blas_impl.hip.h 60.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/fluid/platform/device/gpu/gpu_info.h"
18
#include "paddle/phi/backends/dynload/rocblas.h"
19 20
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/kernels/funcs/math_function.h"
21 22 23

DECLARE_bool(enable_cublas_tensor_op_math);

24
namespace phi {
25 26 27 28 29 30 31 32 33
namespace funcs {

template <typename T>
struct CUBlas;

template <>
struct CUBlas<float> {
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
34
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_sgemm(args...));
35 36 37 38
  }

  template <typename... ARGS>
  static void AXPY(ARGS... args) {
39
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_saxpy(args...));
40 41 42 43
  }

  template <typename... ARGS>
  static void SCAL(ARGS... args) {
44
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_sscal(args...));
45 46 47 48
  }

  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
49
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_scopy(args...));
50 51 52 53
  }

  template <typename... ARGS>
  static void GEMV(ARGS... args) {
54
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_sgemv(args...));
55 56 57 58 59
  }

  template <typename... ARGS>
  static void GEMM_STRIDED_BATCH(ARGS... args) {
    PADDLE_ENFORCE_GPU_SUCCESS(
60
        phi::dynload::rocblas_sgemm_strided_batched(args...));
61 62 63 64 65 66
  }

  // HIP not supportted, refer to the doc here:
  // https://github.com/ROCm-Developer-Tools/HIP/blob/roc-3.5.x/docs/markdown/CUBLAS_API_supported_by_HIP.md
  template <typename... ARGS>
  static void GEMM_EX(ARGS... args) {
67
    PADDLE_THROW(phi::errors::Unimplemented(
68 69 70 71 72
        "cublasSgemmEx is not supported on HIP platform."));
  }

  template <typename... ARGS>
  static void TRSM(ARGS... args) {
73
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_strsm(args...));
74 75 76 77
  }

  template <typename... ARGS>
  static void GETRF_BATCH(ARGS... args) {
78
    PADDLE_THROW(phi::errors::Unimplemented(
79 80 81 82 83
        "cublasSgetrfBatched is not supported on HIP platform."));
  }

  template <typename... ARGS>
  static void GETRI_BATCH(ARGS... args) {
84
    PADDLE_THROW(phi::errors::Unimplemented(
85 86 87 88 89
        "cublasSgetriBatched is not supported on HIP platform."));
  }

  template <typename... ARGS>
  static void MATINV_BATCH(ARGS... args) {
90
    PADDLE_THROW(phi::errors::Unimplemented(
91 92 93 94 95
        "cublasSmatinvBatched is not supported on HIP platform."));
  }

  template <typename... ARGS>
  static void TRSM_BATCH(ARGS... args) {
96
    PADDLE_THROW(phi::errors::Unimplemented(
97 98 99 100 101 102 103 104
        "cublasStrsmBatched is not supported on HIP platform."));
  }
};

template <>
struct CUBlas<double> {
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
105
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_dgemm(args...));
106 107 108 109
  }

  template <typename... ARGS>
  static void AXPY(ARGS... args) {
110
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_daxpy(args...));
111 112 113 114
  }

  template <typename... ARGS>
  static void SCAL(ARGS... args) {
115
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_dscal(args...));
116 117 118 119
  }

  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
120
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_dcopy(args...));
121 122 123 124
  }

  template <typename... ARGS>
  static void GEMV(ARGS... args) {
125
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_dgemv(args...));
126 127 128 129 130
  }

  template <typename... ARGS>
  static void GEMM_STRIDED_BATCH(ARGS... args) {
    PADDLE_ENFORCE_GPU_SUCCESS(
131
        phi::dynload::rocblas_dgemm_strided_batched(args...));
132 133 134 135 136
  }

  template <typename... ARGS>
  static void GEMM_EX(ARGS... args) {
    PADDLE_THROW(
137
        phi::errors::Unimplemented("Currently there are not cublasDgemmEx."));
138 139 140 141
  }

  template <typename... ARGS>
  static void TRSM(ARGS... args) {
142
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_dtrsm(args...));
143 144 145 146
  }

  template <typename... ARGS>
  static void GETRF_BATCH(ARGS... args) {
147
    PADDLE_THROW(phi::errors::Unimplemented(
148 149 150 151 152
        "cublasDgetrfBatched is not supported on HIP platform."));
  }

  template <typename... ARGS>
  static void GETRI_BATCH(ARGS... args) {
153
    PADDLE_THROW(phi::errors::Unimplemented(
154 155 156 157 158
        "cublasDgetriBatched is not supported on HIP platform."));
  }

  template <typename... ARGS>
  static void MATINV_BATCH(ARGS... args) {
159
    PADDLE_THROW(phi::errors::Unimplemented(
160 161 162 163 164
        "cublasDmatinvBatched is not supported on HIP platform."));
  }

  template <typename... ARGS>
  static void TRSM_BATCH(ARGS... args) {
165
    PADDLE_THROW(phi::errors::Unimplemented(
166 167 168 169 170
        "cublasDtrsmBatched is not supported on HIP platform."));
  }
};

template <>
171 172
struct CUBlas<phi::dtype::float16> {
  using float16 = phi::dtype::float16;
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

  static void GEMM(rocblas_handle handle,
                   rocblas_operation transa,
                   rocblas_operation transb,
                   int m,
                   int n,
                   int k,
                   const float16 *alpha,
                   const float16 *A,
                   int lda,
                   const float16 *B,
                   int ldb,
                   const float16 *beta,
                   float16 *C,
                   int ldc) {
188
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_hgemm(
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
        handle,
        transa,
        transb,
        m,
        n,
        k,
        reinterpret_cast<const rocblas_half *>(alpha),
        reinterpret_cast<const rocblas_half *>(A),
        lda,
        reinterpret_cast<const rocblas_half *>(B),
        ldb,
        reinterpret_cast<const rocblas_half *>(beta),
        reinterpret_cast<rocblas_half *>(C),
        ldc));
  }

  static void GEMM_STRIDED_BATCH(rocblas_handle handle,
                                 rocblas_operation transa,
                                 rocblas_operation transb,
                                 int m,
                                 int n,
                                 int k,
                                 const float16 *alpha,
                                 const float16 *A,
                                 int lda,
                                 long long int strideA,  // NOLINT
                                 const float16 *B,       // NOLINT
                                 int ldb,
                                 long long int strideB,  // NOLINT
                                 const float16 *beta,
                                 float16 *C,
                                 int ldc,
                                 long long int strideC,  // NOLINT
                                 int batchCount) {
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_hgemm_strided_batched(
        handle,
        transa,
        transb,
        m,
        n,
        k,
        reinterpret_cast<const rocblas_half *>(alpha),
        reinterpret_cast<const rocblas_half *>(A),
        lda,
        strideA,
        reinterpret_cast<const rocblas_half *>(B),
        ldb,
        strideB,
        reinterpret_cast<const rocblas_half *>(beta),
        reinterpret_cast<rocblas_half *>(C),
        ldc,
        strideC,
        batchCount));
242 243 244 245 246
  }

  // NOTES: GEMM_EX can use Tensor Core to accelerate matrix multiply.
  // https://docs.nvidia.com/cuda/cublas/index.html#cublassetmathmode
  template <typename... ARGS>
247
  static void GEMM_EX(phi::GPUContext *dev_ctx,
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
                      rocblas_operation transa,
                      rocblas_operation transb,
                      int m,
                      int n,
                      int k,
                      const void *alpha,
                      const void *A,
                      rocblas_datatype Atype,
                      int lda,
                      const void *B,
                      rocblas_datatype Btype,
                      int ldb,
                      const void *beta,
                      void *C,
                      rocblas_datatype Ctype,
                      int ldc,
                      rocblas_datatype computeType) {
    rocblas_gemm_algo algo = rocblas_gemm_algo_standard;
    dev_ctx->TensorCoreCublasCallIfAvailable([&](rocblas_handle handle) {
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
      PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_gemm_ex(handle,
                                                               transa,
                                                               transb,
                                                               m,
                                                               n,
                                                               k,
                                                               alpha,
                                                               A,
                                                               Atype,
                                                               lda,
                                                               B,
                                                               Btype,
                                                               ldb,
                                                               beta,
                                                               C,
                                                               Ctype,
                                                               ldc,
                                                               C,
                                                               Ctype,
                                                               ldc,
                                                               computeType,
                                                               algo,
                                                               0,
                                                               0));
291 292 293 294 295
    });
  }
};

template <>
296
struct CUBlas<phi::dtype::complex<float>> {
297 298 299 300
  static void GEMV(rocblas_handle handle,
                   rocblas_operation transa,
                   int m,
                   int n,
301 302
                   const phi::dtype::complex<float> *alpha,
                   const phi::dtype::complex<float> *A,
303
                   int lda,
304
                   const phi::dtype::complex<float> *B,
305
                   int ldb,
306 307
                   const phi::dtype::complex<float> *beta,
                   phi::dtype::complex<float> *C,
308
                   int ldc) {
309
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_cgemv(
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
        handle,
        transa,
        m,
        n,
        reinterpret_cast<const rocblas_float_complex *>(alpha),
        reinterpret_cast<const rocblas_float_complex *>(A),
        lda,
        reinterpret_cast<const rocblas_float_complex *>(B),
        ldb,
        reinterpret_cast<const rocblas_float_complex *>(beta),
        reinterpret_cast<rocblas_float_complex *>(C),
        ldc));
  }

  static void AXPY(rocblas_handle handle,
                   int n,
326 327
                   const phi::dtype::complex<float> *alpha,
                   const phi::dtype::complex<float> *X,
328
                   const int incX,
329
                   phi::dtype::complex<float> *Y,
330
                   const int incY) {
331
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_caxpy(
332 333 334 335 336 337 338 339 340
        handle,
        n,
        reinterpret_cast<const rocblas_float_complex *>(alpha),
        reinterpret_cast<const rocblas_float_complex *>(X),
        incX,
        reinterpret_cast<rocblas_float_complex *>(Y),
        incY));
  }

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
  static void GEMM_STRIDED_BATCH(rocblas_handle handle,
                                 rocblas_operation transa,
                                 rocblas_operation transb,
                                 int m,
                                 int n,
                                 int k,
                                 const phi::dtype::complex<float> *alpha,
                                 const phi::dtype::complex<float> *A,
                                 int lda,
                                 long long int strideA,                // NOLINT
                                 const phi::dtype::complex<float> *B,  // NOLINT
                                 int ldb,
                                 long long int strideB,  // NOLINT
                                 const phi::dtype::complex<float> *beta,
                                 phi::dtype::complex<float> *C,
                                 int ldc,
                                 long long int strideC,  // NOLINT
                                 int batchCount) {
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_cgemm_strided_batched(
        handle,
        transa,
        transb,
        m,
        n,
        k,
        reinterpret_cast<const rocblas_float_complex *>(alpha),
        reinterpret_cast<const rocblas_float_complex *>(A),
        lda,
        strideA,
        reinterpret_cast<const rocblas_float_complex *>(B),
        ldb,
        strideB,
        reinterpret_cast<const rocblas_float_complex *>(beta),
        reinterpret_cast<rocblas_float_complex *>(C),
        ldc,
        strideC,
        batchCount));
378 379 380 381 382 383 384 385
  }

  static void GEMM(rocblas_handle handle,
                   rocblas_operation transa,
                   rocblas_operation transb,
                   int m,
                   int n,
                   int k,
386 387
                   const phi::dtype::complex<float> *alpha,
                   const phi::dtype::complex<float> *A,
388
                   int lda,
389
                   const phi::dtype::complex<float> *B,
390
                   int ldb,
391 392
                   const phi::dtype::complex<float> *beta,
                   phi::dtype::complex<float> *C,
393
                   int ldc) {
394
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_cgemm(
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
        handle,
        transa,
        transb,
        m,
        n,
        k,
        reinterpret_cast<const rocblas_float_complex *>(alpha),
        reinterpret_cast<const rocblas_float_complex *>(A),
        lda,
        reinterpret_cast<const rocblas_float_complex *>(B),
        ldb,
        reinterpret_cast<const rocblas_float_complex *>(beta),
        reinterpret_cast<rocblas_float_complex *>(C),
        ldc));
  }

  // NOTES: GEMM_EX can use Tensor Core to accelerate matrix multiply.
  // https://docs.nvidia.com/cuda/cublas/index.html#cublassetmathmode
  template <typename... ARGS>
414
  static void GEMM_EX(phi::GPUContext *dev_ctx,
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
                      rocblas_operation transa,
                      rocblas_operation transb,
                      int m,
                      int n,
                      int k,
                      const void *alpha,
                      const void *A,
                      rocblas_datatype Atype,
                      int lda,
                      const void *B,
                      rocblas_datatype Btype,
                      int ldb,
                      const void *beta,
                      void *C,
                      rocblas_datatype Ctype,
                      int ldc,
                      rocblas_datatype computeType) {
    rocblas_gemm_algo algo = rocblas_gemm_algo_standard;
    dev_ctx->TensorCoreCublasCallIfAvailable([&](rocblas_handle handle) {
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
      PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_gemm_ex(handle,
                                                               transa,
                                                               transb,
                                                               m,
                                                               n,
                                                               k,
                                                               alpha,
                                                               A,
                                                               Atype,
                                                               lda,
                                                               B,
                                                               Btype,
                                                               ldb,
                                                               beta,
                                                               C,
                                                               Ctype,
                                                               ldc,
                                                               C,
                                                               Ctype,
                                                               ldc,
                                                               computeType,
                                                               algo,
                                                               0,
                                                               0));
458 459 460 461 462
    });
  }
};

template <>
463
struct CUBlas<phi::dtype::complex<double>> {
464 465 466 467
  static void GEMV(rocblas_handle handle,
                   rocblas_operation transa,
                   int m,
                   int n,
468 469
                   const phi::dtype::complex<double> *alpha,
                   const phi::dtype::complex<double> *A,
470
                   int lda,
471
                   const phi::dtype::complex<double> *B,
472
                   int ldb,
473 474
                   const phi::dtype::complex<double> *beta,
                   phi::dtype::complex<double> *C,
475
                   int ldc) {
476
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_zgemv(
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
        handle,
        transa,
        m,
        n,
        reinterpret_cast<const rocblas_double_complex *>(alpha),
        reinterpret_cast<const rocblas_double_complex *>(A),
        lda,
        reinterpret_cast<const rocblas_double_complex *>(B),
        ldb,
        reinterpret_cast<const rocblas_double_complex *>(beta),
        reinterpret_cast<rocblas_double_complex *>(C),
        ldc));
  }

  static void AXPY(rocblas_handle handle,
                   int n,
493 494
                   const phi::dtype::complex<double> *alpha,
                   const phi::dtype::complex<double> *X,
495
                   const int incX,
496
                   phi::dtype::complex<double> *Y,
497
                   const int incY) {
498
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_zaxpy(
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
        handle,
        n,
        reinterpret_cast<const rocblas_double_complex *>(alpha),
        reinterpret_cast<const rocblas_double_complex *>(X),
        incX,
        reinterpret_cast<rocblas_double_complex *>(Y),
        incY));
  }

  static void GEMM_STRIDED_BATCH(
      rocblas_handle handle,
      rocblas_operation transa,
      rocblas_operation transb,
      int m,
      int n,
      int k,
515 516
      const phi::dtype::complex<double> *alpha,
      const phi::dtype::complex<double> *A,
517
      int lda,
518 519
      long long int strideA,                 // NOLINT
      const phi::dtype::complex<double> *B,  // NOLINT
520 521
      int ldb,
      long long int strideB,  // NOLINT
522 523
      const phi::dtype::complex<double> *beta,
      phi::dtype::complex<double> *C,
524 525 526
      int ldc,
      long long int strideC,  // NOLINT
      int batchCount) {
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_zgemm_strided_batched(
        handle,
        transa,
        transb,
        m,
        n,
        k,
        reinterpret_cast<const rocblas_double_complex *>(alpha),
        reinterpret_cast<const rocblas_double_complex *>(A),
        lda,
        strideA,
        reinterpret_cast<const rocblas_double_complex *>(B),
        ldb,
        strideB,
        reinterpret_cast<const rocblas_double_complex *>(beta),
        reinterpret_cast<rocblas_double_complex *>(C),
        ldc,
        strideC,
        batchCount));
546 547 548 549 550 551 552 553
  }

  static void GEMM(rocblas_handle handle,
                   rocblas_operation transa,
                   rocblas_operation transb,
                   int m,
                   int n,
                   int k,
554 555
                   const phi::dtype::complex<double> *alpha,
                   const phi::dtype::complex<double> *A,
556
                   int lda,
557
                   const phi::dtype::complex<double> *B,
558
                   int ldb,
559 560
                   const phi::dtype::complex<double> *beta,
                   phi::dtype::complex<double> *C,
561
                   int ldc) {
562
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_zgemm(
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
        handle,
        transa,
        transb,
        m,
        n,
        k,
        reinterpret_cast<const rocblas_double_complex *>(alpha),
        reinterpret_cast<const rocblas_double_complex *>(A),
        lda,
        reinterpret_cast<const rocblas_double_complex *>(B),
        ldb,
        reinterpret_cast<const rocblas_double_complex *>(beta),
        reinterpret_cast<rocblas_double_complex *>(C),
        ldc));
  }

  // NOTES: GEMM_EX can use Tensor Core to accelerate matrix multiply.
  // https://docs.nvidia.com/cuda/cublas/index.html#cublassetmathmode
  template <typename... ARGS>
582
  static void GEMM_EX(phi::GPUContext *dev_ctx,
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
                      rocblas_operation transa,
                      rocblas_operation transb,
                      int m,
                      int n,
                      int k,
                      const void *alpha,
                      const void *A,
                      rocblas_datatype Atype,
                      int lda,
                      const void *B,
                      rocblas_datatype Btype,
                      int ldb,
                      const void *beta,
                      void *C,
                      rocblas_datatype Ctype,
                      int ldc,
                      rocblas_datatype computeType) {
    rocblas_gemm_algo algo = rocblas_gemm_algo_standard;
    dev_ctx->TensorCoreCublasCallIfAvailable([&](rocblas_handle handle) {
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
      PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::rocblas_gemm_ex(handle,
                                                               transa,
                                                               transb,
                                                               m,
                                                               n,
                                                               k,
                                                               alpha,
                                                               A,
                                                               Atype,
                                                               lda,
                                                               B,
                                                               Btype,
                                                               ldb,
                                                               beta,
                                                               C,
                                                               Ctype,
                                                               ldc,
                                                               C,
                                                               Ctype,
                                                               ldc,
                                                               computeType,
                                                               algo,
                                                               0,
                                                               0));
626 627 628 629 630 631
    });
  }
};

template <>
template <typename T>
632 633 634 635 636 637 638 639 640 641
void Blas<phi::GPUContext>::GEMM(CBLAS_TRANSPOSE transA,
                                 CBLAS_TRANSPOSE transB,
                                 int M,
                                 int N,
                                 int K,
                                 T alpha,
                                 const T *A,
                                 const T *B,
                                 T beta,
                                 T *C) const {
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  rocblas_operation cuTransA = (transA == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
  rocblas_operation cuTransB = (transB == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
  context_.CublasCall([&](rocblas_handle handle) {
    CUBlas<T>::GEMM(handle,
                    cuTransB,
                    cuTransA,
                    N,
                    M,
                    K,
                    &alpha,
                    B,
                    ldb,
                    A,
                    lda,
                    &beta,
                    C,
                    N);
  });
}

template <>
template <>
672 673 674 675 676 677 678 679 680 681
inline void Blas<phi::GPUContext>::GEMM(CBLAS_TRANSPOSE transA,
                                        CBLAS_TRANSPOSE transB,
                                        int M,
                                        int N,
                                        int K,
                                        phi::dtype::float16 alpha,
                                        const phi::dtype::float16 *A,
                                        const phi::dtype::float16 *B,
                                        phi::dtype::float16 beta,
                                        phi::dtype::float16 *C) const {
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  rocblas_operation cuTransA = (transA == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
  rocblas_operation cuTransB = (transB == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;

  // TODO(kexinzhao): add processing code for compute capability < 53 case
  PADDLE_ENFORCE_GE(
      context_.GetComputeCapability(),
      53,
697
      phi::errors::InvalidArgument(
698 699 700 701 702 703 704
          "cublas fp16 gemm requires GPU compute capability >= 53,"
          "but received %d",
          context_.GetComputeCapability()));

  float h_alpha = static_cast<float>(alpha);
  float h_beta = static_cast<float>(beta);

705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
  auto &cuda_ctx = const_cast<phi::GPUContext &>(context_);
  CUBlas<phi::dtype::float16>::GEMM_EX(&cuda_ctx,
                                       cuTransB,
                                       cuTransA,
                                       N,
                                       M,
                                       K,
                                       &h_alpha,
                                       B,
                                       rocblas_datatype_f16_r,
                                       ldb,
                                       A,
                                       rocblas_datatype_f16_r,
                                       lda,
                                       &h_beta,
                                       C,
                                       rocblas_datatype_f16_r,
                                       N,
                                       rocblas_datatype_f32_r);
724 725 726 727
}

template <>
template <>
728 729 730 731 732 733 734 735 736 737
inline void Blas<phi::GPUContext>::GEMM(CBLAS_TRANSPOSE transA,
                                        CBLAS_TRANSPOSE transB,
                                        int M,
                                        int N,
                                        int K,
                                        phi::dtype::bfloat16 alpha,
                                        const phi::dtype::bfloat16 *A,
                                        const phi::dtype::bfloat16 *B,
                                        phi::dtype::bfloat16 beta,
                                        phi::dtype::bfloat16 *C) const {
738 739 740 741 742 743 744 745 746 747 748 749 750 751
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  rocblas_operation cuTransA = (transA == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
  rocblas_operation cuTransB = (transB == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
  // TODO(zhiqiu): 80 has the same meaning for rocm and cuda?
  PADDLE_ENFORCE_GE(
      context_.GetComputeCapability(),
      80,
752
      phi::errors::InvalidArgument(
753 754 755 756 757 758 759 760 761 762
          "rocblas fp16 gemm requires GPU compute capability >= 80,"
          "but received %d",
          context_.GetComputeCapability()));

  float h_alpha = static_cast<float>(alpha);
  float h_beta = static_cast<float>(beta);
  rocblas_gemm_algo algo = rocblas_gemm_algo_standard;

  context_.TensorCoreCublasCallIfAvailable([&](rocblas_handle handle) {
    PADDLE_ENFORCE_GPU_SUCCESS(
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
        phi::dynload::rocblas_gemm_ex(handle,
                                      cuTransB,
                                      cuTransA,
                                      N,
                                      M,
                                      K,
                                      &h_alpha,
                                      B,
                                      rocblas_datatype_bf16_r,
                                      ldb,
                                      A,
                                      rocblas_datatype_bf16_r,
                                      lda,
                                      &h_beta,
                                      C,
                                      rocblas_datatype_bf16_r,
                                      N,
                                      C,
                                      rocblas_datatype_bf16_r,
                                      N,
                                      rocblas_datatype_f32_r,
                                      algo,
                                      0,
                                      0));
787 788 789 790 791
  });
}

template <>
template <>
792 793 794 795 796
inline void Blas<phi::GPUContext>::GEMM(CBLAS_TRANSPOSE transA,
                                        CBLAS_TRANSPOSE transB,
                                        int M,
                                        int N,
                                        int K,
797 798 799 800 801
                                        phi::dtype::complex<float> alpha,
                                        const phi::dtype::complex<float> *A,
                                        const phi::dtype::complex<float> *B,
                                        phi::dtype::complex<float> beta,
                                        phi::dtype::complex<float> *C) const {
802 803 804 805 806 807 808 809 810 811
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  rocblas_operation cuTransA = (transA == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
  rocblas_operation cuTransB = (transB == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
812 813

  // TODO(kexinzhao): add processing code for compute capability < 53 case
814 815
  PADDLE_ENFORCE_GE(
      context_.GetComputeCapability(),
816
      53,
817
      phi::errors::InvalidArgument(
818
          "cublas complex64 gemm requires GPU compute capability >= 53,"
819 820 821
          "but received %d",
          context_.GetComputeCapability()));

822 823 824
  thrust::complex<float> c_alpha =
      thrust::complex<float>(alpha.real, alpha.imag);
  thrust::complex<float> c_beta = thrust::complex<float>(beta.real, beta.imag);
825

826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
  auto &cuda_ctx = const_cast<phi::GPUContext &>(context_);
  CUBlas<phi::dtype::complex<float>>::GEMM_EX(&cuda_ctx,
                                              cuTransB,
                                              cuTransA,
                                              N,
                                              M,
                                              K,
                                              &c_alpha,
                                              B,
                                              rocblas_datatype_f32_c,
                                              ldb,
                                              A,
                                              rocblas_datatype_f32_c,
                                              lda,
                                              &c_beta,
                                              C,
                                              rocblas_datatype_f32_c,
                                              N,
                                              rocblas_datatype_f32_c);
845 846 847 848
}

template <>
template <>
849 850 851 852 853 854 855 856 857 858
inline void Blas<phi::GPUContext>::GEMM(CBLAS_TRANSPOSE transA,
                                        CBLAS_TRANSPOSE transB,
                                        int M,
                                        int N,
                                        int K,
                                        phi::dtype::complex<double> alpha,
                                        const phi::dtype::complex<double> *A,
                                        const phi::dtype::complex<double> *B,
                                        phi::dtype::complex<double> beta,
                                        phi::dtype::complex<double> *C) const {
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  rocblas_operation cuTransA = (transA == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
  rocblas_operation cuTransB = (transB == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;

  // TODO(kexinzhao): add processing code for compute capability < 53 case
  PADDLE_ENFORCE_GE(
      context_.GetComputeCapability(),
      53,
874
      phi::errors::InvalidArgument(
875 876 877 878 879 880 881 882 883
          "cublas complex128 gemm requires GPU compute capability >= 53,"
          "but received %d",
          context_.GetComputeCapability()));

  thrust::complex<double> c_alpha =
      thrust::complex<double>(alpha.real, alpha.imag);
  thrust::complex<double> c_beta =
      thrust::complex<double>(beta.real, beta.imag);

884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
  auto &cuda_ctx = const_cast<phi::GPUContext &>(context_);
  CUBlas<phi::dtype::complex<double>>::GEMM_EX(&cuda_ctx,
                                               cuTransB,
                                               cuTransA,
                                               N,
                                               M,
                                               K,
                                               &c_alpha,
                                               B,
                                               rocblas_datatype_f64_c,
                                               ldb,
                                               A,
                                               rocblas_datatype_f64_c,
                                               lda,
                                               &c_beta,
                                               C,
                                               rocblas_datatype_f64_c,
                                               N,
                                               rocblas_datatype_f64_c);
903 904 905 906
}

template <>
template <typename T>
907 908 909 910 911 912 913 914 915 916 917 918 919
void Blas<phi::GPUContext>::GEMM(bool transA,
                                 bool transB,
                                 int M,
                                 int N,
                                 int K,
                                 T alpha,
                                 const T *A,
                                 int lda,
                                 const T *B,
                                 int ldb,
                                 T beta,
                                 T *C,
                                 int ldc) const {
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  rocblas_operation cuTransA =
      transA ? rocblas_operation_transpose : rocblas_operation_none;
  rocblas_operation cuTransB =
      transB ? rocblas_operation_transpose : rocblas_operation_none;
  context_.CublasCall([&](rocblas_handle handle) {
    CUBlas<T>::GEMM(handle,
                    cuTransB,
                    cuTransA,
                    N,
                    M,
                    K,
                    &alpha,
                    B,
                    ldb,
                    A,
                    lda,
                    &beta,
                    C,
                    ldc);
  });
}

template <>
template <>
946 947 948 949 950 951 952 953 954 955 956 957 958
inline void Blas<phi::GPUContext>::GEMM(bool transA,
                                        bool transB,
                                        int M,
                                        int N,
                                        int K,
                                        phi::dtype::float16 alpha,
                                        const phi::dtype::float16 *A,
                                        int lda,
                                        const phi::dtype::float16 *B,
                                        int ldb,
                                        phi::dtype::float16 beta,
                                        phi::dtype::float16 *C,
                                        int ldc) const {
959 960 961 962 963 964 965 966
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  rocblas_operation cuTransA =
      transA ? rocblas_operation_transpose : rocblas_operation_none;
  rocblas_operation cuTransB =
      transB ? rocblas_operation_transpose : rocblas_operation_none;

  context_.CublasCall([&](rocblas_handle handle) {
967 968 969 970 971 972 973 974 975 976 977 978 979 980
    CUBlas<phi::dtype::float16>::GEMM(handle,
                                      cuTransB,
                                      cuTransA,
                                      N,
                                      M,
                                      K,
                                      &alpha,
                                      B,
                                      ldb,
                                      A,
                                      lda,
                                      &beta,
                                      C,
                                      ldc);
981 982 983 984 985
  });
}

template <>
template <typename T>
986
void Blas<phi::GPUContext>::AXPY(int n, T alpha, const T *x, T *y) const {
987 988 989 990 991 992 993
  context_.CublasCall([&](rocblas_handle handle) {
    CUBlas<T>::AXPY(handle, n, &alpha, x, 1, y, 1);
  });
}

template <>
template <typename T>
994
void Blas<phi::GPUContext>::SCAL(int n, const T alpha, T *x) const {
995 996 997 998 999 1000
  context_.CublasCall(
      [&](rocblas_handle handle) { CUBlas<T>::SCAL(handle, n, &alpha, x, 1); });
}

template <>
template <typename T>
1001
void Blas<phi::GPUContext>::VCOPY(int n, const T *x, T *y) const {
1002 1003 1004 1005 1006 1007
  context_.CublasCall(
      [&](rocblas_handle handle) { CUBlas<T>::VCOPY(handle, n, x, 1, y, 1); });
}

template <>
template <typename T>
1008 1009 1010 1011 1012 1013 1014 1015
void Blas<phi::GPUContext>::GEMV(bool trans_a,
                                 int M,
                                 int N,
                                 T alpha,
                                 const T *A,
                                 const T *B,
                                 T beta,
                                 T *C) const {
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
  rocblas_operation cuTransA =
      !trans_a ? rocblas_operation_transpose : rocblas_operation_none;

  context_.CublasCall([&](rocblas_handle handle) {
    CUBlas<T>::GEMV(handle, cuTransA, N, M, &alpha, A, N, B, 1, &beta, C, 1);
  });
}

template <>
template <>
1026 1027 1028 1029 1030 1031 1032 1033
inline void Blas<phi::GPUContext>::GEMV(bool trans_a,
                                        int M,
                                        int N,
                                        phi::dtype::float16 alpha,
                                        const phi::dtype::float16 *A,
                                        const phi::dtype::float16 *B,
                                        phi::dtype::float16 beta,
                                        phi::dtype::float16 *C) const {
1034 1035
  // Because cublas doesn't support half gemv, we use cublasHgemm to achieve it.
  if (trans_a) {
1036
    this->template GEMM<phi::dtype::float16>(
1037 1038
        CblasNoTrans, CblasNoTrans, 1, N, M, alpha, B, A, beta, C);
  } else {
1039
    this->template GEMM<phi::dtype::float16>(
1040 1041 1042 1043 1044 1045
        CblasNoTrans, CblasNoTrans, M, 1, N, alpha, A, B, beta, C);
  }
}

template <>
template <>
1046 1047 1048 1049 1050 1051 1052 1053
inline void Blas<phi::GPUContext>::GEMV(bool trans_a,
                                        int M,
                                        int N,
                                        phi::dtype::bfloat16 alpha,
                                        const phi::dtype::bfloat16 *A,
                                        const phi::dtype::bfloat16 *B,
                                        phi::dtype::bfloat16 beta,
                                        phi::dtype::bfloat16 *C) const {
1054 1055
  // Because rocblas doesn't support bfloat16 gemv, we use gemmex to achieve it.
  if (trans_a) {
1056
    this->template GEMM<phi::dtype::bfloat16>(
1057 1058
        CblasNoTrans, CblasNoTrans, 1, N, M, alpha, B, A, beta, C);
  } else {
1059
    this->template GEMM<phi::dtype::bfloat16>(
1060 1061 1062 1063 1064 1065
        CblasNoTrans, CblasNoTrans, M, 1, N, alpha, A, B, beta, C);
  }
}

template <>
template <typename T>
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
void Blas<phi::GPUContext>::BatchedGEMM(CBLAS_TRANSPOSE transA,
                                        CBLAS_TRANSPOSE transB,
                                        int M,
                                        int N,
                                        int K,
                                        T alpha,
                                        const T *A,
                                        const T *B,
                                        T beta,
                                        T *C,
                                        int batchCount,
                                        int64_t strideA,
                                        int64_t strideB) const {
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
  rocblas_operation cuTransA = (transA == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
  rocblas_operation cuTransB = (transB == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
  const int64_t strideC = M * N;
  context_.CublasCall([&](rocblas_handle handle) {
    CUBlas<T>::GEMM_STRIDED_BATCH(handle,
                                  cuTransB,
                                  cuTransA,
                                  N,
                                  M,
                                  K,
                                  &alpha,
                                  B,
                                  ldb,
                                  strideB,
                                  A,
                                  lda,
                                  strideA,
                                  &beta,
                                  C,
                                  ldc,
                                  strideC,
                                  batchCount);
  });
}

R
ronnywang 已提交
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
// note(wangran16): unknown bug. parameters dislocation when calling
// GEMM_STRIDED_BATCH<float> and GEMM_STRIDED_BATCH<double>
template <>
template <>
inline void Blas<phi::GPUContext>::BatchedGEMM(CBLAS_TRANSPOSE transA,
                                               CBLAS_TRANSPOSE transB,
                                               int M,
                                               int N,
                                               int K,
                                               float alpha,
                                               const float *A,
                                               const float *B,
                                               float beta,
                                               float *C,
                                               int batchCount,
                                               int64_t strideA,
                                               int64_t strideB) const {
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
  rocblas_operation cuTransA = (transA == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
  rocblas_operation cuTransB = (transB == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
  const int64_t strideC = M * N;
  context_.CublasCall([&](rocblas_handle handle) {
    PADDLE_ENFORCE_GPU_SUCCESS(
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
        phi::dynload::rocblas_sgemm_strided_batched(handle,
                                                    cuTransB,
                                                    cuTransA,
                                                    N,
                                                    M,
                                                    K,
                                                    &alpha,
                                                    B,
                                                    ldb,
                                                    strideB,
                                                    A,
                                                    lda,
                                                    strideA,
                                                    &beta,
                                                    C,
                                                    ldc,
                                                    strideC,
                                                    batchCount));
R
ronnywang 已提交
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
  });
}

template <>
template <>
inline void Blas<phi::GPUContext>::BatchedGEMM(CBLAS_TRANSPOSE transA,
                                               CBLAS_TRANSPOSE transB,
                                               int M,
                                               int N,
                                               int K,
                                               double alpha,
                                               const double *A,
                                               const double *B,
                                               double beta,
                                               double *C,
                                               int batchCount,
                                               int64_t strideA,
                                               int64_t strideB) const {
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
  rocblas_operation cuTransA = (transA == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
  rocblas_operation cuTransB = (transB == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
  const int64_t strideC = M * N;
  context_.CublasCall([&](rocblas_handle handle) {
    PADDLE_ENFORCE_GPU_SUCCESS(
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
        phi::dynload::rocblas_dgemm_strided_batched(handle,
                                                    cuTransB,
                                                    cuTransA,
                                                    N,
                                                    M,
                                                    K,
                                                    &alpha,
                                                    B,
                                                    ldb,
                                                    strideB,
                                                    A,
                                                    lda,
                                                    strideA,
                                                    &beta,
                                                    C,
                                                    ldc,
                                                    strideC,
                                                    batchCount));
R
ronnywang 已提交
1212 1213 1214
  });
}

1215 1216
template <>
template <>
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
inline void Blas<phi::GPUContext>::BatchedGEMM(CBLAS_TRANSPOSE transA,
                                               CBLAS_TRANSPOSE transB,
                                               int M,
                                               int N,
                                               int K,
                                               phi::dtype::bfloat16 alpha,
                                               const phi::dtype::bfloat16 *A,
                                               const phi::dtype::bfloat16 *B,
                                               phi::dtype::bfloat16 beta,
                                               phi::dtype::bfloat16 *C,
                                               int batchCount,
                                               int64_t strideA,
                                               int64_t strideB) const {
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
  const int64_t strideC = M * N;
  rocblas_operation cuTransA = (transA == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
  rocblas_operation cuTransB = (transB == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
  float h_alpha = static_cast<float>(alpha);
  float h_beta = static_cast<float>(beta);
  rocblas_gemm_algo algo = rocblas_gemm_algo_standard;

  context_.TensorCoreCublasCallIfAvailable([&](rocblas_handle handle) {
    PADDLE_ENFORCE_GPU_SUCCESS(
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
        phi::dynload::rocblas_gemm_strided_batched_ex(handle,
                                                      cuTransB,
                                                      cuTransA,
                                                      N,
                                                      M,
                                                      K,
                                                      &h_alpha,
                                                      B,
                                                      rocblas_datatype_bf16_r,
                                                      ldb,
                                                      strideB,
                                                      A,
                                                      rocblas_datatype_bf16_r,
                                                      lda,
                                                      strideA,
                                                      &h_beta,
                                                      C,
                                                      rocblas_datatype_bf16_r,
                                                      ldc,
                                                      strideC,
                                                      C,
                                                      rocblas_datatype_bf16_r,
                                                      ldc,
                                                      strideC,
                                                      batchCount,
                                                      rocblas_datatype_f32_r,
                                                      algo,
                                                      0,
                                                      0));
1275 1276 1277 1278 1279
  });
}

template <>
template <typename T>
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
void Blas<phi::GPUContext>::BatchedGEMM(CBLAS_TRANSPOSE transA,
                                        CBLAS_TRANSPOSE transB,
                                        int M,
                                        int N,
                                        int K,
                                        T alpha,
                                        const T **A,
                                        const T **B,
                                        T beta,
                                        T **C,
                                        int batchCount) const {
1291 1292 1293 1294 1295 1296 1297 1298
  for (int k = 0; k < batchCount; ++k) {
    this->template GEMM<T>(
        transA, transB, M, N, K, alpha, A[k], B[k], beta, C[k]);
  }
}

template <>
template <>
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
inline void Blas<phi::GPUContext>::BatchedGEMM(CBLAS_TRANSPOSE transA,
                                               CBLAS_TRANSPOSE transB,
                                               int M,
                                               int N,
                                               int K,
                                               phi::dtype::float16 alpha,
                                               const phi::dtype::float16 **A,
                                               const phi::dtype::float16 **B,
                                               phi::dtype::float16 beta,
                                               phi::dtype::float16 **C,
                                               int batchCount) const {
1310
  for (int k = 0; k < batchCount; ++k) {
1311
    this->template GEMM<phi::dtype::float16>(
1312 1313 1314 1315 1316 1317
        transA, transB, M, N, K, alpha, A[k], B[k], beta, C[k]);
  }
}

template <>
template <>
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
inline void Blas<phi::GPUContext>::BatchedGEMM(CBLAS_TRANSPOSE transA,
                                               CBLAS_TRANSPOSE transB,
                                               int M,
                                               int N,
                                               int K,
                                               phi::dtype::bfloat16 alpha,
                                               const phi::dtype::bfloat16 **A,
                                               const phi::dtype::bfloat16 **B,
                                               phi::dtype::bfloat16 beta,
                                               phi::dtype::bfloat16 **C,
                                               int batchCount) const {
1329
  for (int k = 0; k < batchCount; ++k) {
1330
    this->template GEMM<phi::dtype::bfloat16>(
1331 1332 1333 1334 1335 1336
        transA, transB, M, N, K, alpha, A[k], B[k], beta, C[k]);
  }
}

template <>
template <typename T>
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
void Blas<phi::GPUContext>::TRSM(CBLAS_SIDE side,
                                 CBLAS_UPLO uplo,
                                 CBLAS_TRANSPOSE transA,
                                 CBLAS_DIAG diag,
                                 int M,
                                 int N,
                                 T alpha,
                                 const T *A,
                                 int lda,
                                 T *B,
                                 int ldb) const {
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
  // solve row major `op ( A ) X = α B` by taking it as `X' op ( A' )  =  α B'`
  // where ' stands for transpose
  rocblas_side cuSide =
      (side == CblasLeft) ? rocblas_side_right : rocblas_side_left;
  rocblas_fill cuUplo =
      (uplo == CblasLower) ? rocblas_fill_upper : rocblas_fill_lower;
  // use CUBLAS_OP_C (conjugate transpose) for complex
  rocblas_operation cuTransA = (transA == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
  rocblas_diagonal cuDiag =
      (diag == CblasUnit) ? rocblas_diagonal_unit : rocblas_diagonal_non_unit;

  context_.CublasCall([&](rocblas_handle handle) {
    CUBlas<T>::TRSM(
        handle, cuSide, cuUplo, cuTransA, cuDiag, N, M, &alpha, A, lda, B, ldb);
  });
}

template <>
template <typename T>
1369
void Blas<phi::GPUContext>::BatchedGETRF(
1370 1371 1372 1373 1374 1375 1376 1377
    int n, T **a, int *ipiv, int *info, int batch_size) const {
  context_.CublasCall([&](rocblas_handle handle) {
    CUBlas<T>::GETRF_BATCH(handle, n, a, n, ipiv, info, batch_size);
  });
}

template <>
template <typename T>
1378 1379 1380 1381 1382 1383
void Blas<phi::GPUContext>::BatchedGETRI(int n,
                                         const T **a,
                                         const int *ipiv,
                                         T **a_inv,
                                         int *info,
                                         int batch_size) const {
1384 1385 1386
  PADDLE_ENFORCE_NE(
      a_inv,
      a,
1387
      phi::errors::InvalidArgument(
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
          "cuBLAS fuction 'cublas<S/D>getrfBatched' cannot be executed "
          "in-place. The memory space of output matrix (address: %p) cannot "
          "overlap memory space of input matrix (address: %p).",
          a_inv,
          a));
  context_.CublasCall([&](rocblas_handle handle) {
    CUBlas<T>::GETRI_BATCH(handle, n, a, n, ipiv, a_inv, n, info, batch_size);
  });
}

template <>
template <typename T>
1400
void Blas<phi::GPUContext>::BatchedMatInv(
1401 1402 1403 1404 1405 1406 1407 1408
    int n, const T **a, T **a_inv, int *info, int batch_size) const {
  context_.CublasCall([&](rocblas_handle handle) {
    CUBlas<T>::MATINV_BATCH(handle, n, a, n, a_inv, n, info, batch_size);
  });
}

template <>
template <typename T>
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
void Blas<phi::GPUContext>::BatchedGETRS(CBLAS_TRANSPOSE trans,
                                         int n,
                                         int nrhs,
                                         const T **a,
                                         int lda,
                                         int *ipiv,
                                         T **b,
                                         int ldb,
                                         int *info,
                                         int batch_size) const {
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
  rocblas_operation cuTrans = (trans == CblasNoTrans)
                                  ? rocblas_operation_none
                                  : rocblas_operation_transpose;
  context_.CublasCall([&](rocblas_handle handle) {
    CUBlas<T>::GETRS_BATCH(
        handle, cuTrans, n, nrhs, a, lda, ipiv, b, ldb, info, batch_size);
  });
}

template <>
template <typename T>
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
void Blas<phi::GPUContext>::BatchedTRSM(CBLAS_SIDE side,
                                        CBLAS_UPLO uplo,
                                        CBLAS_TRANSPOSE transA,
                                        CBLAS_DIAG diag,
                                        int M,
                                        int N,
                                        T alpha,
                                        const T **A,
                                        int lda,
                                        T **B,
                                        int ldb,
                                        int batch_size) const {
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
  // solve row major `op ( A ) X = α B` by taking it as `X' op ( A' )  =  α B'`
  // where ' stands for transpose
  rocblas_side cuSide =
      (side == CblasLeft) ? rocblas_side_right : rocblas_side_left;
  rocblas_fill cuUplo =
      (uplo == CblasLower) ? rocblas_fill_upper : rocblas_fill_lower;
  // use CUBLAS_OP_C (conjugate transpose) for complex
  rocblas_operation cuTransA = (transA == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
  rocblas_diagonal cuDiag =
      (diag == CblasUnit) ? rocblas_diagonal_unit : rocblas_diagonal_non_unit;

  context_.CublasCall([&](rocblas_handle handle) {
    CUBlas<T>::TRSM_BATCH(handle,
                          cuSide,
                          cuUplo,
                          cuTransA,
                          cuDiag,
                          N,
                          M,
                          &alpha,
                          A,
                          lda,
                          B,
                          ldb,
                          batch_size);
  });
}

}  // namespace funcs
1473
}  // namespace phi