engine.py 68.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import copy
16
import logging
17
import numbers
18 19
import os
import random
20 21
from collections import defaultdict

22 23
import numpy as np

24
import paddle
25
import paddle.distributed.auto_parallel.utils as auto_utils
26
import paddle.utils as utils
27
from paddle import static
28 29
from paddle.distributed import fleet
from paddle.fluid.dygraph.parallel import ParallelEnv
30
from paddle.fluid.executor import _to_name_str
31
from paddle.fluid.layers.utils import flatten
32 33 34
from paddle.framework import IrGraph
from paddle.framework import _current_expected_place as _get_device
from paddle.framework import core, in_dygraph_mode
35
from paddle.metric import Metric
36
from paddle.static import InputSpec, Operator, Variable, global_scope
37

38
from ..utils.log_utils import get_logger
Z
zhaoyingli 已提交
39
from .callbacks import config_callbacks
40
from .cluster import Cluster, get_default_cluster
41 42 43
from .converter import Converter
from .cost.estimate_cost import get_cost_from_engine
from .dist_context import DistributedContext, get_default_distributed_context
44 45
from .dist_loader import (
    DistributedDataLoader,
46
    DistributedDataLoaderFromGenerator,
47
)
48 49 50
from .dist_op import DistributedOperator
from .dist_saver import DistributedSaver
from .helper import ProgramHelper
51
from .interface import CollectionNames, get_collection
52 53 54 55
from .parallelizer_v2 import Parallelizer
from .planner_v2 import Planner
from .process_group import get_all_process_groups, new_process_group
from .strategy import Strategy
56

57 58

class Engine:
59
    """
60 61
    An Engine object can provide the full power of auto parallel to users.
    With the help of it, users can easily obtain the abilities of the
62 63 64 65 66 67 68
    distributed training and inference. It also support the dynamic graph and
    static graph at the same time.

    Args:
        model (paddle.nn.Layer, optional): The model is an instance of
            paddle.nn.Layer.
        loss (Loss|Callable|None, optional): The loss can be a `paddle.nn.Layer`
69 70
            instance or any callable function taken the predicted values and
            ground truth values as input. It can be None when there is no loss.
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
            Default: None.
        optimizer (Optimizer|None, optional): The optimizer need to be set in training
            and should be None in eval and predict mode. Default: None.
        metrics (Metric|list[Metric]|None, optional): If metrics is set, all
            metrics will be calculated and output in train/eval mode. Default: None.
        cluster (Cluster|None, optional): The cluster represents the topology information
            about the used physical devices. Default: None. (Unused for now)
        strategy (Strategy|None, optional): The strategy is used to configure the
        parallelization and optimization behaviors. Default: None.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.vision.transforms as T
87
            from paddle.distributed.fleet import auto
88 89 90 91 92 93 94 95 96 97
            from paddle.vision.datasets import MNIST

            transform = T.Compose([
                T.Transpose(),
                T.Normalize([127.5], [127.5])
            ])
            train_dataset = MNIST(mode='train', transform=transform)
            valid_dataset = MNIST(mode='test', transform=transform)

            model = paddle.vision.models.LeNet()
98
            loss = paddle.nn.CrossEntropyLoss()
99 100 101 102
            optimizer = paddle.optimizer.Adam(
                learning_rate=0.001, parameters=model.parameters())
            metrics = paddle.metric.Accuracy(topk=(1, 2))

103 104
            engine = auto.Engine(model, loss, optimizer, metrics)
            # fit
105 106 107
            engine.fit(train_dataset,
                       epochs=2,
                       batch_size=64)
108
            # evaluate
109 110 111 112 113 114 115
            engine.evaluate(valid_dataset,
                            batch_size=64)
            # predict
            engine.predict(valid_dataset,
                           batch_size=64)
            # save
            engine.save("./my_model")
116
            # load
117 118 119
            engine.load("./my_model")

    """
120

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    def __init__(
        self,
        model=None,
        loss=None,
        optimizer=None,
        metrics=None,
        cluster=None,
        strategy=None,
    ):

        if (
            model
            and not isinstance(model, paddle.nn.Layer)
            and not callable(model)
        ):
136 137 138 139
            raise TypeError(
                "'model must be sub classes of `paddle.nn.Layer` or any callable function."
            )
        self._model = model
140 141 142 143 144 145 146 147 148

        if (
            loss
            and not isinstance(loss, (paddle.nn.Layer, Variable))
            and not callable(loss)
        ):
            raise TypeError(
                "'loss' must be sub classes of `paddle.nn.Layer` or any callable function or a Variable."
            )
149 150 151
        self._loss = loss

        if optimizer and not isinstance(
152
            optimizer,
153
            (paddle.optimizer.Optimizer, paddle.static.Optimizer),
154
        ):
155 156
            raise TypeError(
                "'optimizer' must be object of class `paddle.optimizer.Optimizer`"
157
                " or `paddle.static.Optimizer`."
158
            )
159
        self._optimizer = auto_utils.validate_opt(optimizer)
160
        self._orig_optimizer = copy.deepcopy(self._optimizer)
161 162

        metrics = metrics or []
163
        for metric in auto_utils.to_list(metrics):
164 165 166 167 168 169
            if metric and not isinstance(metric, Metric):
                raise TypeError(
                    "{} is not sub class of Metric".format(
                        metric.__class__.__name__
                    )
                )
170
        self._metrics = auto_utils.to_list(metrics)
171 172 173 174 175 176 177 178 179 180 181 182 183

        if cluster and not isinstance(cluster, Cluster):
            raise TypeError(
                "'cluster' must be the object or class `paddle.distributed.auto_parallel.Cluster`"
            )
        self._cluster = cluster or get_default_cluster()

        if strategy and not isinstance(strategy, Strategy):
            raise TypeError(
                "'strategy' must be object of class `paddle.distributed.auto_parallel.Strategy`"
            )
        self._strategy = strategy or Strategy()

184
        self._logger = get_logger(logging.INFO)
185
        if os.getenv("POD_NAME"):
186 187
            self._logger.info(
                "Distribute training by paddle.distributed.launch"
188
            )
189
            fleet.init(is_collective=True)
190

191
        self._executor = None
192 193 194
        self._cur_rank = paddle.distributed.get_rank()
        self._nranks = paddle.distributed.get_world_size()
        self._saver = DistributedSaver()
195

196 197
        self._orig_main_prog = static.default_main_program()
        self._orig_startup_prog = static.default_startup_program()
198
        self._orig_dist_context = get_default_distributed_context()
199
        self._dist_contexts = {}
200 201
        self._fwd_main_progs = {}
        self._fwd_dist_contexts = {}
202 203
        self._serial_main_progs = {}
        self._serial_startup_progs = {}
204 205 206 207
        self._dist_main_progs = defaultdict(dict)  # dist main programs
        self._dist_startup_progs = defaultdict(dict)  # dist startup programs
        self._feed_vars = {}
        self._fetch_vars = {}
208
        self._planners = {}
209 210
        self._has_prepared = {"train": False, "eval": False, "predict": False}
        self._has_prepared_reader = {
211 212
            "train": False,
            "eval": False,
213
            "predict": False,
214
        }
215 216 217 218
        self._inputs_spec = []
        self._labels_spec = []
        self._inputs = []
        self._labels = []
219
        self._losses = []
220

221
        self._mode = None
222 223
        self._skip_build = False
        self._outside_dataloader = False
224
        self._planned_mode = None
225 226
        self._dygraph_mode = False
        self._tuning = self._strategy.tuning
227

Z
zhaoyingli 已提交
228 229
        self.history = None

230 231
        paddle.framework.set_flags({'FLAGS_new_executor_sequential_run': 1})

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
    def _prepare_data_spec(self, data, split, batch_size):
        inputs_spec = []
        labels_spec = []
        if isinstance(data, paddle.io.IterableDataset):
            if split is None:
                inputs, labels = next(iter(data))
            else:
                sample = next(iter(data))
                inputs = sample[:split]
                labels = sample[split:]
        elif isinstance(data, paddle.io.Dataset):
            if split is None:
                inputs, labels = data[0]
            else:
                sample = data[0]
                inputs = sample[:split]
                labels = sample[split:]
        else:
250
            raise TypeError(
251 252 253 254
                "Data should be a Dataset or IterableDatset, but received {}.".format(
                    type(data).__name__
                )
            )
255 256
        inputs = auto_utils.to_list(inputs)
        labels = auto_utils.to_list(labels)
257 258

        num_shards = self._strategy.dataset.num_shards
259

260 261 262 263 264 265 266 267 268 269 270 271 272 273
        def _adjust_item_spec(num_shards, spec):
            if num_shards > 1 and len(spec.shape) > 1:
                spec.shape[0] = spec.shape[0] * num_shards

        def _infer_item_spec(item, name, batch_size, specs):
            if isinstance(item, np.ndarray):
                spec = InputSpec.from_numpy(item, name)
                if batch_size is None:
                    _adjust_item_spec(num_shards, spec)
                    specs.append(spec)
                else:
                    specs.append(spec.batch(batch_size))
            elif isinstance(item, (Variable, core.VarBase, core.eager.Tensor)):
                spec = InputSpec.from_tensor(item, name)
274
                _adjust_item_spec(num_shards, spec)
275 276 277 278
                if batch_size is None:
                    specs.append(spec)
                else:
                    specs.append(spec.batch(batch_size))
279
            elif isinstance(item, numbers.Number):
280
                specs.append(InputSpec([batch_size], type(item), name))
281 282 283 284 285 286
            else:
                raise TypeError(
                    "The sample's dtype returned of dataset should be number, np.ndarray or Tensor, but got {}".format(
                        type(item).__name__
                    )
                )
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302

        if inputs is not None:
            for i, item in enumerate(inputs):
                assert item is not None, "Receive None input."
                name = "input" + str(i)
                _infer_item_spec(item, name, batch_size, inputs_spec)
        if labels is not None:
            for i, item in enumerate(labels):
                assert item is not None, "Receive None input."
                name = "label" + str(i)
                _infer_item_spec(item, name, batch_size, labels_spec)

        inputs_spec = self._validate_spec(inputs_spec)
        labels_spec = self._validate_spec(labels_spec)
        return inputs_spec, labels_spec

303
    def _prepare_data_tensor(self, inputs_spec, labels_spec, inputs, labels):
304
        if in_dygraph_mode() or self._dygraph_mode:
305 306
            raise ValueError("Only support static graph mode.")

307
        if inputs_spec:
308 309 310 311 312
            assert isinstance(
                inputs_spec, list
            ), "inputs should be list, but received {}".format(
                type(inputs_spec)
            )
313 314 315 316 317 318 319 320 321
            assert isinstance(
                inputs, list
            ), "inputs should be list, but received {}".format(type(inputs))
            assert len(inputs_spec) == len(
                inputs
            ), "the number of `inputs_spec` should be equal to `inputs`'s."
            for input_spec, input in zip(inputs_spec, inputs):
                if input_spec.shape != input.shape:
                    input.desc.set_shape(input_spec.shape)
322
        if labels_spec:
323 324 325 326 327
            assert isinstance(
                labels_spec, list
            ), "labels should be list, but received {}".format(
                type(labels_spec)
            )
328 329 330 331 332 333 334 335 336 337
            assert isinstance(
                labels, list
            ), "labels should be list, but received {}".format(type(labels))
            assert len(labels_spec) == len(
                labels
            ), "the number of `labels_spec` should be equal to `labels`'s."
            for label_spec, label in zip(labels_spec, labels):
                if label_spec.shape != label.shape:
                    label.desc.set_shape(label_spec.shape)

338 339 340 341 342 343 344 345 346
        return inputs, labels

    def _prepare_reader(self):
        dist_main_prog = self._dist_main_progs[self._mode][self._cur_rank]
        dist_context = self._dist_contexts[self._mode]
        dist_main_block = dist_main_prog.global_block()

        # NOTE: this list may be changed if Paddle changes the existing rules.
        related_reader_ops = [
347 348 349
            "create_py_reader",
            "create_double_buffer_reader",
            "read",
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
        ]
        # remove the first three ops if multiple run fit/evaluate/predict
        if dist_main_block.ops[0].type == 'create_py_reader':
            for i in range(len(related_reader_ops)):
                if dist_main_block.ops[0].type in related_reader_ops:
                    dist_main_block._remove_op(0, sync=False)
        dist_main_block._sync_with_cpp()
        # Step 1: find the reader ops
        reader_op_indices = []
        for idx, op in enumerate(dist_main_block.ops):
            if op.type in related_reader_ops:
                reader_op_indices.append(idx)
        # Step 2: insert the new reader ops to cpp
        new_reader_ops = []
        for idx in reversed(reader_op_indices):
            new_op_desc = dist_main_block.desc._prepend_op()
            new_op_desc.copy_from(dist_main_block.ops[idx].desc)
367 368 369
            new_op = Operator(
                dist_main_block, new_op_desc, type=new_op_desc.type()
            )
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
            new_reader_ops.append(new_op)
            dist_op = DistributedOperator(new_op)
            dist_context.add_dist_op_for_program(dist_op)
        # Step 3: insert the new reader ops to python
        for new_op in new_reader_ops:
            dist_main_block.ops.insert(0, new_op)
        for i in range(len(reader_op_indices)):
            reader_op_indices[i] += len(reader_op_indices)
        # Step 4: remove the old reader ops from python and cpp
        for idx in reversed(reader_op_indices):
            op = dist_main_block.ops.pop(idx)
            dist_main_block.desc._remove_op(idx, idx + 1)
        dist_main_block._sync_with_cpp()
        self._has_prepared_reader[self._mode] = True

    def _prepare_feed(self, data, user_feeds, mode):
        feeds = {}
        if data is not None:
            if isinstance(data, (list, tuple)):
                if len(data) == 1 and isinstance(data[0], dict):
                    for name, data in data[0].items():
                        feeds[name] = data
                else:
                    raise ValueError("Unsupported data {}".format(data))
            elif isinstance(data, dict):
                for name, data in data.items():
                    feeds[name] = data
            else:
                raise ValueError("Unsupported data {}".format(data))
399
        if user_feeds is not None:
400 401 402 403 404
            assert isinstance(
                user_feeds, dict
            ), "user_feeds must be a dict, but receive {}".format(
                type(user_feeds).__name__
            )
405 406
            for name, data in user_feeds.items():
                feeds[name] = data
407 408
        return feeds

409
    def _prepare_fetch(self, user_fetches, mode):
410
        if user_fetches is not None:
411 412 413 414 415
            assert isinstance(
                user_fetches, list
            ), "user_fetches must be a list, but receive {}".format(
                type(user_fetches).__name__
            )
416
        fetch_names = []
417
        fetch_indices = []
418

419 420
        def _process_fetch_group(group_name, var_list):
            group_indices = []
421
            for var in var_list:
422 423 424 425 426 427
                # Remove duplicate var_names
                if self._is_local_var(var):
                    var_name = _to_name_str(var)
                    if var_name not in fetch_names:
                        fetch_names.append(var_name)
                    group_indices.append(fetch_names.index(var_name))
428 429
            if not group_indices:
                fetch_names.append([])
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
            fetch_indices.append(group_indices)

        if mode != "predict":
            _process_fetch_group("loss", self._fetch_vars[mode]["loss"])
        if mode != "predict":
            metrics = self._fetch_vars[mode]["metrics"]
            for i, var_list in enumerate(metrics):
                _process_fetch_group("metrics_" + str(i), var_list)
        if mode == "predict":
            _process_fetch_group("outputs", self._fetch_vars[mode]["outputs"])
        user_fetches_collection = [
            item[1] for item in get_collection(CollectionNames.FETCHES)
        ]
        var_list = (user_fetches_collection or []) + (user_fetches or [])
        _process_fetch_group("fetches", var_list)
        return fetch_names, fetch_indices

447 448 449 450 451 452 453 454 455 456
    def _prepare_logger(
        self,
        outs,
        epoch=None,
        step=None,
        lr=None,
        fetch_names=None,
        fetch_indices=None,
        mode=None,
    ):
Z
zhaoyingli 已提交
457
        logs = {}
458
        if epoch is not None:
Z
zhaoyingli 已提交
459
            logs["epoch"] = epoch
460
        if step is not None:
Z
zhaoyingli 已提交
461
            logs["step"] = step + 1
462
        if lr is not None:
Z
zhaoyingli 已提交
463
            logs["lr"] = lr
464 465
        group_idx = 0
        if mode != "predict":
Z
zhaoyingli 已提交
466
            # logging loss
467
            loss_indices = fetch_indices[group_idx]
Z
zhaoyingli 已提交
468
            assert len(loss_indices) <= 1
469
            for idx in loss_indices:
Z
zhaoyingli 已提交
470
                logs["loss"] = outs[idx][0]
471
            group_idx += 1
Z
zhaoyingli 已提交
472
            # logging metrics
473 474 475 476 477 478 479 480 481 482
            metric_vars = self._fetch_vars[mode]["metrics"]
            if metric_vars:
                for metric in self._metrics:
                    metrics_indices = fetch_indices[group_idx]
                    metric_out = []
                    for idx in metrics_indices:
                        metric_out.append(outs[idx])
                    if metric_out:
                        metric.update(*metric_out)
                        results = metric.accumulate()
483
                        for i, res in enumerate(auto_utils.to_list(results)):
Z
zhaoyingli 已提交
484
                            logs[metric.name()[i]] = res
485
                    group_idx += 1
Z
zhaoyingli 已提交
486 487 488 489 490 491 492
        # logging outputs
        elif mode == "predict":
            outputs_indices = fetch_indices[group_idx]
            logs_out = {}
            for idx in outputs_indices:
                logs_out["out%d" % (idx)] = outs[idx]
            logs["outputs"] = logs_out
493 494
            group_idx += 1
        # logging user fetches
Z
zhaoyingli 已提交
495 496
        collect_fetches = get_collection(CollectionNames.FETCHES)
        logs_fetch = {}
497 498 499 500
        for name, var_name in collect_fetches:
            if var_name in fetch_names:
                idx = fetch_names.index(var_name)
                logs_fetch[name or var_name] = outs[idx]
Z
zhaoyingli 已提交
501 502
        logs["fetches"] = logs_fetch
        return logs
503

504 505 506 507 508 509 510 511 512 513 514
    def _prepare_program(self, mode):
        # Do the build process
        self._build(mode)
        # Do the planning process
        self._plan(mode)
        # Do the parallel process
        self._parallel(mode)
        # Init comm and startup program
        self._initialize(mode)
        self._has_prepared[mode] = True

515
    def _build(self, mode):
516
        if in_dygraph_mode() or self._dygraph_mode:
517
            paddle.disable_static()
518 519 520
            self._dygraph_mode = True
            self._logger.info("Building model with 'to_static' method.")

521
            self.program_helper = ProgramHelper(
522 523 524 525 526
                self._model,
                self._loss,
                self._metrics,
                self._inputs_spec,
                self._labels_spec,
527
            )
528
            # build forward main program
529 530
            with utils.unique_name.guard():
                self.program_helper.build_program(mode)
531

532 533 534
            self.concrete_program = self.program_helper.concrete_program
            serial_main_prog = self.program_helper.main_program
            serial_startup_prog = self.program_helper.startup_program
535

536 537
            self._inputs = self.program_helper.input_vars
            self._labels = self.program_helper.label_vars
538
            outputs = self.program_helper.output_vars
539
            self._losses = self.program_helper.loss_vars
540
            metrics = self.program_helper.metric_vars
541

542
            paddle.enable_static()
543
        else:
544
            # build program in static graph mode
545 546 547 548
            serial_main_prog = self._serial_main_progs.get(mode, None)
            if serial_main_prog is not None:
                return

549
            outputs = []
550
            metrics = []
551
            self._losses = []
552 553
            serial_main_prog = self._orig_main_prog.clone()
            serial_startup_prog = self._orig_startup_prog.clone()
554
            if not self._skip_build:
555 556 557
                with static.program_guard(
                    serial_main_prog, serial_startup_prog
                ), utils.unique_name.guard():
558 559 560 561 562 563 564
                    self._inputs = [
                        s._create_feed_layer() for s in self._inputs_spec
                    ]
                    self._labels = [
                        s._create_feed_layer() for s in self._labels_spec
                    ]

565
                    outputs = auto_utils.to_list(self._model(*self._inputs))
566

567
                    if mode != "predict" and self._loss:
568 569 570 571 572
                        assert isinstance(
                            self._loss, paddle.nn.Layer
                        ) or callable(
                            self._loss
                        ), "the type of `loss` of the Engine arguments should be sub classes of `paddle.nn.Layer` or any callable function."
573
                        self._losses = auto_utils.to_list(
574 575
                            self._loss(*(outputs + self._labels))
                        )
576

577
                    if mode != "predict" and (outputs or self._labels):
578 579
                        for metric in self._metrics:
                            metrics.append(
580
                                auto_utils.to_list(
581 582
                                    metric.compute(*(outputs + self._labels))
                                )
583
                            )
Z
zhaoyingli 已提交
584
            elif mode == "train":
585 586 587
                assert isinstance(
                    self._loss, Variable
                ), "the type of `loss` of the Engine arguments should be Variable."
588
                self._losses = auto_utils.to_list(self._loss)
589 590 591 592 593 594 595

        default_ctx = get_default_distributed_context()
        if not default_ctx.has_annotation:
            # We build the world process group because the data parallel
            # needs all ranks by default.
            new_process_group(list(range(self._nranks)))
            default_ctx.data_parallel = True
596 597 598 599 600 601
            self._inputs = [
                auto_utils.set_data_parallel(var) for var in self._inputs
            ]
            self._labels = [
                auto_utils.set_data_parallel(var) for var in self._labels
            ]
602

603
        feed_vars = {"inputs": self._inputs, "labels": self._labels}
604 605 606

        fetch_vars = {
            "outputs": flatten(outputs),
607
            "loss": self._losses,
608
            "metrics": metrics,
609 610
        }

611 612 613
        if mode != "train":
            serial_main_prog = serial_main_prog.clone(for_test=True)

614 615 616
        auto_utils.set_recompute_segments(
            self._model, self._losses, self._strategy, serial_main_prog
        )
617
        self._dist_contexts[mode] = DistributedContext(
618 619 620
            serial_main_prog,
            serial_startup_prog,
            self._optimizer,
621 622 623 624 625 626 627 628 629 630 631
            self._losses,
            feed_vars,
            fetch_vars,
            self._cluster,
            self._strategy,
        )
        self._fwd_dist_contexts[mode] = DistributedContext(
            serial_main_prog,
            serial_startup_prog,
            self._optimizer,
            self._losses,
632 633 634 635 636
            feed_vars,
            fetch_vars,
            self._cluster,
            self._strategy,
        )
637
        self._dist_contexts[mode].gradient_scale = self._strategy.gradient_scale
638
        self._fwd_main_progs[mode] = serial_main_prog.clone()
639

640 641 642
    def _optimization_tuning(self, mode, dataset, batch_size):
        if not self._tuning.enable:
            raise ValueError("Please set `tuning.enable=True`.")
643

644 645 646 647 648 649 650 651
        assert mode == "train"
        # Do the build process
        self._build(mode)
        # Do the planning process
        self._plan(mode)

        dataset.dp_world_size = self._dp_world_sizes
        dataset.dp_rank = self._dp_ranks
652 653

        from .tuner.optimization_tuner import OptimizationTuner
654 655 656 657 658 659 660 661 662

        self._optimization_tuner = OptimizationTuner(
            self._dist_contexts[mode],
            dataset,
            self._inputs_spec,
            self._labels_spec,
            batch_size=batch_size,
            rank=self._cur_rank,
        )
663 664 665

        self._optimization_tuner.tune()

666
        if self._tuning.run_after_tuning:
667 668
            # update the strategy
            self._dist_contexts[
669 670
                mode
            ]._strategy = self._optimization_tuner.get_best_config()
671

672 673 674 675 676 677
    def _plan(self, mode):
        if self._planned_mode is None:
            self._planned_mode = mode
        else:
            self._init_dist_context(mode)

678 679
        self._planners[mode] = Planner(mode, self._dist_contexts[mode])
        self._planners[mode].plan()
680

681 682 683 684
        # infer data parallel info
        inputs_var = self._dist_contexts[mode].serial_feed_vars["inputs"]
        labels_var = self._dist_contexts[mode].serial_feed_vars["labels"]
        block = self._dist_contexts[mode].serial_main_program.global_block()
685
        # TODO: check this feed_list
686 687 688 689 690
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in block.vars:
                feed_list.append(block.vars[var.name])

691 692
        self._dp_world_sizes = []
        self._dp_ranks = []
693
        for feed_var in feed_list:
694
            dp_world_size, dp_rank = auto_utils.get_input_split_info(
695
                self._cur_rank, feed_var, self._dist_contexts[mode]
696
            )
697 698
            self._dp_world_sizes.append(dp_world_size)
            self._dp_ranks.append(dp_rank)
699

700
    def _parallel(self, mode, all_ranks=False):
701 702 703
        # Parallelize program based on the planner's results
        # For now, the completer has to be passed to the planner,
        # because we may use it to complete the annotation of the backwarkward and update.
704 705 706
        parallelizer = Parallelizer(
            mode, self._planners[mode].completer, self._dist_contexts[mode]
        )
707 708 709 710
        if not all_ranks:
            parallelizer.parallel(self._cur_rank)
        else:
            parallelizer.parallel_all()
711 712

    def _init_dist_context(self, mode):
713
        # Init dist_context['mode'] with the first planned dist_context
714 715 716 717 718 719 720 721 722 723
        # to guarantee that train/eval/predict mode have same parallel strategy
        dist_context = self._dist_contexts[mode]
        origin_main_prog = dist_context._original_serial_main_program
        ref_mode = self._planned_mode
        ref_dist_context = self._dist_contexts[ref_mode]
        ref_origin_main_prog = ref_dist_context._original_serial_main_program
        ref_blocks = ref_origin_main_prog.blocks
        for ib, block in enumerate(origin_main_prog.blocks):
            for iop, op in enumerate(block.ops):
                ref_op = ref_blocks[ib].ops[iop]
724 725 726 727 728 729 730 731
                assert (
                    op.type == ref_op.type
                ), "'{}' mode op '{}' is different with '{}' op '{}'. ".format(
                    mode, op.type, ref_mode, ref_op.type
                )
                ref_op_dist_attr = (
                    ref_dist_context.get_op_dist_attr_for_program(ref_op)
                )
732 733 734
                dist_context.set_op_dist_attr_for_program(op, ref_op_dist_attr)

    def _initialize(self, mode):
735
        # Get the current content from the distributed context
736
        self._serial_main_progs[mode] = self._dist_contexts[
737 738
            mode
        ].serial_main_program
739
        self._serial_startup_progs[mode] = self._dist_contexts[
740 741
            mode
        ].serial_startup_program
742
        self._dist_main_progs[mode] = self._dist_contexts[
743 744
            mode
        ].dist_main_programs
745
        self._dist_startup_progs[mode] = self._dist_contexts[
746 747
            mode
        ].dist_startup_programs
748 749
        self._feed_vars[mode] = self._dist_contexts[mode].serial_feed_vars
        self._fetch_vars[mode] = self._dist_contexts[mode].serial_fetch_vars
Z
zhaoyingli 已提交
750
        self._optimizer = self._dist_contexts[mode]._serial_optimizer
751

752 753 754 755
        if self._nranks > 1:
            # Traverse different rank programs and traverse each op of them,
            # instantiate communication by process_mapping.
            all_process_groups = get_all_process_groups()
C
caozhou 已提交
756
            cur_rank = self._cur_rank
757 758 759
            # NOTE: After the implementation of the unified dynamic and static communication group
            # initialization mode in the future, the initialization logic of full mode
            # will be removed because port occupation error may occur.
760
            if self._strategy.auto_mode == "full":
761 762 763
                auto_utils.initialize_pg_in_full_mode(
                    all_process_groups, cur_rank
                )
764 765
            else:
                for process_group in all_process_groups:
C
caozhou 已提交
766
                    if cur_rank not in process_group.ranks:
767 768
                        continue
                    process_group.instantiate()
769

770
        self._place = _get_device()
771 772
        if isinstance(self._place, paddle.framework.CUDAPlace):
            self._place = paddle.framework.CUDAPlace(ParallelEnv().dev_id)
773

774 775 776 777 778
        if self._strategy.seed:
            paddle.seed(self._strategy.seed + self._dp_ranks[0])
            np.random.seed(self._strategy.seed + self._dp_ranks[0])
            random.seed(self._strategy.seed + self._dp_ranks[0])

779
        if self._dygraph_mode:
780 781
            dist_context = self._dist_contexts[mode]
            dist_main_program = self._dist_main_progs[mode][self._cur_rank]
782 783 784
            self.program_helper.init(
                dist_main_program, self._place, dist_context
            )
785

786
        if self._executor is None:
787
            self._executor = paddle.static.Executor(self._place)
788 789 790 791 792 793 794 795 796 797
            uninitialized = []
            dist_startup_prog = self._dist_startup_progs[mode][self._cur_rank]
            for var in dist_startup_prog.list_vars():
                scope_var = global_scope().find_var(var.name)
                if scope_var and scope_var.get_tensor()._is_initialized():
                    continue
                uninitialized.append(var)
            if uninitialized:
                prune_startup_prog = dist_startup_prog._prune(uninitialized)
                self._executor.run(prune_startup_prog)
798

799
            if hasattr(self, "_state_dict") and hasattr(self, "_dist_attr"):
800 801 802
                self._set_state_dict(
                    mode, self._strict, self._state_dict, self._dist_attr
                )
803 804

        if self._strategy.reinit:
Z
zhaoyingli 已提交
805
            self._logger.info("NOTE: parameters will be re-initialized.")
806 807 808
            dist_startup_prog = self._dist_startup_progs[mode][self._cur_rank]
            self._executor.run(dist_startup_prog)

809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
    def fit(
        self,
        train_data,
        train_sample_split=None,
        batch_size=1,
        epochs=1,
        steps_per_epoch=None,
        log_freq=10,
        save_dir=None,
        save_freq=1,
        valid_data=None,
        valid_sample_split=None,
        valid_freq=1,
        valid_steps=None,
        collate_fn=None,
        callbacks=None,
        verbose=2,
    ):
827 828 829 830 831 832 833 834
        """
        Trains the model for a fixed number of epochs. If `valid_data` is set,
        evaluation will be done at the end of each epoch.

        Args:
            train_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            train_sample_split (int, optional): Each sample of the train dataset is assumed
                to be a (input, label) pair by default and has two items. If each sample has
835
                more than two items, train_sample_split specifies how to split these items into
836
                input and label. The items before it are input and the left are label. Default: None.
837
            batch_size (int, optional): The batch size of train_data and valid_data if provided.
838 839 840
                The user's data will be used directly without batching if set to None. Default: 1.
            epochs (int, optional): The number of epochs to train the model. Default: 1.
            steps_per_epoch (int, optional): The total number of steps (batches of samples)
841
                is executed in one epoch before stating the next one. If None, it is equal to
842 843
                the number samples in your dataset divided by the batch size. Default: None.
            valid_data (Dataset, optional): An instance of paddle paddle.io.Dataset used for
844
                evaluation at the end of epoch. No evaluation will be done if set to None.
845
                Default: None. (Unsupported for now)
846
            valid_freq (int, optional): Only relevant if valid_data is provided. This specifies
847 848
                how many training epochs before a new evaluation is performed. Default: 1.
            valid_sample_split (int, optional): Only relevant if valid_data is provided.
849 850
                Each sample of the valid dataset is assumed to be a (input, label) pair
                by default and has two items. If each sample has more than two items,
851 852 853
                valid_sample_split specifies how to split these items into input and label.
                The items before it are input and the left are label. Default: None.
            valid_steps (int, optional): Only relevant if valid_data is provided.
854 855
                It is the total number of steps (batches of samples) to draw before
                stopping validation at the end of every epoch. If None, validation will run until the
856 857 858 859
                `valid_data` dataset is exhausted. The validation will start from the
                beginning of the dataset at each epoch. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
860
                0. Default None.
861 862 863 864 865 866 867 868 869 870 871 872
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during training. Default: None. (Unused for now)

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
873
                from paddle.distributed.fleet import auto
874 875 876 877 878 879 880 881 882
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
883
                loss = paddle.nn.CrossEntropyLoss()
884 885 886 887
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

888
                engine = auto.Engine(model, loss, optimizer, metrics)
889 890 891 892
                engine.fit(train_dataset,
                           epochs=2,
                           batch_size=64)
        """
893 894
        self._mode = 'train'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
895 896
            train_data, train_sample_split, batch_size
        )
897 898
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
Z
zhaoyingli 已提交
899
        else:
900
            self._switch_mode(self._mode)
Z
zhaoyingli 已提交
901

902 903 904 905 906 907 908
        train_dataloader = self._prepare_dataloader_from_generator(
            dataset=train_data,
            capacity=70,
            iterable=False,
            batch_size=batch_size,
            epochs=epochs,
            steps_per_epoch=steps_per_epoch,
909 910
            collate_fn=collate_fn,
        )
Z
zhaoyingli 已提交
911

912
        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)
Z
zhaoyingli 已提交
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938

        cbks = config_callbacks(
            callbacks,
            engine=self,
            batch_size=batch_size,
            epochs=epochs,
            steps=train_dataloader._steps,
            log_freq=log_freq,
            save_freq=save_freq,
            save_dir=save_dir,
            verbose=verbose,
            metrics=self._metrics_name(),
            acc_step=self._k_steps,
        )

        cbks.on_begin('train')
        for epoch in range(epochs):
            logs = {}
            cbks.on_epoch_begin(epoch)
            for step, _ in enumerate(train_dataloader):
                cbks.on_batch_begin('train', step, logs)
                try:
                    outs = self._executor.run(
                        self.main_program,
                        fetch_list=fetch_names,
                        use_program_cache=self._strategy.use_cache,
939 940
                        return_numpy=self._strategy.return_numpy,
                    )
Z
zhaoyingli 已提交
941 942
                except core.EOFException:
                    break
943
                lr = auto_utils.get_lr(self._optimizer)
944 945 946 947 948 949 950 951 952
                logs = self._prepare_logger(
                    outs,
                    epoch,
                    step,
                    lr,
                    fetch_names,
                    fetch_indices,
                    self._mode,
                )
Z
zhaoyingli 已提交
953 954 955
                cbks.on_batch_end('train', step, logs)

            if valid_data and (epoch + 1) % valid_freq == 0:
956 957 958 959 960 961 962 963 964 965
                val_logs = self.evaluate(
                    valid_data,
                    valid_sample_split,
                    batch_size,
                    valid_steps,
                    log_freq,
                    collate_fn,
                    callbacks,
                    verbose,
                )
Z
zhaoyingli 已提交
966
                val_logs = {
967
                    "val_" + name: val for name, val in val_logs.items()
Z
zhaoyingli 已提交
968 969 970 971 972 973 974 975 976 977
                }
                logs.update(val_logs)
                self._switch_mode("train")
            else:
                self._reset_metrics()

            cbks.on_epoch_end(epoch, logs)

        cbks.on_end('train', logs)
        return self.history
978

979 980 981 982 983 984 985 986 987 988 989
    def evaluate(
        self,
        valid_data,
        valid_sample_split=None,
        batch_size=1,
        steps=None,
        log_freq=10,
        collate_fn=None,
        callbacks=None,
        verbose=2,
    ):
990 991 992 993
        """
        Evaluate the loss and metrics of the model on evaluation data.

        Args:
994 995
            valid_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            valid_sample_split (int, optional): Each sample of the eval dataset is assumed
996
                to be a (input, label) pair by default and has two items. If each sample has
997
                more than two items, valid_sample_split specifies how to split these items into
998
                input and label. The items before it are input and the left are label. Default: None.
999
            batch_size (int, optional): The batch size of valid_data. The user's data will
1000
                be used directly without batching if set to None. Default: 1.
1001 1002
            steps (int, optional): It is the total number of steps (batches of samples) to draw before
                stopping evaluation. If None, evaluation will run until the `valid_data` dataset is exhausted.
1003 1004 1005 1006 1007
                The evaluation will start from the beginning of the dataset in each run. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
                0. Default None.
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
1008
                during evaluating. Default: None. (Unused for now)
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
1019
                from paddle.distributed.fleet import auto
1020 1021 1022 1023 1024 1025 1026 1027 1028
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                valid_dataset = MNIST(mode='test', transform=transform)

                model = paddle.vision.models.LeNet()
1029
                loss = paddle.nn.CrossEntropyLoss()
1030 1031
                metrics = paddle.metric.Accuracy(topk=(1, 2))

1032
                engine = auto.Engine(model, loss, metrics=metrics)
1033 1034 1035
                engine.evaluate(valid_dataset, batch_size=64)

        """
1036 1037
        self._mode = 'eval'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1038 1039
            valid_data, valid_sample_split, batch_size
        )
1040 1041
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
Z
zhaoyingli 已提交
1042
        else:
1043
            self._switch_mode(self._mode)
Z
zhaoyingli 已提交
1044

1045 1046 1047 1048 1049 1050
        valid_dataloader = self._prepare_dataloader_from_generator(
            dataset=valid_data,
            capacity=70,
            iterable=False,
            batch_size=batch_size,
            steps_per_epoch=steps,
1051 1052
            collate_fn=collate_fn,
        )
Z
zhaoyingli 已提交
1053

1054
        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)
1055

Z
zhaoyingli 已提交
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
        cbks = config_callbacks(
            callbacks,
            engine=self,
            batch_size=batch_size,
            log_freq=log_freq,
            verbose=verbose,
            metrics=self._metrics_name(),
        )

        eval_steps = valid_dataloader._steps
1066 1067 1068
        cbks.on_begin(
            'eval', {'steps': eval_steps, 'metrics': self._metrics_name()}
        )
Z
zhaoyingli 已提交
1069
        logs = {}
1070
        for step, _ in enumerate(valid_dataloader):
Z
zhaoyingli 已提交
1071
            cbks.on_batch_begin('eval', step, logs)
1072
            try:
1073 1074
                outs = self._executor.run(
                    self.main_program,
1075
                    fetch_list=fetch_names,
1076
                    use_program_cache=self._strategy.use_cache,
1077 1078
                    return_numpy=self._strategy.return_numpy,
                )
1079
            except core.EOFException:
1080
                break
1081 1082 1083
            logs = self._prepare_logger(
                outs, None, step, None, fetch_names, fetch_indices, self._mode
            )
Z
zhaoyingli 已提交
1084 1085
            cbks.on_batch_end('eval', step, logs)
        cbks.on_end('eval', logs)
1086
        self._reset_metrics()
Z
zhaoyingli 已提交
1087
        return logs
1088

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
    def predict(
        self,
        test_data,
        test_sample_split=None,
        batch_size=1,
        steps=None,
        collate_fn=None,
        callbacks=None,
        verbose=2,
    ):
1099 1100 1101 1102 1103 1104 1105
        """
        Compute the output predictions on testing data.

        Args:
            test_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            test_sample_split (int, optional): Each sample of the test dataset is assumed
                to be a (input, label) pair by default and has two items. If each sample has
1106
                more than two items, test_sample_split specifies how to split these items into
1107 1108 1109
                input and label. The items before it are input and the left are label. Default: None.
            batch_size (int, optional): The batch size of test_data. The user's data will
                be used directly without batching if set to None. Default: 1.
1110 1111
            steps (int, optional): It is the total number of steps (batches of samples) to draw before
                stopping predict. If None, predict will run until the `test_data` dataset is exhausted.
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
                The predict will start from the beginning of the dataset in each run. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
                0. Default None.
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during testing. Default: None. (Unused for now)

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
1128
                from paddle.distributed.fleet import auto
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                valid_dataset = MNIST(mode='test', transform=transform)

                model = paddle.vision.models.LeNet()

1139
                engine = auto.Engine(model)
1140 1141
                engine.predict(valid_dataset, batch_size=64)
        """
1142 1143
        self._mode = 'predict'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1144 1145
            test_data, test_sample_split, batch_size
        )
1146 1147
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
Z
zhaoyingli 已提交
1148
        else:
1149
            self._switch_mode(self._mode)
Z
zhaoyingli 已提交
1150

1151 1152 1153 1154 1155 1156
        test_dataloader = self._prepare_dataloader_from_generator(
            dataset=test_data,
            capacity=70,
            iterable=False,
            batch_size=batch_size,
            steps_per_epoch=steps,
1157 1158
            collate_fn=collate_fn,
        )
Z
zhaoyingli 已提交
1159

1160
        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)
1161

Z
zhaoyingli 已提交
1162 1163 1164 1165 1166
        outputs = []
        cbks = config_callbacks(callbacks, engine=self, verbose=verbose)
        test_steps = test_dataloader._steps
        cbks.on_begin('predict', {'steps': test_steps})
        logs = {}
1167
        for step, _ in enumerate(test_dataloader):
Z
zhaoyingli 已提交
1168
            cbks.on_batch_begin('predict', step, logs)
1169
            try:
1170 1171
                outs = self._executor.run(
                    self.main_program,
1172
                    fetch_list=fetch_names,
1173
                    use_program_cache=self._strategy.use_cache,
1174 1175
                    return_numpy=self._strategy.return_numpy,
                )
1176
            except core.EOFException:
1177
                break
1178 1179 1180
            logs = self._prepare_logger(
                outs, None, step, None, fetch_names, fetch_indices, self._mode
            )
Z
zhaoyingli 已提交
1181 1182 1183 1184 1185
            cbks.on_batch_end('predict', step, logs)
            outputs.append(list(logs["outputs"].values()))
        cbks.on_end('predict', logs)
        return outputs

1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
    def dataloader(
        self,
        dataset,
        batch_size=1,
        shuffle=False,
        drop_last=False,
        collate_fn=None,
        num_workers=0,
        use_buffer_reader=True,
        use_shared_memory=True,
        timeout=0,
        worker_init_fn=None,
        epochs=1,
        steps_per_epoch=None,
        sample_split=1,
        mode=None,
    ):
1203 1204 1205
        if mode is not None:
            self.to_mode(mode)
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1206 1207
            dataset, sample_split, batch_size
        )
1208 1209
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
1210
        else:
1211
            self._switch_mode(self._mode)
1212

1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
        dataloader = self._prepare_dataloader(
            dataset,
            return_list=False,
            batch_size=batch_size,
            shuffle=shuffle,
            drop_last=drop_last,
            collate_fn=collate_fn,
            num_workers=num_workers,
            use_buffer_reader=use_buffer_reader,
            use_shared_memory=use_shared_memory,
            timeout=timeout,
            worker_init_fn=worker_init_fn,
            epochs=epochs,
1226 1227
            steps_per_epoch=steps_per_epoch,
        )
1228 1229
        return dataloader

1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
    def dataloader_from_generator(
        self,
        dataset,
        capacity=70,
        use_double_buffer=True,
        iterable=True,
        use_multiprocess=False,
        drop_last=True,
        batch_size=1,
        epochs=1,
        steps_per_epoch=None,
        collate_fn=None,
        sample_split=1,
        mode=None,
    ):
1245 1246 1247
        if mode is not None:
            self.to_mode(mode)
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1248 1249
            dataset, sample_split, batch_size
        )
1250 1251 1252 1253
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
        else:
            self._switch_mode(self._mode)
1254

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
        dataloader = self._prepare_dataloader_from_generator(
            dataset=dataset,
            capacity=capacity,
            use_double_buffer=use_double_buffer,
            iterable=iterable,
            return_list=False,
            use_multiprocess=use_multiprocess,
            drop_last=drop_last,
            batch_size=batch_size,
            epochs=epochs,
            steps_per_epoch=steps_per_epoch,
1266 1267
            collate_fn=collate_fn,
        )
1268 1269
        return dataloader

1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
    def prepare(
        self,
        inputs_spec=None,
        labels_spec=None,
        inputs=None,
        labels=None,
        main_program=None,
        startup_program=None,
        mode=None,
    ):
1280 1281
        if mode is not None:
            self.to_mode(mode)
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297

        if not self._mode:
            raise ValueError(
                "Please set mode to be prepared with `prepare(mode=...)`"
            )

        if self._has_prepared[self._mode]:
            return

        inputs_spec = self._validate_spec(inputs_spec)
        labels_spec = self._validate_spec(labels_spec)
        inputs = self._validate_vars(inputs)
        labels = self._validate_vars(labels)

        self._orig_main_prog = main_program
        self._orig_startup_prog = startup_program
1298 1299
        if inputs or labels:
            self._skip_build = True
1300 1301
            inputs, labels = self._prepare_data_tensor(
                inputs_spec, labels_spec, inputs, labels
1302
            )
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
            if self._orig_main_prog is None:
                self._orig_main_prog = static.default_main_program()
            if self._orig_startup_prog is None:
                self._orig_startup_prog = static.default_startup_program()
        elif inputs_spec or labels_spec:
            self._outside_dataloader = True
            if self._orig_main_prog is None:
                self._orig_main_prog = static.default_main_program()
            if self._orig_startup_prog is None:
                self._orig_startup_prog = static.default_startup_program()
        else:
1314 1315 1316
            assert (
                self._inputs_spec and self._labels_spec
            ), "Please call the dataloader(...) before calling prepare(...)"
1317

1318 1319 1320 1321 1322 1323 1324
        self._inputs_spec, self._labels_spec = inputs_spec, labels_spec
        self._inputs, self._labels = inputs, labels
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
        else:
            self._switch_mode(self._mode)

1325
    def run(self, data=None, feed=None, fetch_list=None, mode=None):
1326 1327 1328 1329
        if mode is not None:
            self.to_mode(mode)
        feed_dict = self._prepare_feed(data, feed, self._mode)
        fetch_names, fetch_indices = self._prepare_fetch(fetch_list, self._mode)
1330 1331 1332 1333
        if (
            self._outside_dataloader
            and not self._has_prepared_reader[self._mode]
        ):
1334
            self._prepare_reader()
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
        outs = self._executor.run(
            self.main_program,
            feed=feed_dict,
            fetch_list=fetch_names,
            use_program_cache=self._strategy.use_cache,
            return_numpy=self._strategy.return_numpy,
        )
        logs = self._prepare_logger(
            outs, None, None, None, fetch_names, fetch_indices, self._mode
        )
Z
zhaoyingli 已提交
1345
        return logs
1346

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
    def _prepare_dataloader(
        self,
        dataset,
        return_list=True,
        batch_size=1,
        shuffle=False,
        drop_last=False,
        collate_fn=None,
        num_workers=0,
        use_buffer_reader=True,
        use_shared_memory=True,
        timeout=0,
        worker_init_fn=None,
        epochs=1,
        steps_per_epoch=None,
    ):
1363

1364
        if self._strategy.gradient_merge and batch_size is not None:
1365 1366 1367 1368 1369
            assert (
                batch_size % self._k_steps == 0
            ), "Requires batch_size:[{}] to be divisible by k_steps:[{}].".format(
                batch_size, self._k_steps
            )
1370
            batch_size //= self._k_steps
1371

1372 1373
        dist_main_prog = self._dist_main_progs[self._mode][self._cur_rank]
        dist_startup_prog = self._dist_startup_progs[self._mode][self._cur_rank]
1374
        dist_main_block = dist_main_prog.global_block()
1375

1376 1377 1378 1379
        # NOTE: Get feed_list, then insert dataloader op with sharded var shape.
        # Cause predict_program does not contain labels var,
        # then we will add labels var from serial_program to dist_program,
        # that maintains the length of feed_list equal to the length of dataset's values.
1380 1381
        inputs_var = self._feed_vars[self._mode]["inputs"]
        labels_var = self._feed_vars[self._mode]["labels"]
1382 1383 1384 1385
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in dist_main_block.vars:
                feed_list.append(dist_main_block.vars[var.name])
1386 1387 1388 1389
            else:
                copy_var = dist_main_block._clone_variable(var, var.persistable)
                copy_var.desc.set_original_id(var.desc.original_id())
                feed_list.append(copy_var)
1390 1391

        # insert read op at the end of program
1392
        places = paddle.static.cuda_places()
1393
        with static.program_guard(dist_main_prog, dist_startup_prog):
1394
            dataloader = DistributedDataLoader(
1395
                dataset,
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
                feed_list=feed_list,
                places=places,
                return_list=return_list,
                batch_size=batch_size,
                shuffle=shuffle,
                drop_last=drop_last,
                collate_fn=collate_fn,
                num_workers=num_workers,
                use_buffer_reader=use_buffer_reader,
                use_shared_memory=use_shared_memory,
                timeout=timeout,
                worker_init_fn=worker_init_fn,
                epochs=epochs,
                steps_per_epoch=steps_per_epoch,
                split_data=self._strategy.split_data,
1411
                data_parallel_world_size=self._dp_world_sizes,
1412 1413
                data_parallel_rank=self._dp_ranks,
            )
1414

1415 1416
        return dataloader

1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
    def _prepare_dataloader_from_generator(
        self,
        dataset,
        capacity=None,
        use_double_buffer=True,
        iterable=True,
        return_list=False,
        use_multiprocess=False,
        drop_last=True,
        batch_size=1,
        epochs=1,
        steps_per_epoch=None,
        collate_fn=None,
    ):
1431 1432

        if self._strategy.gradient_merge and batch_size is not None:
1433 1434 1435 1436 1437
            assert (
                batch_size % self._k_steps == 0
            ), "Requires batch_size:[{}] to be divisible by k_steps:[{}].".format(
                batch_size, self._k_steps
            )
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
            batch_size //= self._k_steps

        dist_main_prog = self._dist_main_progs[self._mode][self._cur_rank]
        dist_startup_prog = self._dist_startup_progs[self._mode][self._cur_rank]
        dist_main_block = dist_main_prog.global_block()

        # NOTE: Get feed_list, then insert dataloader op with sharded var shape.
        # Cause predict_program does not contain labels var,
        # then we will add labels var from serial_program to dist_program,
        # that maintains the length of feed_list equal to the length of dataset's values.
        inputs_var = self._feed_vars[self._mode]["inputs"]
        labels_var = self._feed_vars[self._mode]["labels"]
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in dist_main_block.vars:
                feed_list.append(dist_main_block.vars[var.name])
            else:
                copy_var = dist_main_block._clone_variable(var, var.persistable)
                copy_var.desc.set_original_id(var.desc.original_id())
                feed_list.append(copy_var)

        places = paddle.static.cuda_places()
        with static.program_guard(dist_main_prog, dist_startup_prog):
            dataloader = DistributedDataLoaderFromGenerator(
                dataset=dataset,
                feed_list=feed_list,
                capacity=capacity,
                use_double_buffer=use_double_buffer,
                iterable=iterable,
                return_list=return_list,
                use_multiprocess=use_multiprocess,
                drop_last=drop_last,
                places=places,
                batch_size=batch_size,
                epochs=epochs,
                steps_per_epoch=steps_per_epoch,
                collate_fn=collate_fn,
                split_data=self._strategy.split_data,
                data_parallel_world_size=self._dp_world_sizes,
1477 1478
                data_parallel_rank=self._dp_ranks,
            )
1479 1480 1481 1482 1483 1484
        self._prepare_reader()
        return dataloader

    def _tune(self, tune_data, tune_sample_split=None, batch_size=1):
        self._mode = 'train'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1485 1486
            tune_data, tune_sample_split, batch_size
        )
1487 1488
        self._optimization_tuning(self._mode, tune_data, batch_size)

1489
    def _validate_spec(self, specs):
1490
        specs = auto_utils.to_list(specs)
1491
        self._k_steps = self._strategy.gradient_merge.k_steps
1492 1493
        if specs is not None:
            for i, spec in enumerate(specs):
1494 1495 1496 1497
                if not isinstance(spec, InputSpec):
                    raise TypeError(
                        "'spec' must be object of class `paddle.static.InputSpec`."
                    )
1498 1499
                if spec.name is None:
                    raise ValueError(
1500 1501 1502 1503
                        "Requires Input[{}].name != None, but receive `None` with {}.".format(
                            i, spec
                        )
                    )
1504
                if self._k_steps > 1:
1505
                    shape = list(spec.shape)
1506 1507 1508 1509 1510
                    assert (
                        shape[0] % self._k_steps == 0
                    ), "Requires batch_size[{}] to be divisible by k_steps[{}].".format(
                        spec.shape[0], self._k_steps
                    )
1511
                    shape[0] //= self._k_steps
1512
                    spec.shape = shape
1513 1514 1515
        return specs or []

    def _validate_vars(self, vars):
1516
        vars = auto_utils.to_list(vars)
1517 1518 1519 1520 1521
        if vars is not None:
            for i, var in enumerate(vars):
                if not isinstance(var, Variable):
                    raise TypeError("'var' must be a `Variable`.")
        return vars or []
1522

1523 1524 1525 1526
    def _is_local_var(self, var):
        var_name = _to_name_str(var)
        return var_name in self.main_program.global_block().vars

1527 1528 1529 1530
    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

Z
zhaoyingli 已提交
1531 1532 1533
    def _metrics_name(self):
        metrics_name = ['loss'] if self._loss else []
        for m in self._metrics:
1534
            metrics_name.extend(auto_utils.to_list(m.name()))
Z
zhaoyingli 已提交
1535 1536
        return metrics_name

1537
    def _switch_mode(self, mode):
1538 1539 1540
        assert (
            mode in self._dist_main_progs
        ), "{} model is not ready, please call `prepare()` first.".format(mode)
1541
        self.to_mode(mode)
Z
zhaoyingli 已提交
1542
        self._optimizer = self._dist_contexts[mode]._serial_optimizer
1543

1544
    def to_mode(self, mode):
1545 1546 1547 1548 1549
        assert mode in [
            "train",
            "eval",
            "predict",
        ], "mode {} should be one of ['train', 'eval', 'predict']".format(mode)
1550 1551
        self._mode = mode

1552 1553 1554
    def _set_state_dict(self, mode, strict, state_dict, dist_attr):
        program = self._dist_main_progs[mode][self._cur_rank]
        dist_context = self._dist_contexts[mode]
1555
        cur_dist_attr = auto_utils.get_dist_attr(program, dist_context)
1556 1557 1558 1559 1560
        converter = Converter(state_dict, dist_attr, cur_dist_attr)
        state_dict = converter.convert(strict=strict)
        program.set_state_dict(state_dict)

    def save(self, path, training=True):
1561 1562
        """
        Saves the model, parameters, optimizer state to path.
1563 1564 1565 1566 1567 1568 1569
        If `training` is set to False, only inference model will be saved.

        Args:
            path (str): The file prefix to save model. The format
                is 'dirname/file_prefix' or 'file_prefix'. if empty str.
                A exception will be raised.
            training (bool, optional): Whether to save for training. If not, save
1570
                for inference only. If `training` is set to True, the optimizer state
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
                will be saved. Otherwise, only the model and parameters are saved.
                This function will silently overwrite existing file at the target
                location. Default: True.

        Returns:
            None

        Examples:

            .. code-block:: python
                import paddle
                import paddle.vision.transforms as T
1583
                from paddle.distributed.fleet import auto
1584 1585 1586 1587 1588 1589 1590 1591 1592
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
1593
                loss = paddle.nn.CrossEntropyLoss()
1594 1595 1596 1597
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

1598
                engine = auto.Engine(model, loss, optimizer, metrics)
1599 1600 1601 1602
                engine.fit(train_dataset,
                           epochs=1,
                           batch_size=64)
                engine.save("./my_model")
1603

1604
        """
1605
        if training:
Z
zhaoyingli 已提交
1606 1607 1608 1609
            assert self._mode in self._serial_main_progs
            serial_program = self._serial_main_progs[self._mode]
            dist_main_prog = self._dist_main_progs[self._mode][self._cur_rank]
            dist_context = self._dist_contexts[self._mode]
1610 1611 1612 1613 1614 1615
            self._saver.save(
                path,
                serial_program=serial_program,
                dist_main_program=dist_main_prog,
                dist_context=dist_context,
            )
1616
        else:
Z
zhaoyingli 已提交
1617 1618 1619 1620
            assert "predict" in self._dist_main_progs
            feed_vars = self._feed_vars["predict"]['inputs']
            fetch_vars = self._fetch_vars["predict"]['outputs']
            dist_main_prog = self._dist_main_progs["predict"][self._cur_rank]
1621
            if self._strategy.qat.enable and self._strategy.qat.onnx_format:
1622
                from paddle.static.quantization import QuantWeightPass
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634

                self._logger.info("export quantized model.")
                self._logger.info(
                    "convert config {}".format(self._strategy.qat.to_dict())
                )
                test_graph = IrGraph(
                    core.Graph(dist_main_prog.desc), for_test=True
                )
                quant_weight_pass = QuantWeightPass(global_scope(), self._place)
                for sub_graph in test_graph.all_sub_graphs():
                    quant_weight_pass.apply(sub_graph)
                dist_main_prog = test_graph.to_program()
1635 1636 1637 1638 1639 1640 1641
            self._saver.save_inference_model(
                path,
                feed_vars,
                fetch_vars,
                self._executor,
                program=dist_main_prog,
            )
1642

1643 1644 1645 1646 1647 1648
    def load(self, path, strict=True, load_optimizer=True):
        """
        Load the stored model, parameters and optimizer states.

        Args:
            path (str): The prefix of files storing the model states and
1649
                optimizer states.
1650 1651 1652
            strict (bool, optional): Whether to skip the loading of mismatch
                parameter or raise an error when mismatch happens (not found
                the parameter in file storing model states of or receives a
1653
                mismatch shape). Default: True.
1654
            load_optimizer (bool, optional): If True, the stored optimizer
1655
                states is restored. Otherwise, the optimizer states is initialized
1656
                from scratch. Default: True.
1657 1658 1659 1660 1661 1662 1663 1664 1665

        Returns:
            None

        Examples:

            .. code-block:: python
                import paddle
                import paddle.vision.transforms as T
1666
                from paddle.distributed.fleet import auto
1667 1668 1669 1670 1671 1672 1673 1674 1675
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
1676
                loss = paddle.nn.CrossEntropyLoss()
1677 1678 1679 1680
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

1681
                engine = auto.Engine(model, loss, optimizer, metrics)
1682 1683 1684 1685 1686
                engine.fit(train_dataset,
                           epochs=1,
                           batch_size=64)
                engine.save("./my_model")
                engine.load("./my_model")
1687

1688 1689 1690
        """
        self._strict = strict
        self._state_dict, self._dist_attr = self._saver.load(
1691 1692
            path, load_optimizer
        )
1693
        return self._state_dict, self._dist_attr
1694

1695
    def cost(self, inputs_spec=None, labels_spec=None, mode=None):
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
        """
        Get and Print cost, including memory of every rank,
        max memory among all ranks, and the global cost of one step based on
        communication cost(computation cost is 0 by default).
        In the future, the flops information of every rank and global cost including
        computation cost will be added.

        Args:
            inputs_spec(InputSpec): The specification of inputs. Default: None.
            labels_spec(InputSpec): The specification of labels. Default: None.
1706
            mode (str): The engine mode must be in ["train", "predict", "eval"]. Default: None.
1707 1708 1709 1710 1711 1712 1713

        Returns:
            Return the global execution time (ms) and max memory (B).

        """
        # Check parallel mode
        if self._strategy.auto_mode == "full":
1714
            self._logger.info(
1715 1716 1717 1718 1719
                "The cost will be calcudated in the search process when the auto mode is full."
            )
            return

        # Check mode
1720 1721 1722
        mode = mode if mode is not None else self._mode
        assert mode is not None, "Please set mode."
        if mode not in self._has_prepared:
1723 1724
            raise ValueError(
                "The mode {} is not in accepted modes {}".format(
1725
                    mode, list(self._has_prepared.keys())
1726 1727
                )
            )
1728 1729
        self.to_mode(mode)

1730 1731 1732
        if inputs_spec is not None and not self._has_prepared[mode]:
            self._inputs_spec = self._validate_spec(inputs_spec)
            self._labels_spec = self._validate_spec(labels_spec)
1733 1734 1735
            self._build(mode)
            self._plan(mode)
        else:
1736
            if in_dygraph_mode() or self._dygraph_mode:
1737
                raise ValueError(
1738 1739 1740 1741 1742
                    "Please call `prepare()` or `fit()` or  `evaluate()` or  `predict()` before calling `cost()`."
                )
            else:
                self._logger.info(
                    "The program whose cost to be estimated must be static default program. Otherwise, please call `prepare()`before calling `cost()`."
1743
                )
1744 1745 1746 1747 1748 1749 1750 1751
                program = paddle.static.default_main_program()
                if (
                    not program.global_block().ops
                    or not program.global_block().ops
                ) and not self._has_prepared[mode]:
                    raise ValueError(
                        "Please call `prepare()` or `fit()` or  `evaluate()` or  `predict()` before calling `cost()`."
                    )
1752 1753 1754 1755 1756 1757

        # Estimate the exec cost and max memory
        global_cost, max_memory = get_cost_from_engine(self, mode)

        return global_cost.time, max_memory

1758 1759
    @property
    def main_program(self):
1760
        return self._dist_main_progs[self._mode][self._cur_rank]
1761 1762 1763

    @property
    def startup_program(self):
1764
        return self._dist_startup_progs[self._mode][self._cur_rank]
1765 1766 1767

    @property
    def dist_context(self):
1768
        return self._dist_contexts[self._mode]
1769 1770 1771

    @property
    def serial_main_program(self):
1772
        return self._serial_main_progs[self._mode]
1773 1774 1775

    @property
    def serial_startup_program(self):
1776
        return self._serial_startup_progs[self._mode]
1777 1778 1779

    @property
    def fetch_vars(self):
1780
        return self._fetch_vars[self._mode]
1781 1782 1783

    @property
    def inputs(self):
1784
        return self._inputs
1785 1786 1787

    @property
    def labels(self):
1788
        return self._labels