while_op.cc 14.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yang Yang(Tony) 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yang Yang(Tony) 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yang Yang(Tony) 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yang Yang(Tony) 已提交
14 15

#include <vector>
Y
Yi Wang 已提交
16 17 18 19
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
S
sneaxiy 已提交
20
#include "paddle/fluid/framework/var_type.h"
Y
Yi Wang 已提交
21
#include "paddle/fluid/operators/detail/safe_ref.h"
Y
Yang Yang(Tony) 已提交
22 23 24 25 26 27 28

namespace paddle {
namespace operators {

using StepScopeVar = std::vector<framework::Scope *>;
using LoDTensor = framework::LoDTensor;

Y
Yang Yu 已提交
29 30 31 32 33 34
static constexpr char kStepBlock[] = "sub_block";
static constexpr char kCondition[] = "Condition";
static constexpr char kStepScopes[] = "StepScopes";
static constexpr char kX[] = "X";
static constexpr char kXGRAD[] = "X@GRAD";
static constexpr char kOutputs[] = "Out";
Y
Yang Yang(Tony) 已提交
35 36 37 38 39 40 41 42

class WhileOp : public framework::OperatorBase {
 public:
  WhileOp(const std::string &type, const framework::VariableNameMap &inputs,
          const framework::VariableNameMap &outputs,
          const framework::AttributeMap &attrs)
      : framework::OperatorBase(type, inputs, outputs, attrs) {}

43 44 45
 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
Y
Yang Yang(Tony) 已提交
46 47 48 49
    PADDLE_ENFORCE_NOT_NULL(scope.FindVar(Input(kCondition)));
    auto &cond = scope.FindVar(Input(kCondition))->Get<LoDTensor>();
    PADDLE_ENFORCE_EQ(cond.dims(), paddle::framework::make_ddim({1}));

D
dzhwinter 已提交
50
    framework::Executor executor(dev_place);
Y
Yu Yang 已提交
51
    auto *block = Attr<framework::BlockDesc *>(kStepBlock);
D
dzhwinter 已提交
52

Y
Yang Yang(Tony) 已提交
53 54 55 56 57
    auto *program = block->Program();

    auto step_scopes =
        scope.FindVar(Output(kStepScopes))->GetMutable<StepScopeVar>();

Y
Yang Yu 已提交
58 59
    PADDLE_ENFORCE(platform::is_cpu_place(cond.place()),
                   "Condition of while op must in CPU memory.");
X
Xin Pan 已提交
60

C
chengduo 已提交
61
    bool is_test = Attr<bool>("is_test");
X
Xin Pan 已提交
62
    auto ctx = executor.Prepare(*program, block->ID());
Y
Yang Yang(Tony) 已提交
63 64 65
    while (cond.data<bool>()[0]) {
      auto &current_scope = scope.NewScope();
      step_scopes->push_back(&current_scope);
C
chengduoZH 已提交
66
      executor.RunPreparedContext(ctx.get(), &current_scope, false, true, true);
C
chengduo 已提交
67 68 69
      if (is_test) {
        scope.DeleteScope(&current_scope);
      }
Y
Yang Yang(Tony) 已提交
70 71 72 73 74 75
    }
  }
};

class WhileOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
76
  void Make() override {
Y
Yang Yu 已提交
77
    AddInput(kX,
Y
Yang Yang(Tony) 已提交
78 79 80 81 82 83 84
             "A set of variables, which are required by operators inside the "
             "block of While Op.")
        .AsDuplicable();
    AddInput(
        kCondition,
        "(Bool) An scalar. When it's False, the While Op will be terminated.")
        .AsDuplicable();
Y
Yang Yang(Tony) 已提交
85
    AddOutput(kOutputs,
Y
Yang Yang(Tony) 已提交
86
              "A set of variables, which will be assigned with values "
Y
Yang Yang(Tony) 已提交
87
              "generated by the operators inside the block of While Op.")
Y
Yang Yang(Tony) 已提交
88 89 90 91 92
        .AsDuplicable();
    AddOutput(kStepScopes,
              "(StepScopeVar) A vector of local scope, which size equals the "
              "step number of While Op. The i'th scope storages temporary "
              "variables generated in the i'th step.");
Y
Yu Yang 已提交
93 94
    AddAttr<framework::BlockDesc *>(kStepBlock,
                                    "The step block inside WhileOp");
C
chengduo 已提交
95
    AddAttr<bool>("is_test", "True if in test phase.").SetDefault(false);
Y
Yang Yang(Tony) 已提交
96 97 98 99 100 101 102 103 104 105 106 107
    AddComment(R"DOC(
)DOC");
  }
};

class WhileGradOp : public framework::OperatorBase {
 public:
  WhileGradOp(const std::string &type, const framework::VariableNameMap &inputs,
              const framework::VariableNameMap &outputs,
              const framework::AttributeMap &attrs)
      : framework::OperatorBase(type, inputs, outputs, attrs) {}

108 109 110
 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
C
chengduo 已提交
111 112
    PADDLE_ENFORCE(!Attr<bool>("is_test"),
                   "GradOp is only callable when is_test is false");
113 114 115
    // get device context from pool
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &dev_ctx = *pool.Get(dev_place);
D
dzhwinter 已提交
116
    framework::Executor executor(dev_place);
Y
Yu Yang 已提交
117
    auto *block = Attr<framework::BlockDesc *>(kStepBlock);
Y
Yang Yang(Tony) 已提交
118
    auto *program = block->Program();
X
Xin Pan 已提交
119
    auto ctx = executor.Prepare(*program, block->ID());
Y
Yang Yang(Tony) 已提交
120 121 122 123

    auto *step_scopes =
        scope.FindVar(Input(kStepScopes))->GetMutable<StepScopeVar>();

Y
Yang Yang(Tony) 已提交
124 125 126 127 128 129
    auto outside_og_names = Inputs(framework::GradVarName(kOutputs));
    auto inside_og_names =
        Attr<std::vector<std::string>>("original_output_grad");

    PADDLE_ENFORCE_EQ(outside_og_names.size(), inside_og_names.size());

Y
Yang Yang(Tony) 已提交
130 131
    for (auto cur_scope_iter = step_scopes->rbegin();
         cur_scope_iter != step_scopes->rend(); ++cur_scope_iter) {
Y
Yang Yang(Tony) 已提交
132 133 134 135 136 137 138
      VLOG(3) << "Start backward at time_step "
              << cur_scope_iter - step_scopes->rbegin();
      framework::Scope &cur_scope = **cur_scope_iter;
      // Link OG from outside to inside
      for (size_t i = 0; i < outside_og_names.size(); ++i) {
        auto outside_og_name = outside_og_names[i];
        auto inside_og_name = inside_og_names[i];
139 140
        VLOG(8) << "Linking outside " << outside_og_name << " --> inside "
                << inside_og_name;
141 142 143 144 145 146
        auto &og_outside =
            detail::Ref(scope.FindVar(outside_og_name),
                        "Cannot find Outside Gradient %s", outside_og_name);
        auto &og_inside =
            detail::Ref(cur_scope.Var(inside_og_name),
                        "Cannot find inside gradient %s", inside_og_name);
S
sneaxiy 已提交
147
        if (framework::IsType<framework::LoDTensor>(og_outside.Type())) {
Y
Yang Yang(Tony) 已提交
148 149 150 151 152
          auto &outside_tensor = og_outside.Get<framework::LoDTensor>();
          auto &inside_tensor =
              detail::Ref(og_inside.GetMutable<framework::LoDTensor>());
          inside_tensor.set_lod(outside_tensor.lod());
          inside_tensor.ShareDataWith(outside_tensor);
S
sneaxiy 已提交
153 154
        } else if (framework::IsType<framework::LoDTensorArray>(
                       og_outside.Type())) {
Y
Yang Yang(Tony) 已提交
155 156 157
          auto &outside_array = og_outside.Get<framework::LoDTensorArray>();
          auto &inside_array =
              detail::Ref(og_inside.GetMutable<framework::LoDTensorArray>());
158
          VLOG(8) << outside_og_name << " size = " << outside_array.size();
Y
Yang Yang(Tony) 已提交
159 160 161
          inside_array.resize(outside_array.size());

          for (size_t j = 0; j < inside_array.size(); ++j) {
162
            VLOG(8) << j << " " << outside_array[j].numel();
Y
Yang Yang(Tony) 已提交
163 164 165 166 167 168 169 170 171
            if (outside_array[j].numel() != 0) {
              inside_array[j].set_lod(outside_array[j].lod());
              inside_array[j].ShareDataWith(outside_array[j]);
            } else {
              PADDLE_ENFORCE_EQ(inside_array[j].numel(), 0);
            }
          }
        }
      }
C
chengduoZH 已提交
172 173
      executor.RunPreparedContext(ctx.get(), *cur_scope_iter, false, true,
                                  true);
Y
Yang Yang(Tony) 已提交
174

Y
Yang Yu 已提交
175 176
      auto &pg_names = Outputs(kXGRAD);
      auto &p_names = Inputs(kX);
Y
Yang Yang(Tony) 已提交
177
      PADDLE_ENFORCE_EQ(pg_names.size(), p_names.size());
Y
Yang Yang(Tony) 已提交
178 179
      for (size_t param_id = 0; param_id < pg_names.size(); ++param_id) {
        if (pg_names[param_id] == framework::kEmptyVarName) {
180
          continue;  // parameter doesn't have gradient
Y
Yang Yang(Tony) 已提交
181 182
        }
        auto inside_grad_name = framework::GradVarName(p_names[param_id]);
Y
Yang Yang(Tony) 已提交
183

Y
Yang Yang(Tony) 已提交
184
        //  // TODO(tonyyang-svail): Not sure we need the following
Y
Yang Yang(Tony) 已提交
185 186 187 188 189 190 191 192 193 194 195
        //  // If does not compute gradient of that variable inside rnn,
        //  just
        //  // continue
        //  if (local_var_names.find(inside_grad_name) ==
        //  local_var_names.end()) {
        //    continue;
        //  }

        // zero gradient variable in step 0
        if (cur_scope_iter == step_scopes->rbegin()) {
          auto *var = (*cur_scope_iter)->FindVar(inside_grad_name);
Y
Yang Yang(Tony) 已提交
196
          PADDLE_ENFORCE_NOT_NULL(var, "Can not find var %s", inside_grad_name);
Y
Yang Yang(Tony) 已提交
197 198 199
          if (var->IsType<LoDTensor>()) {
            auto &inside_tensor = var->Get<framework::LoDTensor>();
            framework::AttributeMap attrs;
F
fengjiayi 已提交
200
            attrs["dtype"] = framework::ToDataType(inside_tensor.type());
Y
Yang Yang(Tony) 已提交
201 202 203
            attrs["shape"] = framework::vectorize2int(inside_tensor.dims());
            attrs["value"] = 0.0f;

204
            auto var_name = pg_names[param_id];
Y
Yang Yang(Tony) 已提交
205
            auto zero_op = framework::OpRegistry::CreateOp(
Y
Yiqun Liu 已提交
206
                "fill_constant", framework::VariableNameMap{},
207
                {{"Out", {var_name}}}, attrs);
D
dzhwinter 已提交
208
            zero_op->Run(scope, dev_place);
209 210 211
            scope.FindVar(var_name)
                ->GetMutable<framework::LoDTensor>()
                ->set_lod(inside_tensor.lod());
Y
Yang Yang(Tony) 已提交
212 213
          }
        }
Y
Yang Yang(Tony) 已提交
214
        auto new_inside_name = cur_scope.Rename(inside_grad_name);
Y
Yang Yang(Tony) 已提交
215
        auto sum_op = framework::OpRegistry::CreateOp(
Y
Yang Yang(Tony) 已提交
216
            "sum", {{"X", {pg_names[param_id], new_inside_name}}},
217 218
            {{"Out", {pg_names[param_id]}}},
            framework::AttributeMap{{"use_mkldnn", {false}}});
D
dzhwinter 已提交
219
        sum_op->Run(cur_scope, dev_place);
Y
Yang Yang(Tony) 已提交
220
        cur_scope.Rename(new_inside_name, inside_grad_name);
Y
Yang Yang(Tony) 已提交
221
      }
222 223
      dev_ctx.Wait();
      const_cast<framework::Scope &>(scope).DeleteScope(&cur_scope);
Y
Yang Yang(Tony) 已提交
224 225 226 227 228 229 230 231 232
    }
  }
};

class WhileGradOpDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
Y
Yu Yang 已提交
233
  std::unique_ptr<framework::OpDesc> Apply() const override {
F
Update  
fengjiayi 已提交
234 235 236 237 238 239 240
    auto *while_grad = new framework::OpDesc();
    while_grad->SetType("while_grad");
    while_grad->SetInput(kX, Input(kX));
    while_grad->SetInput(kOutputs, Output(kOutputs));
    while_grad->SetInput(kStepScopes, Output(kStepScopes));

    auto *grad_block = this->grad_block_[0];
Y
Yu Yang 已提交
241 242
    auto *fwd_block = grad_block->ForwardBlock();
    auto *parent_block = grad_block->ParentBlock();
243 244 245

    // Not all of IGs will be generated by inner gradient operators of while op.
    // Ignore IGs that is not generated by the inside block.
F
Update  
fengjiayi 已提交
246 247 248 249
    std::unordered_set<std::string> inner_op_outputs;
    for (const auto *op : grad_block->AllOps()) {
      for (auto &oname : op->OutputArgumentNames()) {
        inner_op_outputs.insert(oname);
250 251
      }
    }
F
Update  
fengjiayi 已提交
252
    auto igs = InputGrad(kX, /*do not drop empty gradient*/ false);
253
    for (auto &each_ig : igs) {
F
Update  
fengjiayi 已提交
254
      if (inner_op_outputs.find(each_ig) == inner_op_outputs.end()) {
255
        VLOG(8) << "Ignore " << each_ig;
256 257 258
        each_ig = framework::kEmptyVarName;
      }
    }
F
Update  
fengjiayi 已提交
259
    while_grad->SetOutput(framework::GradVarName(kX), igs);
Y
Yang Yang(Tony) 已提交
260 261 262 263

    // OG should be re-calculated by step blocks, since many outputs of while op
    // do not need to calculate gradients.
    std::unordered_set<std::string> block_ins;
F
fengjiayi 已提交
264 265 266 267 268 269 270
    block_ins.reserve(Input(kX).size() + Output(kOutputs).size());
    for (auto &p : Input(kX)) {
      block_ins.insert(p);
    }
    for (auto &o : Output(kOutputs)) {
      block_ins.insert(o);
    }
Y
Yu Yang 已提交
271
    std::unordered_set<std::string> output_grads;
F
Update  
fengjiayi 已提交
272 273 274 275
    for (const auto *op : grad_block->AllOps()) {
      for (auto &input_name : op->InputArgumentNames()) {
        // If the input of Op has been recorded or is generated by the forward
        // block, do not make it as input again.
Y
Yu Yang 已提交
276 277 278

        // The input is located in I/O or other op's outputs or the variable is
        // located in grad_block's parents
F
Update  
fengjiayi 已提交
279
        if (block_ins.find(input_name) != block_ins.end() ||
Y
Yu Yang 已提交
280 281
            (fwd_block->FindVarRecursive(input_name) != nullptr ||
             parent_block->FindVarRecursive(input_name) != nullptr)) {
Y
Yang Yang(Tony) 已提交
282 283
          continue;
        }
Y
Yu Yang 已提交
284
        output_grads.insert(input_name);
Y
Yang Yang(Tony) 已提交
285
      }
F
Update  
fengjiayi 已提交
286
      for (auto &output_name : op->OutputArgumentNames()) {
Y
Yang Yang(Tony) 已提交
287
        block_ins.insert(output_name);
Y
Yang Yang(Tony) 已提交
288 289
      }
    }
Y
Yang Yang(Tony) 已提交
290

Y
Yu Yang 已提交
291 292 293 294 295
    std::vector<std::string> output_grads_list;
    output_grads_list.resize(output_grads.size());
    std::copy(output_grads.begin(), output_grads.end(),
              output_grads_list.begin());
    while_grad->SetInput(framework::GradVarName(kOutputs), output_grads_list);
F
Update  
fengjiayi 已提交
296 297

    while_grad->SetAttrMap(this->Attrs());
A
Abhinav Arora 已提交
298
    while_grad->SetBlockAttr(kStepBlock, grad_block);
Y
Yang Yang(Tony) 已提交
299 300
    // record the original output gradient names, since the gradient name of
    // while operator could be renamed.
Y
Yu Yang 已提交
301
    while_grad->SetAttr("original_output_grad", output_grads_list);
Y
Yang Yang(Tony) 已提交
302

F
Update  
fengjiayi 已提交
303
    return std::unique_ptr<framework::OpDesc>(while_grad);
Y
Yang Yang(Tony) 已提交
304 305 306
  }
};

Y
Yang Yang(Tony) 已提交
307 308
class WhileGradOpVarTypeInference : public framework::VarTypeInference {
 public:
Y
Yu Yang 已提交
309 310
  void operator()(const framework::OpDesc &op_desc,
                  framework::BlockDesc *block) const override {
Y
Yang Yu 已提交
311 312
    auto p_names = op_desc.Input(kX);
    auto pg_names = op_desc.Output(framework::GradVarName(kX));
Y
Yang Yang(Tony) 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329

    for (size_t i = 0; i < p_names.size(); ++i) {
      auto &p_var = detail::Ref(block->FindVarRecursive(p_names[i]));
      auto *g_var = block->FindVarRecursive(pg_names[i]);
      if (g_var != nullptr) {  // Gradient could be @EMPTY@
        VLOG(5) << "Setting " << pg_names[i] << " following " << p_names[i]
                << " type: " << p_var.GetType();
        g_var->SetType(p_var.GetType());
        g_var->SetDataType(p_var.GetDataType());
      }
    }
  }
};

class WhileGradOpShapeInference : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *ctx) const override {
Y
Yang Yu 已提交
330 331
    ctx->HasInputs(kX);
    ctx->HasOutputs(framework::GradVarName(kX));
Y
Yang Yang(Tony) 已提交
332 333 334
    ctx->HasInputs(kOutputs);
    ctx->HasInputs(framework::GradVarName(kOutputs));

Y
Yang Yu 已提交
335 336 337
    auto p_names = ctx->Inputs(kX);
    auto pg_names = ctx->Outputs(kXGRAD);
    auto var_types = ctx->GetInputsVarType(kX);
Y
Yang Yang(Tony) 已提交
338 339 340 341 342 343
    std::vector<std::string> names_to_set;
    std::vector<framework::DDim> dims_to_set;
    for (size_t i = 0; i < p_names.size(); ++i) {
      if (pg_names[i] == framework::kEmptyVarName) {
        continue;
      }
Y
Yang Yu 已提交
344
      auto dims = ctx->GetInputsElementDim(kX, i);
345
      if (var_types[i] == framework::proto::VarType::LOD_TENSOR) {
Y
Yang Yang(Tony) 已提交
346
        names_to_set.push_back(pg_names[i]);
F
fengjiayi 已提交
347
        dims_to_set.push_back(dims);
348
      } else if (var_types[i] == framework::proto::VarType::LOD_TENSOR_ARRAY) {
Y
Yang Yang(Tony) 已提交
349 350
        // not sure how to set the dim of LOD_TENSOR_ARRAY
        names_to_set.push_back(pg_names[i]);
F
fengjiayi 已提交
351
        dims_to_set.push_back(dims);
Y
Yang Yang(Tony) 已提交
352 353 354 355 356 357
      }
    }
    ctx->SetDims(names_to_set, dims_to_set);
  }
};

Y
Yang Yang(Tony) 已提交
358 359 360 361 362 363
}  // namespace operators
}  // namespace paddle

REGISTER_OPERATOR(while, paddle::operators::WhileOp,
                  paddle::operators::WhileOpMaker,
                  paddle::operators::WhileGradOpDescMaker);
Y
Yang Yang(Tony) 已提交
364 365 366
REGISTER_OPERATOR(while_grad, paddle::operators::WhileGradOp,
                  paddle::operators::WhileGradOpShapeInference,
                  paddle::operators::WhileGradOpVarTypeInference);