mp_ops.py 28.1 KB
Newer Older
W
wuhuachaocoding 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
16
from paddle import _legacy_C_ops
17 18
from paddle.common_ops_import import dygraph_utils
from paddle.distributed import collective
W
wuhuachaocoding 已提交
19
from paddle.fluid import core
20
from paddle.fluid.data_feeder import check_dtype, check_variable_and_dtype
21
from paddle.framework import LayerHelper, _varbase_creator, in_dygraph_mode
W
wangxiaoning 已提交
22
from paddle.nn import Layer
23

24
from ....communication.reduce import ReduceOp, _get_reduce_op
W
wuhuachaocoding 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42


def _c_identity(tensor, group=None):
    """
    Return a copy of the tensor, mainly used with model parallel.

    Args:
        tensor (Tensor): The input Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        group (int): The id of the process group to work on.

    Returns:
        Tensor.
    """
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

43 44 45 46 47 48
    if in_dygraph_mode():
        from paddle.autograd import PyLayer

        class c_identity_eager(PyLayer):
            @staticmethod
            def forward(ctx, tensor):
49 50 51 52 53 54 55 56 57
                return _legacy_C_ops.c_identity(
                    tensor,
                    'use_calc_stream',
                    True,
                    'ring_id',
                    group.id,
                    'use_model_parallel',
                    True,
                )
58 59 60

            @staticmethod
            def backward(ctx, dy):
61
                op_type = _get_reduce_op(ReduceOp.SUM, "_c_identity")
L
LiYuRio 已提交
62
                group.process_group.all_reduce_on_calc_stream(dy, op_type)
63 64 65
                return dy

        return c_identity_eager.apply(tensor)
66 67 68 69
    else:
        op_type = 'c_identity'
        helper = LayerHelper(op_type, **locals())
        out = helper.create_variable_for_type_inference(dtype=tensor.dtype)
70

71
        check_variable_and_dtype(
72
            tensor,
73 74 75
            'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            '_c_identity',
76 77
        )

78 79 80 81 82 83 84 85 86 87 88
        helper.append_op(
            type=op_type,
            inputs={'X': tensor},
            outputs={'Out': out},
            attrs={
                'ring_id': ring_id,
                'use_calc_stream': True,
                'use_model_parallel': True,
            },
        )
        return out
W
wuhuachaocoding 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111


def _c_concat(tensor, group=None):
    """
    Return allgather of the tensor, mainly used with model parallel.

    Args:
        tensor (Tensor): The input Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        group (int): The id of the process group to work on.

    Returns:
        Tensor.
    """
    if group is not None and not group.is_member():
        return
    group = collective._get_default_group() if group is None else group
    ring_id = group.id

    global_rank = collective._get_global_env().rank
    rank = group.rank
    nranks = group.nranks

112
    if in_dygraph_mode():
113 114 115 116 117 118 119 120 121 122 123 124 125
        return _legacy_C_ops.c_concat(
            tensor,
            'ring_id',
            ring_id,
            'use_calc_stream',
            True,
            'rank',
            rank,
            'nranks',
            nranks,
            'use_model_parallel',
            True,
        )
126 127 128 129
    else:
        op_type = 'c_concat'
        helper = LayerHelper(op_type, **locals())
        out = helper.create_variable_for_type_inference(dtype=tensor.dtype)
W
wuhuachaocoding 已提交
130

131 132 133 134 135 136
        check_variable_and_dtype(
            tensor,
            'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            '_c_concat',
        )
137

138 139 140 141 142 143 144 145 146 147 148 149 150
        helper.append_op(
            type=op_type,
            inputs={'X': tensor},
            outputs={'Out': out},
            attrs={
                'ring_id': ring_id,
                'use_calc_stream': True,
                'use_model_parallel': True,
                'nranks': nranks,
                'rank': rank,
            },
        )
        return out
W
wuhuachaocoding 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171


def _c_split(tensor, group=None):
    """
    Split tensor evenly among all members, mainly used with model parallel.

    Args:
        tensor (Tensor): The input Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        rank (int): The rank of the current process.
        group (int): The id of the process group to work on.

    Returns:
        Tensor.
    """
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

    global_rank = collective._get_global_env().rank
    rank = global_rank if group is None else group.get_group_rank(global_rank)
172 173 174 175 176
    nranks = (
        collective._get_global_env().world_size
        if group is None
        else group.nranks
    )
W
wuhuachaocoding 已提交
177

178
    if in_dygraph_mode():
179 180 181 182 183 184 185 186 187 188 189 190 191
        return _legacy_C_ops.c_split(
            tensor,
            'use_calc_stream',
            True,
            'ring_id',
            ring_id,
            'rank',
            rank,
            'nranks',
            nranks,
            'use_model_parallel',
            True,
        )
192 193 194 195
    else:
        op_type = 'c_split'
        helper = LayerHelper(op_type, **locals())
        out = helper.create_variable_for_type_inference(dtype=tensor.dtype)
W
wuhuachaocoding 已提交
196

197 198 199 200 201 202
        check_variable_and_dtype(
            tensor,
            'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            '_c_split',
        )
203

204 205 206 207 208 209 210 211 212 213 214 215 216
        helper.append_op(
            type=op_type,
            inputs={'X': tensor},
            outputs={'Out': out},
            attrs={
                'ring_id': ring_id,
                'use_calc_stream': True,
                'rank': rank,
                'nranks': nranks,
                'use_model_parallel': True,
            },
        )
        return out
W
wuhuachaocoding 已提交
217 218


219 220 221 222 223 224 225 226
def _mp_allreduce(
    tensor,
    op=ReduceOp.SUM,
    group=None,
    use_calc_stream=True,
    use_model_parallel=True,
):
    """[it is same as allreduce above, but it supports model parallel. And it support inplace startegy]"""
W
wuhuachaocoding 已提交
227 228 229 230 231 232 233 234 235 236 237
    if group is not None and not group.is_member():
        return

    if in_dygraph_mode():
        group = collective._get_default_group() if group is None else group
        assert op == ReduceOp.SUM, "Unknown parameter: {}.".format(op)

        from paddle.autograd import PyLayer

        class mp_allreduce_eager(PyLayer):
            @staticmethod
238 239 240
            def forward(
                ctx, tensor, group, use_calc_stream, use_model_parallel
            ):
W
wuhuachaocoding 已提交
241 242 243
                ctx.ring_id = group.id

                if use_calc_stream:
244
                    op_type = _get_reduce_op(op, "_mp_allreduce")
L
LiYuRio 已提交
245
                    group.process_group.all_reduce_on_calc_stream(
246 247
                        tensor, op_type
                    )
W
wuhuachaocoding 已提交
248 249 250
                    return tensor
                else:
                    return _legacy_C_ops.c_allreduce_sum_(
251 252 253 254 255 256
                        tensor,
                        'use_calc_stream',
                        use_calc_stream,
                        'ring_id',
                        ring_id,
                    )
W
wuhuachaocoding 已提交
257 258 259

            @staticmethod
            def backward(ctx, dy):
260 261 262 263 264 265 266 267 268 269 270 271 272
                return _legacy_C_ops.c_identity(
                    dy,
                    'use_calc_stream',
                    True,
                    'ring_id',
                    ctx.ring_id,
                    'use_model_parallel',
                    True,
                )

        return mp_allreduce_eager.apply(
            tensor, group, use_calc_stream, use_model_parallel
        )
273 274 275 276 277
    else:
        ring_id = 0 if group is None else group.id
        op_type = 'mp_allreduce_sum'
        helper = LayerHelper(op_type, **locals())
        out = helper.create_variable_for_type_inference(dtype=tensor.dtype)
W
wuhuachaocoding 已提交
278

279 280 281 282 283 284
        check_variable_and_dtype(
            tensor,
            'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            op_type,
        )
285

286 287 288 289 290 291 292 293 294 295
        helper.append_op(
            type=op_type,
            inputs={'X': tensor},
            outputs={'Out': out},
            attrs={
                'ring_id': ring_id,
                'use_calc_stream': use_calc_stream,
            },
        )
        return out
W
wuhuachaocoding 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311


def _c_lookup_table(table, index, start_index=0, name=None):
    """
    Lookup table according to index.

    Args:
        table (Tensor): The input Tensor. Its data type
            should be float16, float32, float64.
        index (Tensor): The index to lookup table.
        start_index (int): The initial index for table range.
        name (string): The name of the api

    Returns:
        Tensor.
    """
312
    if in_dygraph_mode():
313 314 315
        return _legacy_C_ops.c_embedding(
            table, index, "start_index", start_index
        )
316 317 318 319 320 321 322 323 324 325 326 327 328
    else:
        op_type = 'c_embedding'
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='table')
        check_variable_and_dtype(index, 'input', ['int32', 'int64'], op_type)
        tmp = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='c_embedding',
            inputs={'Ids': index, 'W': table},
            outputs={'Out': tmp},
            attrs={"start_index": start_index},
        )
        return tmp
W
wuhuachaocoding 已提交
329 330


W
wangxiaoning 已提交
331
class _Linear(Layer):
W
wuhuachaocoding 已提交
332 333 334 335
    """
    Linear
    """

336 337 338 339 340 341 342 343
    def __init__(
        self,
        in_features,
        out_features,
        weight_attr=None,
        bias_attr=None,
        name=None,
    ):
344
        super().__init__()
W
wuhuachaocoding 已提交
345 346 347
        self._dtype = self._helper.get_default_dtype()
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
348 349 350 351 352 353 354 355 356 357 358 359
        self.weight = self.create_parameter(
            shape=[in_features, out_features],
            attr=self._weight_attr,
            dtype=self._dtype,
            is_bias=False,
        )
        self.bias = self.create_parameter(
            shape=[out_features],
            attr=self._bias_attr,
            dtype=self._dtype,
            is_bias=True,
        )
W
wuhuachaocoding 已提交
360 361 362
        self.name = name

    def forward(self, input):
363 364 365
        out = _linear(
            x=input, weight=self.weight, bias=self.bias, name=self.name
        )
W
wuhuachaocoding 已提交
366 367 368 369 370
        return out

    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'in_features={}, out_features={}, dtype={}{}'.format(
371 372
            self.weight.shape[0], self.weight.shape[1], self._dtype, name_str
        )
W
wuhuachaocoding 已提交
373 374


375 376 377
def _c_softmax_with_cross_entropy(
    logits, label, group=None, return_softmax=False
):
W
wuhuachaocoding 已提交
378 379 380 381 382
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id
    global_rank = collective._get_global_env().rank
    rank = global_rank if group is None else group.get_group_rank(global_rank)
383 384 385 386 387
    nranks = (
        collective._get_global_env().world_size
        if group is None
        else group.nranks
    )
W
wuhuachaocoding 已提交
388 389 390 391 392

    input_dims = len(list(logits.shape))
    label_dims = len(list(label.shape))
    if input_dims - 1 != label_dims and input_dims != label_dims:
        raise ValueError(
393 394
            'Expected input_dims - 1 = label_dims or input_dims == label_dims\
             (got input_dims{}, label_dims{})'.format(
395 396 397
                input_dims, label_dims
            )
        )
W
wuhuachaocoding 已提交
398 399 400
    if input_dims - 1 == label_dims:
        label = paddle.unsqueeze(label, axis=-1)

401
    if in_dygraph_mode():
W
wuhuachaocoding 已提交
402
        softmax, loss = _legacy_C_ops.c_softmax_with_cross_entropy(
403 404
            logits, label, 'ring_id', ring_id, 'rank', rank, 'nranks', nranks
        )
W
wuhuachaocoding 已提交
405 406 407 408
        if not return_softmax:
            return loss
        else:
            return loss, softmax
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
    else:
        attrs = {
            'ring_id': ring_id,
            'rank': rank,
            'nranks': nranks,
        }
        helper = LayerHelper('c_softmax_with_cross_entropy', **locals())
        softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
        loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
        helper.append_op(
            type='c_softmax_with_cross_entropy',
            inputs={'Logits': logits, 'Label': label},
            outputs={'Softmax': softmax, 'Loss': loss},
            attrs=attrs,
        )
W
wuhuachaocoding 已提交
424

425 426
        if return_softmax:
            return loss, softmax
W
wuhuachaocoding 已提交
427

428
        return loss
W
wuhuachaocoding 已提交
429 430 431 432 433 434


def _linear(x, weight, bias=None, name=None):
    """
    Fuction Linear
    """
435
    if in_dygraph_mode():
W
wuhuachaocoding 已提交
436
        pre_bias = _varbase_creator(dtype=x.dtype)
437 438 439 440 441 442 443 444 445 446 447 448 449 450
        _legacy_C_ops.matmul(
            x,
            weight,
            pre_bias,
            'transpose_X',
            False,
            'transpose_Y',
            False,
            "alpha",
            1,
        )
        return dygraph_utils._append_bias_in_dygraph(
            pre_bias, bias, axis=len(x.shape) - 1
        )
W
wuhuachaocoding 已提交
451 452 453
    else:
        helper = LayerHelper('linear', **locals())
        dtype = x.dtype
454 455 456
        assert (
            len(x.shape) < 4
        ), "X latitude is not supported greater than 3 now."
W
wuhuachaocoding 已提交
457

458 459 460
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'linear'
        )
W
wuhuachaocoding 已提交
461 462 463 464 465 466 467 468 469
        check_dtype(dtype, 'dtype', ['float16', 'float32', 'float64'], 'linear')

        inputs = {'X': [x], 'Y': [weight]}
        attrs = {
            'transpose_X': False,
            'transpose_Y': False,
            'alpha': 1,
        }
        tmp = helper.create_variable_for_type_inference(dtype)
470 471 472
        helper.append_op(
            type='matmul_v2', inputs=inputs, outputs={'Out': tmp}, attrs=attrs
        )
W
wuhuachaocoding 已提交
473 474
        if bias is not None:
            res = helper.create_variable_for_type_inference(dtype)
475 476 477 478 479 480
            helper.append_op(
                type='elementwise_add',
                inputs={'X': [tmp], 'Y': [bias]},
                outputs={'Out': [res]},
                attrs={'axis': len(x.shape) - 1},
            )
W
wuhuachaocoding 已提交
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
        else:
            res = tmp
        return res


def _set_var_distributed(var):
    if var is None:
        return

    var.is_distributed = True

    # NOTE: use current_block and find_var_recursive to support while_loop
    startup_block = paddle.static.default_startup_program().current_block()
    main_block = paddle.static.default_main_program().current_block()
    startup_block._find_var_recursive(var.name).is_distributed = True
    main_block._find_var_recursive(var.name).is_distributed = True


499 500 501 502 503 504 505 506 507 508 509 510 511 512
def _parallel_linear(
    x,
    num_rows,
    num_cols,
    axis,
    param_attr,
    bias_attr,
    gather_out,
    inner_rank,
    nranks,
    split_tensor,
    name,
    group=None,
):
W
wuhuachaocoding 已提交
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
    """
    Parallel Linear

    axis the dimension of the parameter of linear layer.
    axis = 0: the row dimension
    axis = 1: the col dimension

    """
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

    if axis == 0:
        if split_tensor:
            x = _c_split(x, group=group)
    else:
        x = _c_identity(x, group=group)

531 532 533 534 535 536 537
    linear = paddle.nn.Linear(
        num_rows,
        num_cols,
        weight_attr=param_attr,
        bias_attr=bias_attr,
        name=name,
    )
W
wuhuachaocoding 已提交
538 539

    # NOTE: npu linear function use matmul_v2 but linear use matmul
540 541 542
    linear_function = (
        _linear if core.is_compiled_with_npu() else paddle.nn.functional.linear
    )
W
wuhuachaocoding 已提交
543 544 545 546 547
    linear_out = linear_function(
        x,
        linear.weight,
        # NOTE(wangxi): row split, bias need add after allreduce
        None if axis == 0 else linear.bias,
548 549
        linear.name,
    )
W
wuhuachaocoding 已提交
550 551 552 553 554

    _set_var_distributed(linear.weight)
    # set is_distributed for splited bias
    # if a linear layer is splited by row, each rank would hold a complete bias and they should be the same in each rank.
    # if a linear layer is splited by col, the bias would also be split into each rank as its weight
555
    if axis == 1 and linear._bias_attr is not False:
W
wuhuachaocoding 已提交
556 557
        _set_var_distributed(linear.bias)

558 559
    if not gather_out:
        return linear_out
W
wuhuachaocoding 已提交
560 561 562 563 564 565 566 567 568 569 570

    out_shape = list(linear_out.shape)
    out_shape[0] *= 1 if axis == 0 else nranks
    main_block = paddle.static.default_main_program().current_block()
    out = main_block.create_var(
        shape=out_shape,
        dtype=linear_out.dtype,
        type=linear_out.type,
        lod_level=linear_out.lod_level,
        persistable=False,
        is_data=False,
571 572
        need_check_feed=linear_out.desc.need_check_feed(),
    )
W
wuhuachaocoding 已提交
573
    if axis == 0:
574
        main_block.append_op(
L
LiYuRio 已提交
575
            type='mp_allreduce_sum',
576 577 578 579 580 581 582
            inputs={'X': linear_out},
            outputs={'Out': out},
            attrs={
                'ring_id': ring_id,
                'use_calc_stream': True,
            },
        )
W
wuhuachaocoding 已提交
583 584 585
        if linear.bias is not None:
            out = out + linear.bias
    else:
586 587 588 589 590 591 592 593 594 595 596 597
        main_block.append_op(
            type='c_concat',
            inputs={'X': linear_out},
            outputs={'Out': out},
            attrs={
                'rank': inner_rank,
                'ring_id': ring_id,
                'nranks': nranks,
                'use_calc_stream': True,
                'use_model_parallel': True,
            },
        )
W
wuhuachaocoding 已提交
598 599 600
    return out


601 602 603 604 605 606 607 608 609 610
def _parallel_embedding(
    x,
    per_part_embeddings,
    origin_size,
    param_attr,
    inner_rank,
    num_partitions,
    name,
    group=None,
):
W
wuhuachaocoding 已提交
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
    """
    Parallel Embedding
    """
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

    helper = LayerHelper("_parallel_embedding", **locals())

    per_part_size = per_part_embeddings
    rank = inner_rank

    vocab_start_index = rank * per_part_size
    dtype = helper.get_default_dtype()
    size = [per_part_size, origin_size[1]]

627 628 629
    weight = helper.create_parameter(
        attr=param_attr, shape=size, dtype=dtype, is_bias=False
    )
W
wuhuachaocoding 已提交
630 631

    if num_partitions == 1:
632 633 634
        return paddle.nn.functional.embedding(
            x, weight=weight, padding_idx=None, sparse=False, name=name
        )
W
wuhuachaocoding 已提交
635 636 637 638 639 640

    startup_block = paddle.static.default_startup_program().global_block()
    main_block = paddle.static.default_main_program().global_block()
    startup_block.vars[weight.name].is_distributed = True
    main_block.vars[weight.name].is_distributed = True

641 642 643 644 645 646 647 648 649
    output_parallel = _c_lookup_table(
        weight, x, start_index=vocab_start_index, name=name
    )
    out = _mp_allreduce(
        output_parallel,
        group=group,
        use_calc_stream=True,
        use_model_parallel=True,
    )
W
wuhuachaocoding 已提交
650 651 652
    return out


653 654 655 656 657 658 659 660 661 662 663
def split(
    x,
    size,
    operation,
    axis=0,
    num_partitions=1,
    gather_out=True,
    weight_attr=None,
    bias_attr=None,
    name=None,
):
W
wuhuachaocoding 已提交
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
    """

    Split the weight of the specified operation into multiple devices
    and do the computation in parallel.

    Now the following three cases are supported.

    Case 1: Parallel Embedding
        The weight of the embedding operation is a NxM matrix with N rows and M columns.
        With parallel embedding, the weight is split into num_partitions partitions, each
        of which is a matrix with (N/num_partitions + 1) rows and M column where the last
        row as the padding idx.

        Suppose we split the NxM weight into two partitons on device_0 and device_1
        respectively. Then, one each device, the final weight has (N/2 + 1) rows with the
        index range from 0 to N/2. On device_0, all values in the input within [0, N/2 -1]
        keep unchanged and all other values are changed to N/2 which is the padding index and
        are mapped to all zeros after embedding. In the same way, on device_1, the value V in the
        input within [N/2, N-1] will be changed to (V - N/2), and all other values are changed
        to N/2 and are mapped to all zeros after embedding. Finally, the results on the two
        devices are sum-reduced.

        The Embedding put on single card is as shown below:

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_embedding_single.png
            :width: 800
            :height: 350
            :alt: single_embedding
            :align: center

        Parallel Embedding is shown as below:

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_embedding_split.png
            :width: 800
            :alt: split_embedding
            :align: center

    Case 2: Row Parallel Linear
        The weight of the linear operation is a NxM matrix with N rows and M columns.
        With row parallel linear, the weight is split into num_partitions partitions, each
        of which is a matrix with N/num_partitions rows and M column.

        The linear layer put on single card is shown as below, the input variable is represented by X,
        the weight matrix is represented by W and the output vaiable is O. The linear layer on single card is
        simple matrix multiplication operation, O = X * W.

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_single.png
            :width: 800
            :alt: single_linear
            :align: center

        Row Parallel Linear is shown as below. As the name suggests, Row Parallel Linear splits the weight matrix W into
        [[W_row1], [W_row2]] along the row. And accordingly the input is splitted along the column into [X_col1, X_col2] and multiply their
        respective weight matrices. Finally apply AllReduce on the output from each card to get the final output.

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_row.png
            :width: 800
            :alt: split_row
            :align: center

    Case 3: Column Parallel Linear
        The weight of the linear operation is a NxM matrix with N rows and M columns.
        With column parallel linear, the weight is split into num_paratitions partitions, each
        of which is a matrix with N rows and M/num_partitions column.

        The linear layer put on single card has been illustrated on case 2 and Column Parallel Linear
        is shown as below. The Column Parallel Linear splits the weight matrix W into [W_col1, W_col2] along the column and
        these splitted matrices respectively multiply the input. Finally apply AllGather on the output from each card to get the final output.

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_col.png
            :width: 800
            :alt: split_col
            :align: center

    As observed, the column parallel linear and row parallel linear can be combined to skip one ALLGATHER communication
    operator. Furthermore the Attention and MLP can be combined to imporve the performance as shown below.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_col_row.png
            :width: 800
            :alt: split_col_row
            :align: center

    Args:
        x (Tensor): Input tensor. It's data type should be float16, float32, float64, int32 or int64.
        size (list|tuple): A list or tuple with two elements indicating the shape of the weight.
        operation (str): The name of the operation. The supported operations are 'linear' and 'embedding'.
        axis (int, Optional): Indicate along which axis to split the weight. Default: 0.
        num_partitions (int, Optional): How many parts the weight is partitioned. Default: 1.
        gather_out (bool, Optional): Whether to gather the output after computation. By default, the output
            on each partitions will be gathered after computation. Default: True.
        weight_attr (ParamAttr, Optional): The parameter attribute for the learnable
            weights(Parameter) of the specified operation. Default: None.
        bias_attr (ParamAttr, Optional): The parameter attribute for the bias
            of the specified operation. Default: None.
        name (str, Optional): The default value is None. Normally there is no need for user to set this
            property. Default: None. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor.

    Examples:
        .. code-block:: python

            # required: distributed
            import paddle
            import paddle.distributed.fleet as fleet

            paddle.enable_static()
            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            fleet.init(is_collective=True)
            data = paddle.randint(0, 8, shape=[10,4])
            emb_out = paddle.distributed.split(
                data,
                (8, 8),
                operation="embedding",
                num_partitions=2)

    """
782 783 784 785 786 787 788 789 790 791
    assert isinstance(size, (list, tuple)), (
        "The type of size for "
        "paddle.distributed.split must be list or tuple."
    )
    assert len(size) == 2, (
        "Number of elements in size of " "paddle.distributed.split must be two."
    )
    assert isinstance(operation, str), (
        "The type of operation for " "paddle.distributed.split must be str."
    )
W
wuhuachaocoding 已提交
792 793 794 795 796 797 798
    supported_operations = [
        'linear',
        'embedding',
    ]
    assert operation in supported_operations, (
        "The operation for "
        "paddle.distributed.split must be one of {}.".format(
799 800 801
            supported_operations
        )
    )
802
    if in_dygraph_mode():
W
wuhuachaocoding 已提交
803 804 805
        raise ValueError(
            "paddle.distributed.split cannot be used in dynamic "
            "graph mode, plese use ParallelEmbedding, ParallelRowLinear, "
806 807
            "ParallelColumnLinear instead."
        )
W
wuhuachaocoding 已提交
808 809
    else:
        from paddle.distributed.fleet import fleet
810 811 812 813 814

        assert fleet._role_maker, (
            "To use paddle.distributed.split, "
            "you must call fleet.init() firstly."
        )
W
wuhuachaocoding 已提交
815 816 817 818 819 820 821
        rank = fleet.worker_index()
        nranks = fleet.worker_num()

    # rank within a model parallel group
    inner_rank = rank % num_partitions

    if operation == "embedding":
822 823 824 825 826 827 828 829 830 831
        assert axis == 0, (
            "We only support to split the weight of embedding "
            "along the first axis now."
        )
        assert size[0] % num_partitions == 0, (
            "The length of the vocabulary must be divisible by num_partitions "
            "but received vocabulary={} num_partitions={}".format(
                size[0], num_partitions
            )
        )
W
wuhuachaocoding 已提交
832 833

        per_part_size = size[0] // num_partitions
834 835 836 837 838 839 840 841 842 843
        emb_out = _parallel_embedding(
            x,
            per_part_size,
            size,
            weight_attr,
            inner_rank,
            num_partitions,
            name,
            group=None,
        )
W
wuhuachaocoding 已提交
844 845 846 847 848 849 850
        return emb_out
    else:
        should_split = False
        if axis == 0:
            assert size[0] % num_partitions == 0, (
                "Number of rows of the weight for linear ({}) must be"
                " divisible by num_partitions ({})".format(
851 852 853
                    size[0], num_partitions
                )
            )
W
wuhuachaocoding 已提交
854 855
            per_part_size = size[0] // num_partitions
            linear_size = (per_part_size, size[1])
856 857
            if x.shape[-1] == size[0]:
                should_split = True
W
wuhuachaocoding 已提交
858 859 860 861 862

        elif axis == 1:
            assert size[1] % num_partitions == 0, (
                "Number of column of the weight for linear ({}) must be"
                " divisible by num_partitions ({})".format(
863 864 865
                    size[1], num_partitions
                )
            )
W
wuhuachaocoding 已提交
866 867 868
            per_part_size = size[1] // num_partitions
            linear_size = (size[0], per_part_size)
        else:
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
            raise ValueError(
                "The value of axis must be 0 or 1, but the value "
                "given is {}.".format(axis)
            )

        linear_out = _parallel_linear(
            x,
            linear_size[0],
            linear_size[1],
            axis,
            weight_attr,
            bias_attr,
            gather_out,
            inner_rank,
            num_partitions,
            should_split,
            name=name,
            group=None,
        )
W
wuhuachaocoding 已提交
888
        return linear_out