resnet_unit_op.cc 19.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/float16.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

// Shape of bitmask
static framework::DDim GetBitmaskDims(std::vector<int> out_shape) {
  int c = out_shape.back();
  int64_t nhw = std::accumulate(out_shape.begin(), out_shape.end(), 1,
                                std::multiplies<int>()) /
                c;
  int32_t c_int32_elems = ((c + 63) & ~63) / 32;
  int32_t nhw_int32_elems = ((nhw + 31) & ~31);
  std::vector<int> bitmask_shape = {nhw_int32_elems, c_int32_elems, 1};
  return framework::make_ddim(bitmask_shape);
}

class ResNetUnitOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const {
    // Check input
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ResNetUnitOp");
    OP_INOUT_CHECK(ctx->HasInput("FilterX"), "Input", "FilterX",
                   "ResNetUnitOp");
    OP_INOUT_CHECK(ctx->HasInput("ScaleX"), "Input", "ScaleX", "ResNetUnitOp");
    OP_INOUT_CHECK(ctx->HasInput("BiasX"), "Input", "BiasX", "ResNetUnitOp");
    OP_INOUT_CHECK(ctx->HasInput("MeanX"), "Input", "MeanX", "ResNetUnitOp");
    OP_INOUT_CHECK(ctx->HasInput("VarX"), "Input", "VarX", "ResNetUnitOp");

    bool fuse_add = ctx->Attrs().Get<bool>("fuse_add");
    bool has_shortcut = ctx->Attrs().Get<bool>("has_shortcut");
    if (fuse_add || has_shortcut) {
      OP_INOUT_CHECK(ctx->HasInput("Z"), "Input", "Z", "ResNetUnitOp");
    }
    if (has_shortcut) {
      OP_INOUT_CHECK(ctx->HasInput("FilterZ"), "Input", "FilterZ",
                     "ResNetUnitOp");
      OP_INOUT_CHECK(ctx->HasInput("ScaleZ"), "Input", "ScaleZ",
                     "ResNetUnitOp");
      OP_INOUT_CHECK(ctx->HasInput("BiasZ"), "Input", "BiasZ", "ResNetUnitOp");
      OP_INOUT_CHECK(ctx->HasInput("MeanZ"), "Input", "MeanZ", "ResNetUnitOp");
      OP_INOUT_CHECK(ctx->HasInput("VarZ"), "Input", "VarZ", "ResNetUnitOp");
    }

    // Check output
    OP_INOUT_CHECK(ctx->HasOutput("Y"), "Output", "Y", "ResNetUnitOp");
    OP_INOUT_CHECK(ctx->HasOutput("BitMask"), "Output", "BitMask",
                   "ResNetUnitOp");
    OP_INOUT_CHECK(ctx->HasOutput("ConvX"), "Output", "ConvX", "ResNetUnitOp");
    OP_INOUT_CHECK(ctx->HasOutput("SavedMeanX"), "Output", "SavedMeanX",
                   "ResNetUnitOp");
    OP_INOUT_CHECK(ctx->HasOutput("SavedInvstdX"), "Output", "SavedInvstdX",
                   "ResNetUnitOp");
    OP_INOUT_CHECK(ctx->HasOutput("RunningMeanX"), "Output", "RunningMeanX",
                   "ResNetUnitOp");
    OP_INOUT_CHECK(ctx->HasOutput("RunningVarX"), "Output", "RunningVarX",
                   "ResNetUnitOp");
    if (has_shortcut) {
      OP_INOUT_CHECK(ctx->HasOutput("ConvZ"), "Output", "ConvZ",
                     "ResNetUnitOp");
      OP_INOUT_CHECK(ctx->HasOutput("SavedMeanZ"), "Output", "SavedMeanZ",
                     "ResNetUnitOp");
      OP_INOUT_CHECK(ctx->HasOutput("SavedInvstdZ"), "Output", "SavedInvstdZ",
                     "ResNetUnitOp");
      OP_INOUT_CHECK(ctx->HasOutput("RunningMeanZ"), "Output", "RunningMeanZ",
                     "ResNetUnitOp");
      OP_INOUT_CHECK(ctx->HasOutput("RunningVarZ"), "Output", "RunningVarZ",
                     "ResNetUnitOp");
    }

    // make sure Mean/RunningMean and Var/RunningVar share memory
    PADDLE_ENFORCE_EQ(
        ctx->Inputs("MeanX")[0], ctx->Outputs("RunningMeanX")[0],
        platform::errors::InvalidArgument(
            "MeanX and RunningMeanX should share the same memory"));
    PADDLE_ENFORCE_EQ(ctx->Inputs("VarX")[0], ctx->Outputs("RunningVarX")[0],
                      platform::errors::InvalidArgument(
                          "VarX and RunningVarX should share the same memory"));
    if (has_shortcut) {
      PADDLE_ENFORCE_EQ(
          ctx->Inputs("MeanZ")[0], ctx->Outputs("RunningMeanZ")[0],
          platform::errors::InvalidArgument(
              "MeanZ and RunningMeanZ should share the same memory"));
      PADDLE_ENFORCE_EQ(
          ctx->Inputs("VarZ")[0], ctx->Outputs("RunningVarZ")[0],
          platform::errors::InvalidArgument(
              "VarZ and RunningVarZ should share the same memory"));
    }

    // Check dims of inputs
    const auto x_dims = ctx->GetInputDim("X");
    const auto w_dims = ctx->GetInputDim("FilterX");
W
wuhuanzhou 已提交
112 113 114 115 116 117
    std::vector<int64_t> bn_param_shape =
        framework::vectorize(ctx->GetInputDim("ScaleX"));
    if (1 == bn_param_shape.size()) {
      bn_param_shape = {1, 1, 1, bn_param_shape[0]};
    }
    framework::DDim bn_param_dims = framework::make_ddim(bn_param_shape);
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
    PADDLE_ENFORCE_EQ(x_dims.size(), 4, platform::errors::InvalidArgument(
                                            "The dimensions of input "
                                            "must equal to 4."
                                            "But received: the shape of input "
                                            "= [%s], the dimension of input = "
                                            "[%d]",
                                            x_dims, x_dims.size()));
    PADDLE_ENFORCE_EQ(w_dims.size(), 4,
                      platform::errors::InvalidArgument(
                          "The dimensions of filter "
                          "must equal to 4."
                          "But received: the shape of filter "
                          "= [%s], the dimension of filter = [%d] ",
                          w_dims, w_dims.size()));
    PADDLE_ENFORCE_EQ(bn_param_dims.size(), 4,
                      platform::errors::InvalidArgument(
                          "The dimensions of bn param "
                          "must equal to 4."
                          "But received: the shape of bn param "
                          "= [%s], the dimension of bn param = [%d] ",
                          bn_param_dims, bn_param_dims.size()));
    auto data_format = ctx->Attrs().Get<std::string>("data_format");
    PADDLE_ENFORCE_EQ(
        data_format, "NHWC",
        platform::errors::InvalidArgument("The data format must equal to NHWC. "
                                          "But received: the data format "
                                          "= [%s]",
                                          data_format));
    // Calculate the dims of outputs
    int batch = x_dims[0];
    int output_channel = w_dims[0];
    int filter_size = w_dims[2];
    int stride = ctx->Attrs().Get<int>("stride");
    int padding = ctx->Attrs().Get<int>("padding");
    int out_h = (x_dims[1] + padding * 2 - filter_size) / stride + 1;
    int out_w = (x_dims[2] + padding * 2 - filter_size) / stride + 1;
    std::vector<int> out_shape = {batch, out_h, out_w, output_channel};

    auto y_dims = framework::make_ddim(out_shape);
    auto bitmask_dims = GetBitmaskDims(out_shape);
    // Set dims of outputs
    ctx->SetOutputDim("Y", y_dims);
    ctx->SetOutputDim("BitMask", bitmask_dims);
    ctx->SetOutputDim("ConvX", y_dims);
    ctx->SetOutputDim("SavedMeanX", bn_param_dims);
    ctx->SetOutputDim("SavedInvstdX", bn_param_dims);
    ctx->SetOutputDim("RunningMeanX", bn_param_dims);
    ctx->SetOutputDim("RunningVarX", bn_param_dims);
    if (has_shortcut) {
      ctx->SetOutputDim("ConvZ", y_dims);
      ctx->SetOutputDim("SavedMeanZ", bn_param_dims);
      ctx->SetOutputDim("SavedInvstdZ", bn_param_dims);
      ctx->SetOutputDim("RunningMeanZ", bn_param_dims);
      ctx->SetOutputDim("RunningVarZ", bn_param_dims);
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const {
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
    // By default, the type of the scale, bias, mean,
    // and var tensors should be float when input tensor's dtype is float16.
    auto bn_param_type = framework::proto::VarType::FP32;

183 184
    PADDLE_ENFORCE_EQ(bn_param_type, framework::TransToProtoVarType(
                                         ctx.Input<Tensor>("ScaleX")->dtype()),
185 186
                      platform::errors::InvalidArgument(
                          "Scale input should be of float type"));
187 188
    PADDLE_ENFORCE_EQ(bn_param_type, framework::TransToProtoVarType(
                                         ctx.Input<Tensor>("BiasX")->dtype()),
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
                      platform::errors::InvalidArgument(
                          "Bias input should be of float type"));
    framework::LibraryType library = framework::LibraryType::kPlain;
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                   library);
  }
};

class ResNetUnitOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() {
    AddInput("X", "The input 1 tensor");
    AddInput("FilterX", "Filter tensor of input 1");
    AddInput("ScaleX", "Scale tensor of input 1 used in batchnorm");
    AddInput("BiasX", "Bias tensor of input 1 used in batchnorm");
    AddInput("MeanX", "Mean tensor of input 1 used in batchnorm");
    AddInput("VarX", "Variance tensor of input 1 used in batchnorm");
    AddInput("Z", "The input 2 tensor").AsDispensable();
    AddInput("FilterZ", "Filter tensor of input 2").AsDispensable();
    AddInput("ScaleZ", "Scale tensor of input 2").AsDispensable();
    AddInput("BiasZ", "Bias tensor of input 2").AsDispensable();
    AddInput("MeanZ", "Mean tensor of input 2").AsDispensable();
    AddInput("VarZ", "Variance tensor of input 2").AsDispensable();
    AddOutput("Y", "The result of the resnet unit");
    AddOutput("BitMask", "The bitmask generated after relu");
    AddOutput("ConvX", "The output of input 1 after conv");
    AddOutput("SavedMeanX", "Mean of input 1 in the current batch");
    AddOutput("SavedInvstdX", "Invstd of input 1 in the current batch");
    AddOutput("RunningMeanX", "Shared memory with MeanX");
    AddOutput("RunningVarX", "Shared memory with VarX");
    AddOutput("ConvZ", "The output of input 2 after conv").AsDispensable();
    AddOutput("SavedMeanZ", "Mean of input 1 in the current batch")
        .AsDispensable();
    AddOutput("SavedInvstdZ", "Invstd of input 1 in the current batch")
        .AsDispensable();
    AddOutput("RunningMeanZ", "Shared memory with MeanZ").AsDispensable();
    AddOutput("RunningVarZ", "Shared memory with VarZ").AsDispensable();
    AddAttr<int>("stride", "").SetDefault(1);
    AddAttr<int>("stride_z", "").SetDefault(1);
    AddAttr<int>("padding", "").SetDefault(0);
    AddAttr<int>("dilation", "").SetDefault(1);
    AddAttr<int>("group", "").SetDefault(1);
    AddAttr<float>("momentum", "").SetDefault(0.9);
    AddAttr<float>("epsilon", "").SetDefault(1e-5);
    AddAttr<std::string>("data_format", "").SetDefault("NHWC");
    AddAttr<bool>("fuse_add", "").SetDefault(false);
    AddAttr<bool>("has_shortcut", "").SetDefault(false);
    AddAttr<bool>("use_global_stats", "").SetDefault(false);
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
Z
Zhang Zheng 已提交
242
    AddAttr<bool>("use_addto", "").SetDefault(false);
243 244 245
    AddAttr<std::string>("act_type", "The activation type to be fused.")
        .SetDefault("relu");
    AddComment(R"DOC(
Z
Zhang Zheng 已提交
246
Fusion op of the basic unit of resnet block. 
247 248

The implementation is based on the latest fusion op interface in cuDNN v8.0.
Z
Zhang Zheng 已提交
249
For more details: 
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnFusedOps_t

)DOC");
  }
};

class ResNetUnitGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const {
    // check input
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ResNetUnitGradOp");
    OP_INOUT_CHECK(ctx->HasInput("FilterX"), "Input", "FilterX",
                   "ResNetUnitGradOp");
    OP_INOUT_CHECK(ctx->HasInput("ConvX"), "Input", "ConvX",
                   "ResNetUnitGradOp");
    OP_INOUT_CHECK(ctx->HasInput("ScaleX"), "Input", "ScaleX",
                   "ResNetUnitGradOp");
    OP_INOUT_CHECK(ctx->HasInput("BiasX"), "Input", "BiasX",
                   "ResNetUnitGradOp");
    OP_INOUT_CHECK(ctx->HasInput("SavedMeanX"), "Input", "SavedMeanX",
                   "ResNetUnitGradOp");
    OP_INOUT_CHECK(ctx->HasInput("SavedInvstdX"), "Input", "SavedInvstdX",
                   "ResNetUnitGradOp");

    bool fuse_add = ctx->Attrs().Get<bool>("fuse_add");
    bool has_shortcut = ctx->Attrs().Get<bool>("has_shortcut");
    if (fuse_add || has_shortcut) {
      OP_INOUT_CHECK(ctx->HasInput("Z"), "Input", "Z", "ResNetUnitGradOp");
    }
    if (has_shortcut) {
      OP_INOUT_CHECK(ctx->HasInput("FilterZ"), "Input", "FilterZ",
                     "ResNetUnitGradOp");
      OP_INOUT_CHECK(ctx->HasInput("ConvZ"), "Input", "ConvZ",
                     "ResNetUnitGradOp");
      OP_INOUT_CHECK(ctx->HasInput("ScaleZ"), "Input", "ScaleZ",
                     "ResNetUnitGradOp");
      OP_INOUT_CHECK(ctx->HasInput("BiasZ"), "Input", "BiasZ",
                     "ResNetUnitGradOp");
      OP_INOUT_CHECK(ctx->HasInput("SavedMeanZ"), "Input", "SavedMeanZ",
                     "ResNetUnitGradOp");
      OP_INOUT_CHECK(ctx->HasInput("SavedInvstdZ"), "Input", "SavedInvstdZ",
                     "ResNetUnitGradOp");
    }
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "ResNetUnitGradOp");
    OP_INOUT_CHECK(ctx->HasInput("BitMask"), "Input", "BitMask",
                   "ResNetUnitGradOp");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Y")), "Input",
                   framework::GradVarName("Y"), "ResNetUnitGradOp");

    // check output
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output",
                   framework::GradVarName("X"), "ResNetUnitGradOp");
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("FilterX")), "Output",
                   framework::GradVarName("FilterX"), "ResNetUnitGradOp");
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("ScaleX")), "Output",
                   framework::GradVarName("ScaleX"), "ResNetUnitGradOp");
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("BiasX")), "Output",
                   framework::GradVarName("BiasX"), "ResNetUnitGradOp");
    if (fuse_add) {
      OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("Z")), "Output",
                     framework::GradVarName("Z"), "ResNetUnitGradOp");
    }
    if (has_shortcut) {
      OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("FilterZ")),
                     "Output", framework::GradVarName("FilterZ"),
                     "ResNetUnitGradOp");
      OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("ScaleZ")), "Output",
                     framework::GradVarName("ScaleZ"), "ResNetUnitGradOp");
      OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("BiasZ")), "Output",
                     framework::GradVarName("BiasZ"), "ResNetUnitGradOp");
    }
    const auto x_dims = ctx->GetInputDim("X");
    const auto filter_x_dims = ctx->GetInputDim("FilterX");
    const auto param_dims = ctx->GetInputDim("ScaleX");
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    ctx->SetOutputDim(framework::GradVarName("FilterX"), filter_x_dims);
    ctx->SetOutputDim(framework::GradVarName("ScaleX"), param_dims);
    ctx->SetOutputDim(framework::GradVarName("BiasX"), param_dims);
    if (fuse_add || has_shortcut) {
      const auto z_dims = ctx->GetInputDim("Z");
      ctx->SetOutputDim(framework::GradVarName("Z"), z_dims);
    }
    if (has_shortcut) {
      const auto filter_z_dims = ctx->GetInputDim("FilterZ");
      ctx->SetOutputDim(framework::GradVarName("FilterZ"), filter_z_dims);
      ctx->SetOutputDim(framework::GradVarName("ScaleZ"), param_dims);
      ctx->SetOutputDim(framework::GradVarName("BiasZ"), param_dims);
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const {
    PADDLE_ENFORCE_NOT_NULL(
        ctx.InputVar(framework::GradVarName("Y")),
        platform::errors::NotFound(
            "Can not find Y@GRAD in the execution context."));

    framework::LibraryType library = framework::LibraryType::kPlain;
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;

    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(),
        layout, library);
  }
};

template <typename T>
class ResNetUnitGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("resnet_unit_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput("FilterX", this->Input("FilterX"));
    op->SetInput("ConvX", this->Output("ConvX"));
    op->SetInput("ScaleX", this->Input("ScaleX"));
    op->SetInput("BiasX", this->Input("BiasX"));
    op->SetInput("SavedMeanX", this->Output("SavedMeanX"));
    op->SetInput("SavedInvstdX", this->Output("SavedInvstdX"));
    op->SetInput("Z", this->Input("Z"));
    op->SetInput("FilterZ", this->Input("FilterZ"));
    op->SetInput("ConvZ", this->Output("ConvZ"));
    op->SetInput("ScaleZ", this->Input("ScaleZ"));
    op->SetInput("BiasZ", this->Input("BiasZ"));
    op->SetInput("SavedMeanZ", this->Output("SavedMeanZ"));
    op->SetInput("SavedInvstdZ", this->Output("SavedInvstdZ"));
    op->SetInput("Y", this->Output("Y"));
    op->SetInput("BitMask", this->Output("BitMask"));
    op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));

    op->SetAttrMap(this->Attrs());

    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("FilterX"),
                  this->InputGrad("FilterX"));
    op->SetOutput(framework::GradVarName("ScaleX"), this->InputGrad("ScaleX"));
    op->SetOutput(framework::GradVarName("BiasX"), this->InputGrad("BiasX"));
    op->SetOutput(framework::GradVarName("Z"), this->InputGrad("Z"));
    op->SetOutput(framework::GradVarName("FilterZ"),
                  this->InputGrad("FilterZ"));
    op->SetOutput(framework::GradVarName("ScaleZ"), this->InputGrad("ScaleZ"));
    op->SetOutput(framework::GradVarName("BiasZ"), this->InputGrad("BiasZ"));
  }
};

class ResNetUnitOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
      const override {
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Y"}};
    return m;
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(resnet_unit, ops::ResNetUnitOp, ops::ResNetUnitOpMaker,
                  ops::ResNetUnitOpInferVarType,
                  ops::ResNetUnitGradOpMaker<paddle::framework::OpDesc>,
                  ops::ResNetUnitGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(resnet_unit_grad, ops::ResNetUnitGradOp);