    code_indent,
                    inplace_flag=False):
723 724
        return None, None, None

725
    def gen_dense_tensor_kernel_code(self, code_indent, inplace_flag=False):
726 727 728
        input_tensors, kernel_args, kernel_signature = self.get_kernel_args(
            code_indent)
        outputs_args, kernel_output_names, output_create = self.gene_output(
729
            self.outputs['types'], 'SetKernelOutput', code_indent, inplace_flag)
730
        api_func_name = self.get_api_func_name() + ('_' if inplace_flag else '')
Z
zyfncg 已提交
731 732
        cudnn_args = '' if self.kernel[
            'use_cudnn'] == 'false' else ', ' + self.kernel['use_cudnn']
733
        return f"""
F
From00 已提交
734
{code_indent}  VLOG(6) << "{self.api} API kernel key: [" << kernel_backend << ", " << kernel_layout << ", "<< kernel_data_type << "]";
735
{code_indent}  const auto& kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
Z
zyfncg 已提交
736
{code_indent}      "{self.kernel['func'][0]}", {{kernel_backend, kernel_layout, kernel_data_type}}{cudnn_args});
737 738 739 740 741 742 743 744 745
{code_indent}  VLOG(6) << "{self.api} API kernel: " << kernel;

{code_indent}  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);
{input_tensors}
{output_create}
{self.gene_infer_meta(kernel_output_names, code_indent)}

{code_indent}  using kernel_signature = {kernel_signature};
{code_indent}  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
746
{code_indent}  {{
C
chenjian 已提交
747
{code_indent}    paddle::platform::RecordEvent kernel_record_event(\"{api_func_name} compute\", paddle::platform::TracerEventType::OperatorInner, 1);
748 749
{code_indent}    (*kernel_fn)({kernel_args}, {outputs_args});
{code_indent}  }}
750

751
{code_indent}  return {self.gene_return_code()};"""
752

753
    def gen_selected_rows_kernel_code(self, code_indent, inplace_flag=False):
754 755 756
        input_tensors, kernel_args, kernel_signature = self.get_selected_rows_kernel_args(
            code_indent)
        outputs_args, kernel_output_names, output_create = self.gene_output(
757 758
            self.outputs['types'], 'SetSelectedRowsKernelOutput', code_indent,
            inplace_flag)
759
        api_func_name = self.get_api_func_name() + ('_' if inplace_flag else '')
760
        return f"""
761
{code_indent}  auto kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
762 763 764 765 766 767 768 769 770 771 772
{code_indent}      "{self.kernel['func'][1]}", {{kernel_backend, kernel_layout, kernel_data_type}});
{code_indent}  VLOG(6) << "{self.api} API SelectedRows kernel key: [" << kernel_backend << ", " << kernel_layout << ", "<< kernel_data_type << "]";
{code_indent}  VLOG(6) << "{self.api} API SelectedRows kernel: " << kernel;

{code_indent}  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);
{input_tensors}
{output_create}
{self.gene_infer_meta(kernel_output_names, code_indent)}

{code_indent}  using kernel_signature = {kernel_signature};
{code_indent}  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
773
{code_indent}  {{
C
chenjian 已提交
774
{code_indent}    paddle::platform::RecordEvent kernel_record_event(\"{api_func_name} compute\", paddle::platform::TracerEventType::OperatorInner, 1);
775 776
{code_indent}    (*kernel_fn)({kernel_args}, {outputs_args});
{code_indent}  }}
777

778
{code_indent}  return {self.gene_return_code()};"""
779

780 781 782
    def gene_base_api_code(self, inplace_flag=False):
        api_func_name = self.get_api_func_name() + ('_' if inplace_flag else '')
        api_code = f"""
783
PADDLE_API {self.gene_return_type_code()} {api_func_name}({self.args_str["args_define"]}) {{
784
{self.gene_kernel_select()}
785
"""
786

787 788 789
        if self.support_selected_rows_kernel:
            code_indent = '  '
            return api_code + f"""
790
  if(kernel_type == KernelType::DENSE_TENSOR_KENREL){{
791
{self.gen_dense_tensor_kernel_code(code_indent, inplace_flag)}
792
  }} else {{
793
{self.gen_selected_rows_kernel_code(code_indent, inplace_flag)}
794
  }}
795
}}
796 797
"""

798 799 800 801
        else:
            code_indent = ''
            return api_code + self.gen_dense_tensor_kernel_code(
                code_indent, inplace_flag) + """
802
}
803 804
"""

805 806 807 808 809 810 811
    def gene_api_code(self):
        if self.is_base_api:
            api_code = self.gene_base_api_code()
            if self.inplace_map is not None:
                api_code = api_code + self.gene_base_api_code(inplace_flag=True)
            return api_code

812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
        else:
            inveke_func_name = self.invoke.split('(')[0].strip()
            if inveke_func_name in self.attrs['names']:
                # Adjust the param whose name is same with api invoked.
                pattern = r'\W' + inveke_func_name + '[^A-Za-z0-9_(]'

                def adjust_name(matched):
                    matched_str = matched.group()
                    return matched_str[0:-1] + '_val' + matched_str[-1]

                invoke_code = re.sub(pattern, adjust_name, self.invoke)
                params_code = re.sub(pattern, adjust_name,
                                     self.args_str["args_define"])
            else:
                invoke_code = self.invoke
                params_code = self.args_str["args_define"]
            return f"""
{self.outputs['return_type']} {self.api}({params_code}) {{
  return {invoke_code};
}}
"""