batch_norm_op.cu 57.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <algorithm>
Q
Qiao Longfei 已提交
16
#include <cfloat>
17 18
#include <string>
#include <vector>
19
#ifdef __NVCC__
20
#include "cub/cub.cuh"
21 22 23 24 25
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif
S
Siddharth Goyal 已提交
26
#include "paddle/fluid/framework/data_layout.h"
27
#include "paddle/fluid/operators/batch_norm_op.h"
Y
Yi Wang 已提交
28
#include "paddle/fluid/operators/math/math_function.h"
29
#include "paddle/fluid/operators/norm_utils.cu.h"
K
Kexin Zhao 已提交
30
#include "paddle/fluid/platform/float16.h"
Q
Qiao Longfei 已提交
31

32
DECLARE_bool(cudnn_batchnorm_spatial_persistent);
W
Wu Yi 已提交
33

Q
Qiao Longfei 已提交
34 35 36 37
namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
Q
QI JUN 已提交
38
using DataLayout = framework::DataLayout;
Q
Qiao Longfei 已提交
39 40
template <typename T>
using CudnnDataType = platform::CudnnDataType<T>;
K
Kexin Zhao 已提交
41
template <typename T>
K
update  
Kexin Zhao 已提交
42
using BatchNormParamType = typename CudnnDataType<T>::BatchNormParamType;
Q
Qiao Longfei 已提交
43

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
template <typename T, framework::DataLayout layout>
static __global__ void BNForwardInference(
    const T *x, const BatchNormParamType<T> *mean,
    const BatchNormParamType<T> *variance, const BatchNormParamType<T> *scale,
    const BatchNormParamType<T> *bias, const int C, const int N, const int HxW,
    const double epsilon, T *y) {
  int gid = blockIdx.x * blockDim.x + threadIdx.x;
  int stride = blockDim.x * gridDim.x;
  int num = N * C * HxW;
  for (int i = gid; i < num; i += stride) {
    const int c = layout == framework::DataLayout::kNCHW ? i / HxW % C : i % C;
    BatchNormParamType<T> x_sub_mean =
        static_cast<BatchNormParamType<T>>(x[i]) - mean[c];
    BatchNormParamType<T> inv_var = 1 / sqrt(variance[c] + epsilon);
    y[i] = static_cast<T>(scale[c] * x_sub_mean * inv_var + bias[c]);
  }
}

template <typename T, int BlockDim, framework::DataLayout layout>
static __global__ LAUNCH_BOUNDS(BlockDim) void BNForwardTraining(
    const T *x, const BatchNormParamType<T> *scale,
    const BatchNormParamType<T> *bias, const int C, const int N, const int HxW,
    const double epsilon, double exponentialAverageFactor, T *y,
    BatchNormParamType<T> *mean, BatchNormParamType<T> *variance,
    BatchNormParamType<T> *save_mean,
    BatchNormParamType<T> *save_inv_variance) {
  int outer_size = C;
  int inner_size = N * HxW;
  typedef cub::BlockReduce<BatchNormParamType<T>, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage mean_storage;
  __shared__ typename BlockReduce::TempStorage variance_storeage;
  __shared__ BatchNormParamType<T> mean_val;
  __shared__ BatchNormParamType<T> variance_val;
  __shared__ BatchNormParamType<T> inv_var_val;

  for (int i = blockIdx.x; i < outer_size; i += gridDim.x) {
    BatchNormParamType<T> x_sum = static_cast<BatchNormParamType<T>>(0);
    BatchNormParamType<T> x_square_sum = static_cast<BatchNormParamType<T>>(0);

    for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
      const int index = layout == framework::DataLayout::kNCHW
                            ? (j / HxW * C + i) * HxW + j % HxW
                            : j * outer_size + i;
      BatchNormParamType<T> x_i = static_cast<BatchNormParamType<T>>(x[index]);
      x_sum += x_i;
      x_square_sum += x_i * x_i;
    }
    x_sum = BlockReduce(mean_storage).Reduce(x_sum, cub::Sum());
    x_square_sum =
        BlockReduce(variance_storeage).Reduce(x_square_sum, cub::Sum());
    if (threadIdx.x == 0) {
      mean_val = x_sum / inner_size;
      variance_val = x_square_sum / inner_size - mean_val * mean_val;
      inv_var_val = 1 / sqrt(variance_val + epsilon);

      if (save_mean && save_inv_variance) {
        save_mean[i] = mean_val;
        save_inv_variance[i] = inv_var_val;
      }
      mean[i] = (1 - exponentialAverageFactor) * mean_val +
                exponentialAverageFactor * mean[i];
      variance[i] = (1 - exponentialAverageFactor) * variance_val +
                    exponentialAverageFactor * variance[i];
    }
    __syncthreads();

    for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
      const int index = layout == framework::DataLayout::kNCHW
                            ? (j / HxW * C + i) * HxW + j % HxW
                            : j * outer_size + i;
      BatchNormParamType<T> x_sub_mean =
          static_cast<BatchNormParamType<T>>(x[index]) - mean_val;
      y[index] = scale[i] * x_sub_mean * inv_var_val + bias[i];
    }
  }
}

Q
Qiao Longfei 已提交
121
template <typename T>
Q
QI JUN 已提交
122 123
class BatchNormKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
Q
Qiao Longfei 已提交
124 125
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
K
Kaipeng Deng 已提交
126 127 128
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        platform::errors::InvalidArgument("It must use CUDAPlace."));
Q
Qiao Longfei 已提交
129
    double epsilon = static_cast<double>(ctx.Attr<float>("epsilon"));
130
    float momentum = ctx.Attr<float>("momentum");
Q
Qiao Longfei 已提交
131
    const bool is_test = ctx.Attr<bool>("is_test");
132
    const bool use_global_stats = ctx.Attr<bool>("use_global_stats");
133
    const bool trainable_stats = ctx.Attr<bool>("trainable_statistics");
Q
QI JUN 已提交
134 135 136
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
137

138 139
    bool test_mode = is_test && (!trainable_stats);

Q
Qiao Longfei 已提交
140 141 142 143
    // Get the size for each dimension.
    // NCHW [batch_size, in_channels, in_height, in_width]
    const auto *x = ctx.Input<Tensor>("X");
    const auto &x_dims = x->dims();
C
ceci3 已提交
144 145 146 147 148 149
    PADDLE_ENFORCE_EQ(
        x_dims.size() >= 2 && x_dims.size() <= 5, true,
        platform::errors::InvalidArgument(
            "The size of input's dimensions should be between 2 and 5"
            "But received: the size of input's dimensions is [%d]",
            x_dims.size()));
Q
Qiao Longfei 已提交
150

151 152 153
    auto *y = ctx.Output<Tensor>("Y");
    y->mutable_data<T>(ctx.GetPlace());

154 155 156 157
    int N, C, H, W, D;
    ExtractNCWHD(x_dims, data_layout, &N, &C, &H, &W, &D);

    auto dtype = platform::CudnnDataType<T>::type;
158 159

#ifdef PADDLE_WITH_HIP
160 161 162 163 164 165
    auto compute_format = data_layout == DataLayout::kNHWC ? DataLayout::kNHWC
                                                           : DataLayout::kNCHW;

// TODO(wangran16): wait for MIOpen to improve the performance of BN
// HIP do not support compute format of NHWC
// auto compute_format = DataLayout::kNCHW;
166
#else
167
    const bool fast_nhwc_batch_norm =
168
        test_mode ||
169 170 171 172 173 174
        (dtype == CUDNN_DATA_HALF && FLAGS_cudnn_batchnorm_spatial_persistent);

    auto compute_format =
        fast_nhwc_batch_norm && data_layout == DataLayout::kNHWC
            ? DataLayout::kNHWC
            : DataLayout::kNCHW;
175
#endif
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

    Tensor transformed_x(x->type());
    Tensor transformed_y(y->type());
    if (data_layout == DataLayout::kNHWC &&
        compute_format == DataLayout::kNCHW && x_dims.size() > 2) {
      VLOG(3) << "Transform input tensor from NHWC to NCHW.";
      ResizeToChannelFirst<platform::CUDADeviceContext, T>(ctx, x,
                                                           &transformed_x);
      TransToChannelFirst<platform::CUDADeviceContext, T>(ctx, x,
                                                          &transformed_x);
      ResizeToChannelFirst<platform::CUDADeviceContext, T>(ctx, y,
                                                           &transformed_y);
    } else {
      transformed_x.ShareDataWith(*x);
      transformed_y.ShareDataWith(*y);
    }

193 194
// ------------------- cudnn descriptors ---------------------
#ifdef PADDLE_WITH_HIP
195 196 197 198 199 200 201 202 203
// TODO(wangran16): wait for MIOpen to improve the performance of BN
// miopenTensorDescriptor_t data_desc_;
// miopenTensorDescriptor_t bn_param_desc_;
// miopenBatchNormMode_t mode_;

// PADDLE_ENFORCE_CUDA_SUCCESS(
//     platform::dynload::miopenCreateTensorDescriptor(&data_desc_));
// PADDLE_ENFORCE_CUDA_SUCCESS(
//     platform::dynload::miopenCreateTensorDescriptor(&bn_param_desc_));
204
#else
Q
Qiao Longfei 已提交
205 206 207 208
    cudnnTensorDescriptor_t data_desc_;
    cudnnTensorDescriptor_t bn_param_desc_;
    cudnnBatchNormMode_t mode_;

209 210 211
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnCreateTensorDescriptor(&data_desc_));
    PADDLE_ENFORCE_CUDA_SUCCESS(
Q
Qiao Longfei 已提交
212
        platform::dynload::cudnnCreateTensorDescriptor(&bn_param_desc_));
213
#endif
Q
Qiao Longfei 已提交
214 215 216 217 218 219 220

    if (epsilon <= CUDNN_BN_MIN_EPSILON - FLT_EPSILON) {
      LOG(ERROR) << "Provided epsilon is smaller than "
                 << "CUDNN_BN_MIN_EPSILON. Setting it to "
                 << "CUDNN_BN_MIN_EPSILON instead.";
    }
    epsilon = std::max(epsilon, CUDNN_BN_MIN_EPSILON);
221 222

#ifdef PADDLE_WITH_HIP
223 224
// TODO(wangran16): wait for MIOpen to improve the performance of BN
// mode_ = miopenBNSpatial;
225
#elif CUDNN_VERSION_MIN(7, 0, 1)
W
Wu Yi 已提交
226 227 228 229 230
    if (FLAGS_cudnn_batchnorm_spatial_persistent) {
      mode_ = CUDNN_BATCHNORM_SPATIAL_PERSISTENT;
    } else {
      mode_ = CUDNN_BATCHNORM_SPATIAL;
    }
231
#else
Q
Qiao Longfei 已提交
232
    mode_ = CUDNN_BATCHNORM_SPATIAL;
233
#endif  // CUDNN_VERSION_MIN(7, 0, 1)
Q
Qiao Longfei 已提交
234

M
minqiyang 已提交
235
    VLOG(3) << "Setting descriptors.";
Q
Qiao Longfei 已提交
236 237
    std::vector<int> dims;
    std::vector<int> strides;
238
    if (compute_format == DataLayout::kNCHW) {
Q
Qiao Longfei 已提交
239 240 241 242 243 244
      dims = {N, C, H, W, D};
      strides = {C * H * W * D, H * W * D, W * D, D, 1};
    } else {
      dims = {N, C, H, W, D};
      strides = {H * W * D * C, 1, W * D * C, D * C, C};
    }
245 246

#ifdef PADDLE_WITH_HIP
247 248 249 250 251 252 253 254 255
// TODO(wangran16): wait for MIOpen to improve the performance of BN
// PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::miopenSetTensorDescriptor(
//     data_desc_, CudnnDataType<T>::type,
//     x_dims.size() > 3 ? x_dims.size() : 4, const_cast<int *>(dims.data()),
//     const_cast<int *>(strides.data())));
// Note: PERSISTENT not implemented for inference
// PADDLE_ENFORCE_CUDA_SUCCESS(
//     platform::dynload::miopenDeriveBNTensorDescriptor(
//         bn_param_desc_, data_desc_, test_mode ? miopenBNSpatial : mode_));
256
#else
257
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetTensorNdDescriptor(
Q
Qiao Longfei 已提交
258 259
        data_desc_, CudnnDataType<T>::type,
        x_dims.size() > 3 ? x_dims.size() : 4, dims.data(), strides.data()));
K
Kexin Zhao 已提交
260
    // Note: PERSISTENT not implemented for inference
261 262 263
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnDeriveBNTensorDescriptor(
            bn_param_desc_, data_desc_,
264
            test_mode ? CUDNN_BATCHNORM_SPATIAL : mode_));
265
#endif
Q
Qiao Longfei 已提交
266 267 268 269

    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *bias = ctx.Input<Tensor>("Bias");

Q
QI JUN 已提交
270
    auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
Q
Qiao Longfei 已提交
271

Q
QI JUN 已提交
272
    auto handle = dev_ctx.cudnn_handle();
Q
Qiao Longfei 已提交
273 274

    // Now, depending on whether we are running test or not, we have two paths.
275 276 277 278
    // It is training mode when it's not reference AND not using pre-trained
    // model.
    bool training = !test_mode && !use_global_stats;
    if (!training) {
Q
Qiao Longfei 已提交
279 280 281 282
      // only when test we use input to do computation.
      const auto *est_mean = ctx.Input<Tensor>("Mean");
      const auto *est_var = ctx.Input<Tensor>("Variance");
      // Run inference mode.
C
ceci3 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
      PADDLE_ENFORCE_EQ(
          est_mean->dims().size(), 1UL,
          platform::errors::InvalidArgument(
              "The size of mean's dimensions must equal to 1."
              "But received: the size of mean's dimensions mean is [%d],"
              "the dimensions of mean is [%s].",
              est_mean->dims().size(), est_mean->dims()));
      PADDLE_ENFORCE_EQ(
          est_var->dims().size(), 1UL,
          platform::errors::InvalidArgument(
              "The size of variance's dimensions must equal to 1."
              "But received: the size of variance's dimensions is [%d],"
              "the dimensions of variance is [%s].",
              est_var->dims().size(), est_var->dims()));
      PADDLE_ENFORCE_EQ(
          est_mean->dims()[0], C,
          platform::errors::InvalidArgument(
              "The first dimension of mean must equal to the number of "
              "Channels, which is [%d]. But received: the first dimension"
              "of mean is [%d], the dimensions of mean is [%s].",
              C, est_mean->dims()[0], est_mean->dims()));
      PADDLE_ENFORCE_EQ(
          est_var->dims()[0], C,
          platform::errors::InvalidArgument(
              "The first dimension of variance must equal to the number"
              "of Channels, which is [%d]. But received: the first dimension of"
              "variance is [%d], the dimensions of variance is [%s].",
              C, est_var->dims()[0], est_var->dims()));
Q
Qiao Longfei 已提交
311

312
#ifdef PADDLE_WITH_HIP
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
      const int block_size = 256;
      const int grid_size = (N * C * H * W * D + block_size - 1) / block_size;
      if (compute_format == DataLayout::kNCHW) {
        BNForwardInference<
            T,
            DataLayout::kNCHW><<<grid_size, block_size, 0, dev_ctx.stream()>>>(
            transformed_x.template data<T>(),
            est_mean->template data<BatchNormParamType<T>>(),
            est_var->template data<BatchNormParamType<T>>(),
            scale->template data<BatchNormParamType<T>>(),
            bias->template data<BatchNormParamType<T>>(), C, N, H * W * D,
            epsilon, transformed_y.template data<T>());
      } else {
        BNForwardInference<
            T,
            DataLayout::kNHWC><<<grid_size, block_size, 0, dev_ctx.stream()>>>(
            transformed_x.template data<T>(),
            est_mean->template data<BatchNormParamType<T>>(),
            est_var->template data<BatchNormParamType<T>>(),
            scale->template data<BatchNormParamType<T>>(),
            bias->template data<BatchNormParamType<T>>(), C, N, H * W * D,
            epsilon, transformed_y.template data<T>());
      }

// TODO(wangran16): wait for MIOpen to improve the performance of BN
// PADDLE_ENFORCE_CUDA_SUCCESS(
//     platform::dynload::miopenBatchNormalizationForwardInference(
//         handle, miopenBNSpatial,
//         const_cast<void *>(
//             static_cast<const void *>(CudnnDataType<T>::kOne())),
//         const_cast<void *>(
//             static_cast<const void *>(CudnnDataType<T>::kZero())),
//         data_desc_,
//         static_cast<const void *>(transformed_x.template data<T>()),
//         data_desc_,
//         static_cast<void *>(
//             transformed_y.template mutable_data<T>(ctx.GetPlace())),
//         bn_param_desc_,
//         const_cast<void *>(static_cast<const void *>(
//             scale->template data<BatchNormParamType<T>>())),
//         const_cast<void *>(static_cast<const void *>(
//             bias->template data<BatchNormParamType<T>>())),
//         const_cast<void *>(static_cast<const void *>(
//             est_mean->template data<BatchNormParamType<T>>())),
//         const_cast<void *>(static_cast<const void *>(
//             est_var->template data<BatchNormParamType<T>>())),
//         epsilon));
360
#else
361 362 363 364 365 366 367 368 369 370 371 372
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnBatchNormalizationForwardInference(
              handle,
              // Note: PERSISTENT not implemented for inference
              CUDNN_BATCHNORM_SPATIAL, CudnnDataType<T>::kOne(),
              CudnnDataType<T>::kZero(), data_desc_,
              transformed_x.template data<T>(), data_desc_,
              transformed_y.template mutable_data<T>(ctx.GetPlace()),
              bn_param_desc_, scale->template data<BatchNormParamType<T>>(),
              bias->template data<BatchNormParamType<T>>(),
              est_mean->template data<BatchNormParamType<T>>(),
              est_var->template data<BatchNormParamType<T>>(), epsilon));
373
#endif
Q
Qiao Longfei 已提交
374
    } else {
375 376 377 378 379 380 381 382 383
      // if MomentumTensor is set, use MomentumTensor value, momentum
      // is only used in this training branch
      if (ctx.HasInput("MomentumTensor")) {
        const auto *mom_tensor = ctx.Input<Tensor>("MomentumTensor");
        Tensor mom_cpu;
        TensorCopySync(*mom_tensor, platform::CPUPlace(), &mom_cpu);
        momentum = mom_cpu.data<float>()[0];
      }

Q
Qiao Longfei 已提交
384
      // Run training mode.
385 386
      // obtain running mean and running inv var, and there is no need
      // to initialize them.
D
Dang Qingqing 已提交
387 388 389 390 391 392 393 394 395 396 397

      auto *mean_out = ctx.Output<Tensor>("MeanOut");
      auto *variance_out = ctx.Output<Tensor>("VarianceOut");
      mean_out->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
      variance_out->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());

      auto *saved_mean = ctx.Output<Tensor>("SavedMean");
      auto *saved_variance = ctx.Output<Tensor>("SavedVariance");
      saved_mean->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
      saved_variance->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());

398
      if ((N * H * W * D) == 1) {
399 400
        // Only 1 element in normalization dimension,
        // skip the batch norm calculation, let y = x.
401
        framework::TensorCopy(*x, ctx.GetPlace(), y);
402 403 404
      } else {
        double this_factor = 1. - momentum;

405 406
        bool called = false;
#if CUDNN_VERSION_MIN(7, 4, 1)
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
        called = true;
        size_t workspace_size = 0;
        size_t reserve_space_size = 0;
        void *reserve_space_ptr = nullptr;
        void *workspace_ptr = nullptr;
        Tensor workspace_tensor;
        // Create reserve space and workspace for batch norm.
        // Create tensor for each batchnorm op, it will be used in the
        // backward. Thus this tensor shouldn't be temp.
        auto *reserve_space = ctx.Output<Tensor>("ReserveSpace");
        PADDLE_ENFORCE_NOT_NULL(
            reserve_space,
            platform::errors::NotFound(
                "The argument ReserveSpace of batch_norm op is not found."));

        // --------------- cudnn batchnorm workspace ---------------
        PADDLE_ENFORCE_CUDA_SUCCESS(
            platform::dynload::
                cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize(
                    /*handle=*/handle,
                    /*mode=*/mode_,
                    /*bnIps=*/CUDNN_BATCHNORM_OPS_BN,
                    /*xDesc=*/data_desc_,
                    /*zDesc=*/nullptr,
                    /*yDesc=*/data_desc_,
                    /*bnScaleBiasMeanVarDesc=*/bn_param_desc_,
                    /*activationDesc=*/nullptr,
                    /*sizeInBytes=*/&workspace_size));

        // -------------- cudnn batchnorm reserve space --------------
        PADDLE_ENFORCE_CUDA_SUCCESS(
            platform::dynload::
                cudnnGetBatchNormalizationTrainingExReserveSpaceSize(
                    /*handle=*/handle,
                    /*mode=*/mode_,
                    /*bnOps=*/CUDNN_BATCHNORM_OPS_BN,
                    /*activationDesc=*/nullptr,
                    /*xDesc=*/data_desc_,
                    /*sizeInBytes=*/&reserve_space_size));

        reserve_space_ptr = reserve_space->mutable_data(
            ctx.GetPlace(), transformed_x.type(), reserve_space_size);
        workspace_ptr = workspace_tensor.mutable_data(
            ctx.GetPlace(), transformed_x.type(), workspace_size);
        PADDLE_ENFORCE_CUDA_SUCCESS(
            platform::dynload::cudnnBatchNormalizationForwardTrainingEx(
                handle, mode_, CUDNN_BATCHNORM_OPS_BN, CudnnDataType<T>::kOne(),
                CudnnDataType<T>::kZero(), data_desc_,
                transformed_x.template data<T>(), nullptr, nullptr, data_desc_,
                transformed_y.template data<T>(), bn_param_desc_,
                scale->template data<BatchNormParamType<T>>(),
                bias->template data<BatchNormParamType<T>>(), this_factor,
                mean_out->template mutable_data<BatchNormParamType<T>>(
                    ctx.GetPlace()),
                variance_out->template mutable_data<BatchNormParamType<T>>(
                    ctx.GetPlace()),
                epsilon,
                saved_mean->template mutable_data<BatchNormParamType<T>>(
                    ctx.GetPlace()),
                saved_variance->template mutable_data<BatchNormParamType<T>>(
                    ctx.GetPlace()),
                nullptr, workspace_ptr, workspace_size, reserve_space_ptr,
                reserve_space_size));
#endif  // CUDNN_VERSION_MIN(7, 4, 1)
471
        if (!called) {
472
#ifdef PADDLE_WITH_HIP
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
          const int num = transformed_x.numel();
          const int block = 256;
          const int max_threads = dev_ctx.GetMaxPhysicalThreadCount();
          const int max_blocks = std::max(max_threads / block, 1);
          const int grid = std::min(C, max_blocks);
          if (compute_format == DataLayout::kNCHW) {
            BNForwardTraining<
                T, block,
                DataLayout::kNCHW><<<grid, block, 0, dev_ctx.stream()>>>(
                transformed_x.template data<T>(),
                scale->template data<BatchNormParamType<T>>(),
                bias->template data<BatchNormParamType<T>>(), C, N, H * W * D,
                epsilon, this_factor, transformed_y.template data<T>(),
                mean_out->template data<BatchNormParamType<T>>(),
                variance_out->template data<BatchNormParamType<T>>(),
                saved_mean->template data<BatchNormParamType<T>>(),
                saved_variance->template data<BatchNormParamType<T>>());
          } else {
            BNForwardTraining<
                T, block,
                DataLayout::kNHWC><<<grid, block, 0, dev_ctx.stream()>>>(
                transformed_x.template data<T>(),
                scale->template data<BatchNormParamType<T>>(),
                bias->template data<BatchNormParamType<T>>(), C, N, H * W * D,
                epsilon, this_factor, transformed_y.template data<T>(),
                mean_out->template data<BatchNormParamType<T>>(),
                variance_out->template data<BatchNormParamType<T>>(),
                saved_mean->template data<BatchNormParamType<T>>(),
                saved_variance->template data<BatchNormParamType<T>>());
          }

// TODO(wangran16): wait for MIOpen to improve the performance of BN
// PADDLE_ENFORCE_CUDA_SUCCESS(
//     platform::dynload::miopenBatchNormalizationForwardTraining(
//         handle, mode_, const_cast<void *>(static_cast<const void *>(
//                            CudnnDataType<T>::kOne())),
//         const_cast<void *>(
//             static_cast<const void *>(CudnnDataType<T>::kZero())),
//         data_desc_,
//         static_cast<const void *>(transformed_x.template data<T>()),
//         data_desc_,
//         static_cast<void *>(
//             transformed_y.template mutable_data<T>(ctx.GetPlace())),
//         bn_param_desc_,
//         const_cast<void *>(static_cast<const void *>(
//             scale->template data<BatchNormParamType<T>>())),
//         const_cast<void *>(static_cast<const void *>(
//             bias->template data<BatchNormParamType<T>>())),
//         this_factor,
//         static_cast<void *>(
//             mean_out->template mutable_data<BatchNormParamType<T>>(
//                 ctx.GetPlace())),
//         static_cast<void *>(variance_out->template mutable_data<
//                             BatchNormParamType<T>>(ctx.GetPlace())),
//         epsilon,
//         static_cast<void *>(
//             saved_mean->template mutable_data<BatchNormParamType<T>>(
//                 ctx.GetPlace())),
//         static_cast<void *>(saved_variance->template mutable_data<
//                             BatchNormParamType<T>>(ctx.GetPlace()))));
533
#else
534
          PADDLE_ENFORCE_CUDA_SUCCESS(
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
              platform::dynload::cudnnBatchNormalizationForwardTraining(
                  handle, mode_, CudnnDataType<T>::kOne(),
                  CudnnDataType<T>::kZero(), data_desc_,
                  transformed_x.template data<T>(), data_desc_,
                  transformed_y.template mutable_data<T>(ctx.GetPlace()),
                  bn_param_desc_, scale->template data<BatchNormParamType<T>>(),
                  bias->template data<BatchNormParamType<T>>(), this_factor,
                  mean_out->template mutable_data<BatchNormParamType<T>>(
                      ctx.GetPlace()),
                  variance_out->template mutable_data<BatchNormParamType<T>>(
                      ctx.GetPlace()),
                  epsilon,
                  saved_mean->template mutable_data<BatchNormParamType<T>>(
                      ctx.GetPlace()),
                  saved_variance->template mutable_data<BatchNormParamType<T>>(
                      ctx.GetPlace())));
551
#endif
552
        }
553
      }
Q
Qiao Longfei 已提交
554 555
    }

556 557 558 559 560 561
    if (data_layout == DataLayout::kNHWC &&
        compute_format == DataLayout::kNCHW && x_dims.size() > 2) {
      VLOG(3) << "Transform batchnorm output from NCHW to NHWC";
      TransToChannelLast<paddle::platform::CUDADeviceContext, T>(
          ctx, &transformed_y, y);
    }
562
#ifdef PADDLE_WITH_HIP
563 564 565 566 567 568
// TODO(wangran16): wait for MIOpen to improve the performance of BN
// clean when exit.
// PADDLE_ENFORCE_CUDA_SUCCESS(
//     platform::dynload::miopenDestroyTensorDescriptor(data_desc_));
// PADDLE_ENFORCE_CUDA_SUCCESS(
//     platform::dynload::miopenDestroyTensorDescriptor(bn_param_desc_));
569
#else
Q
Qiao Longfei 已提交
570
    // clean when exit.
571 572 573
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnDestroyTensorDescriptor(data_desc_));
    PADDLE_ENFORCE_CUDA_SUCCESS(
Q
Qiao Longfei 已提交
574
        platform::dynload::cudnnDestroyTensorDescriptor(bn_param_desc_));
575
#endif
Q
Qiao Longfei 已提交
576 577 578
  }
};

579
template <typename T, int BlockDim, framework::DataLayout layout>
580
static __global__ LAUNCH_BOUNDS(BlockDim) void KeBNBackwardScaleBias(
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
    const T *dy, const T *x, const BatchNormParamType<T> *mean,
    const BatchNormParamType<T> *variance, const double epsilon, const int N,
    const int C, const int HxW, BatchNormParamType<T> *dscale,
    BatchNormParamType<T> *dbias) {
  const int outer_size = C;
  const int inner_size = N * HxW;
  typedef cub::BlockReduce<BatchNormParamType<T>, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage ds_storage;
  __shared__ typename BlockReduce::TempStorage db_storage;

  for (int i = blockIdx.x; i < outer_size; i += gridDim.x) {
    BatchNormParamType<T> ds_sum = static_cast<BatchNormParamType<T>>(0);
    BatchNormParamType<T> db_sum = static_cast<BatchNormParamType<T>>(0);

    BatchNormParamType<T> inv_var_i = 1.0 / sqrt(variance[i] + epsilon);
    BatchNormParamType<T> mean_i = mean[i];
    for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
      const int index = layout == framework::DataLayout::kNCHW
                            ? (j / HxW * C + i) * HxW + j % HxW
                            : j * outer_size + i;
      ds_sum += static_cast<BatchNormParamType<T>>(dy[index]) *
                (static_cast<BatchNormParamType<T>>(x[index]) - mean_i);
      db_sum += static_cast<BatchNormParamType<T>>(dy[index]);
    }
    ds_sum = BlockReduce(ds_storage).Reduce(ds_sum, cub::Sum());
    db_sum = BlockReduce(db_storage).Reduce(db_sum, cub::Sum());
    if (threadIdx.x == 0) {
      dscale[i] = ds_sum * inv_var_i;
      dbias[i] = db_sum;
    }
    __syncthreads();
  }
}

Q
qingqing01 已提交
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
template <typename T, framework::DataLayout layout>
static __global__ void KeBNBackwardData(const T *dy,
                                        const BatchNormParamType<T> *scale,
                                        const BatchNormParamType<T> *variance,
                                        const double epsilon, const int C,
                                        const int HxW, const int num, T *dx) {
  int gid = blockIdx.x * blockDim.x + threadIdx.x;
  int stride = blockDim.x * gridDim.x;
  for (int i = gid; i < num; i += stride) {
    const int c = layout == framework::DataLayout::kNCHW ? i / HxW % C : i % C;
    BatchNormParamType<T> inv_var = 1.0 / sqrt(variance[c] + epsilon);
    dx[i] = static_cast<T>(static_cast<BatchNormParamType<T>>(dy[i]) *
                           scale[c] * inv_var);
  }
}

K
Kaipeng Deng 已提交
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
template <typename T>
static __global__ void KeBNRestoreData(const framework::DataLayout layout, T *x,
                                       const BatchNormParamType<T> *scale,
                                       const BatchNormParamType<T> *bias,
                                       const BatchNormParamType<T> *mean,
                                       const BatchNormParamType<T> *variance,
                                       double epsilon, int C, int M,
                                       const int num, const T *y) {
  int gid = blockIdx.x * blockDim.x + threadIdx.x;
  int stride = blockDim.x * gridDim.x;
  for (int i = gid; i < num; i += stride) {
    const int c = layout == framework::DataLayout::kNCHW ? (i / M) % C : i % C;
    auto y_i = static_cast<BatchNormParamType<T>>(y[i]);
    auto x_i = (y_i - bias[c]) / scale[c] / variance[c] + mean[c];
    x[i] = static_cast<T>(x_i);
  }
}

template <typename T>
class InplaceHelper {
 public:
  void operator()(const framework::DataLayout layout, T *x,
                  const BatchNormParamType<T> *scale,
                  const BatchNormParamType<T> *bias,
                  const BatchNormParamType<T> *mean,
                  const BatchNormParamType<T> *variance, double epsilon, int C,
                  int M, const int num, const T *y, int grid2, const int block,
658
                  const gpuStream_t &stream) {
K
Kaipeng Deng 已提交
659 660 661 662 663 664 665
    PADDLE_ENFORCE_EQ(x, y, platform::errors::InvalidArgument(
                                "X and Y should be inplaced in inplace mode"));
    KeBNRestoreData<<<grid2, block, 0, stream>>>(
        layout, x, scale, bias, mean, variance, epsilon, C, M, num, y);
  }
};

L
lvmengsi 已提交
666
template <typename T, int BlockDim, framework::DataLayout layout>
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
static __global__ LAUNCH_BOUNDS(BlockDim) void BNBackward(
    const T *dy, const T *x, const BatchNormParamType<T> *scale,
    const BatchNormParamType<T> *saved_mean,
    const BatchNormParamType<T> *saved_inv_variance, const int C, const int N,
    const int HxW, const double epsilon, T *dx, BatchNormParamType<T> *dscale,
    BatchNormParamType<T> *dbias) {
  const int outer_size = C;
  const int inner_size = N * HxW;
  typedef cub::BlockReduce<BatchNormParamType<T>, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage ds_storage;
  __shared__ typename BlockReduce::TempStorage db_storage;
  __shared__ typename BlockReduce::TempStorage mean_storage;
  __shared__ typename BlockReduce::TempStorage variance_storeage;
  __shared__ BatchNormParamType<T> inv_var_val;
  __shared__ BatchNormParamType<T> mean_val;
  __shared__ BatchNormParamType<T> dscale_val;
  __shared__ BatchNormParamType<T> dbias_val;

  for (int i = blockIdx.x; i < outer_size; i += gridDim.x) {
    BatchNormParamType<T> ds_sum = static_cast<BatchNormParamType<T>>(0);
    BatchNormParamType<T> db_sum = static_cast<BatchNormParamType<T>>(0);

    if (saved_mean && saved_inv_variance) {
      if (threadIdx.x == 0) {
        inv_var_val = saved_inv_variance[i];
        mean_val = saved_mean[i];
      }
    } else {
      BatchNormParamType<T> x_sum = static_cast<BatchNormParamType<T>>(0);
      BatchNormParamType<T> x_square_sum =
          static_cast<BatchNormParamType<T>>(0);

      for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
        const int index = layout == framework::DataLayout::kNCHW
                              ? (j / HxW * C + i) * HxW + j % HxW
                              : j * outer_size + i;
        BatchNormParamType<T> x_i =
            static_cast<BatchNormParamType<T>>(x[index]);
        x_sum += x_i;
        x_square_sum += x_i * x_i;
      }
      x_sum = BlockReduce(mean_storage).Reduce(x_sum, cub::Sum());
      x_square_sum =
          BlockReduce(variance_storeage).Reduce(x_square_sum, cub::Sum());
      if (threadIdx.x == 0) {
        mean_val = x_sum / inner_size;
        inv_var_val =
            1 / sqrt(x_square_sum / inner_size - mean_val * mean_val + epsilon);
      }
    }
    __syncthreads();

    for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
      const int index = layout == framework::DataLayout::kNCHW
                            ? (j / HxW * C + i) * HxW + j % HxW
                            : j * outer_size + i;
      BatchNormParamType<T> dy_i =
          static_cast<BatchNormParamType<T>>(dy[index]);
      ds_sum +=
          dy_i * (static_cast<BatchNormParamType<T>>(x[index]) - mean_val);
      db_sum += dy_i;
    }
    ds_sum = BlockReduce(ds_storage).Reduce(ds_sum, cub::Sum());
    db_sum = BlockReduce(db_storage).Reduce(db_sum, cub::Sum());
    if (threadIdx.x == 0) {
      dscale_val = ds_sum * inv_var_val;
      dbias_val = db_sum;
      dscale[i] = dscale_val;
      dbias[i] = dbias_val;
    }
    __syncthreads();

    for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
      const int index = layout == framework::DataLayout::kNCHW
                            ? (j / HxW * C + i) * HxW + j % HxW
                            : j * outer_size + i;
      dx[index] = scale[i] * inv_var_val *
                  (static_cast<BatchNormParamType<T>>(dy[index]) -
                   dbias_val / static_cast<BatchNormParamType<T>>(inner_size) -
                   (static_cast<BatchNormParamType<T>>(x[index]) - mean_val) *
                       inv_var_val * dscale_val / inner_size);
    }
  }
}

template <typename T, int BlockDim, framework::DataLayout layout>
static __global__ LAUNCH_BOUNDS(BlockDim) void BNBackwardData(
    const T *dy, const BatchNormParamType<T> *scale,
    const BatchNormParamType<T> *mean, const T *x,
    const BatchNormParamType<T> *variance, const int C, const int N,
    const int HxW, T *dx) {
L
lvmengsi 已提交
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
  const int outer_size = C;
  const int inner_size = N * HxW;
  typedef cub::BlockReduce<BatchNormParamType<T>, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage dy_storage;
  __shared__ typename BlockReduce::TempStorage dy_x_sub_mean_storage;
  __shared__ BatchNormParamType<T> dy_sum_val;
  __shared__ BatchNormParamType<T> dy_x_sub_mean_sum_val;

  for (int i = blockIdx.x; i < outer_size; i += gridDim.x) {
    BatchNormParamType<T> inv_var_i = variance[i];
    BatchNormParamType<T> mean_i = mean[i];
    BatchNormParamType<T> dy_sum = static_cast<BatchNormParamType<T>>(0);
    BatchNormParamType<T> dy_x_sub_mean_sum =
        static_cast<BatchNormParamType<T>>(0);
    for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
      const int index = layout == framework::DataLayout::kNCHW
                            ? (j / HxW * C + i) * HxW + j % HxW
                            : j * outer_size + i;
      BatchNormParamType<T> dy_i =
          static_cast<BatchNormParamType<T>>(dy[index]);
      dy_sum += dy_i;
      dy_x_sub_mean_sum +=
          dy_i * (static_cast<BatchNormParamType<T>>(x[index]) - mean_i);
    }

    dy_sum = BlockReduce(dy_storage).Reduce(dy_sum, cub::Sum());
    dy_x_sub_mean_sum = BlockReduce(dy_x_sub_mean_storage)
                            .Reduce(dy_x_sub_mean_sum, cub::Sum());

    if (threadIdx.x == 0) {
      dy_sum_val = dy_sum;
      dy_x_sub_mean_sum_val = dy_x_sub_mean_sum;
    }
    __syncthreads();
    for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
      const int index = layout == framework::DataLayout::kNCHW
                            ? (j / HxW * C + i) * HxW + j % HxW
                            : j * outer_size + i;
      dx[index] =
          (static_cast<BatchNormParamType<T>>(dy[index]) -
           dy_sum_val / static_cast<BatchNormParamType<T>>(inner_size) -
           (static_cast<BatchNormParamType<T>>(x[index]) - mean_i) *
               dy_x_sub_mean_sum_val * inv_var_i * inv_var_i / inner_size) *
          scale[i] * inv_var_i;
    }
  }
}

Q
Qiao Longfei 已提交
806
template <typename T>
Q
QI JUN 已提交
807
class BatchNormGradKernel<platform::CUDADeviceContext, T>
Q
Qiao Longfei 已提交
808 809 810
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
K
Kaipeng Deng 已提交
811 812 813
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        platform::errors::InvalidArgument("It must use CUDAPlace."));
Q
Qiao Longfei 已提交
814
    double epsilon = static_cast<double>(ctx.Attr<float>("epsilon"));
Q
QI JUN 已提交
815
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
C
ceci3 已提交
816
    bool use_global_stats = ctx.Attr<bool>("use_global_stats");
817

Q
QI JUN 已提交
818 819
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
820 821
    const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto *scale = ctx.Input<Tensor>("Scale");
K
Kaipeng Deng 已提交
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
    const auto *bias = ctx.Input<Tensor>("Bias");

    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    // batch_norm with inplace as false will take X as grad input, which
    // is same as cuDNN batch_norm backward calculation, batch_norm
    // with inplace as true only take Y as input and X should be calculate
    // by inverse operation of batch_norm on Y
    const Tensor *x;
    bool is_inplace;
    if (ctx.HasInput("Y")) {
      x = ctx.Input<Tensor>("Y");
      is_inplace = true;
      PADDLE_ENFORCE_EQ(d_x, d_y,
                        platform::errors::InvalidArgument(
                            "X@GRAD and Y@GRAD not inplace in inplace mode"));
    } else {
      x = ctx.Input<Tensor>("X");
      is_inplace = false;
      PADDLE_ENFORCE_NE(d_x, d_y,
                        platform::errors::InvalidArgument(
                            "X@GRAD and Y@GRAD inplaced in non-inplace mode"));
    }

848
    const bool is_test = ctx.Attr<bool>("is_test");
C
ceci3 已提交
849
    use_global_stats = is_test || use_global_stats;
Q
Qiao Longfei 已提交
850 851 852

    const auto &x_dims = x->dims();

C
ceci3 已提交
853 854 855 856 857 858 859
    PADDLE_ENFORCE_EQ(
        x_dims.size() >= 2 && x_dims.size() <= 5, true,
        platform::errors::InvalidArgument(
            "The size of input's dimensions should be between 2 and 5."
            "But received: the size of input's dimensions is [%d],"
            "the dimensions of input is [%s]",
            x_dims.size(), x_dims));
Q
Qiao Longfei 已提交
860
    int N, C, H, W, D;
Q
QI JUN 已提交
861
    ExtractNCWHD(x_dims, data_layout, &N, &C, &H, &W, &D);
Q
Qiao Longfei 已提交
862

863 864
    // init output
    d_x->mutable_data<T>(ctx.GetPlace());
K
Kaipeng Deng 已提交
865

866 867 868
    if (d_scale && d_bias) {
      d_scale->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
      d_bias->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
869
    }
C
ceci3 已提交
870 871 872 873 874 875 876 877 878 879 880 881 882
    PADDLE_ENFORCE_EQ(
        scale->dims().size(), 1UL,
        platform::errors::InvalidArgument(
            "The size of scale's dimensions must equal to 1. But received: "
            "the size of scale's dimensions is [%d], the dimensions of scale "
            "is [%s].",
            scale->dims().size(), scale->dims()));
    PADDLE_ENFORCE_EQ(
        scale->dims()[0], C,
        platform::errors::InvalidArgument(
            "The first dimension of scale must equal to Channels[%d]. But "
            "received: the first dimension of scale is [%d]",
            C, scale->dims()[0]));
Q
Qiao Longfei 已提交
883

884 885
    auto dtype = platform::CudnnDataType<T>::type;
    const auto *reserve_space = ctx.Input<Tensor>("ReserveSpace");
886
#ifdef PADDLE_WITH_HIP
887 888 889 890 891 892
    auto compute_format = data_layout == DataLayout::kNHWC ? DataLayout::kNHWC
                                                           : DataLayout::kNCHW;

// TODO(wangran16): wait for MIOpen to improve the performance of BN
// HIP do not support compute format of NHWC
// auto compute_format = DataLayout::kNCHW;
893
#else
894 895 896 897 898 899 900
    const bool fast_nhwc_batch_norm =
        dtype == CUDNN_DATA_HALF && FLAGS_cudnn_batchnorm_spatial_persistent &&
        reserve_space != nullptr;
    auto compute_format =
        fast_nhwc_batch_norm && data_layout == DataLayout::kNHWC
            ? DataLayout::kNHWC
            : DataLayout::kNCHW;
901
#endif
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924

    Tensor transformed_x(x->type());
    Tensor transformed_d_y(d_y->type());
    Tensor transformed_d_x(d_x->type());
    if (data_layout == DataLayout::kNHWC &&
        compute_format == DataLayout::kNCHW) {
      VLOG(3) << "Transform input tensor from NHWC to NCHW.";
      ResizeToChannelFirst<platform::CUDADeviceContext, T>(ctx, x,
                                                           &transformed_x);
      TransToChannelFirst<platform::CUDADeviceContext, T>(ctx, x,
                                                          &transformed_x);
      ResizeToChannelFirst<platform::CUDADeviceContext, T>(ctx, d_y,
                                                           &transformed_d_y);
      TransToChannelFirst<platform::CUDADeviceContext, T>(ctx, d_y,
                                                          &transformed_d_y);
      ResizeToChannelFirst<platform::CUDADeviceContext, T>(ctx, d_x,
                                                           &transformed_d_x);
    } else {
      transformed_x.ShareDataWith(*x);
      transformed_d_y.ShareDataWith(*d_y);
      transformed_d_x.ShareDataWith(*d_x);
    }

Z
zchen0211 已提交
925 926
    std::vector<int> dims;
    std::vector<int> strides;
927
    if (compute_format == DataLayout::kNCHW) {
Z
zchen0211 已提交
928 929 930 931 932 933
      dims = {N, C, H, W, D};
      strides = {C * H * W * D, H * W * D, W * D, D, 1};
    } else {
      dims = {N, C, H, W, D};
      strides = {H * W * C * D, 1, W * D * C, D * C, C};
    }
Q
Qiao Longfei 已提交
934

935
    auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
936
    const int num = transformed_x.numel();
937 938 939
#ifdef HIPCC
    const int block = 256;
#else
L
lvmengsi 已提交
940
    const int block = 512;
941
#endif
L
lvmengsi 已提交
942 943 944 945
    int max_threads = dev_ctx.GetMaxPhysicalThreadCount();
    const int max_blocks = std::max(max_threads / block, 1);
    int grid1 = (num + block - 1) / block;
    int grid2 = std::min(C, max_blocks);
K
Kaipeng Deng 已提交
946 947
    auto stream = dev_ctx.stream();
    InplaceHelper<T> inplace_functor;
L
lvmengsi 已提交
948

949 950 951 952 953 954 955 956 957 958
    if (!use_global_stats) {
      if ((N * H * W * D) == 1) {
        framework::TensorCopy(*d_y, ctx.GetPlace(), d_x);
        math::SetConstant<platform::CUDADeviceContext, BatchNormParamType<T>>
            functor;
        functor(dev_ctx, d_scale, static_cast<BatchNormParamType<T>>(0));
        functor(dev_ctx, d_bias, static_cast<BatchNormParamType<T>>(0));
        return;
      }

959 960
// ------------------- cudnn descriptors ---------------------
#ifdef PADDLE_WITH_HIP
961 962 963 964 965 966 967 968 969
// TODO(wangran16): wait for MIOpen to improve the performance of BN
// miopenTensorDescriptor_t data_desc_;
// miopenTensorDescriptor_t bn_param_desc_;
// miopenBatchNormMode_t mode_;

// PADDLE_ENFORCE_CUDA_SUCCESS(
//     platform::dynload::miopenCreateTensorDescriptor(&data_desc_));
// PADDLE_ENFORCE_CUDA_SUCCESS(
//     platform::dynload::miopenCreateTensorDescriptor(&bn_param_desc_));
970
#else
971 972 973 974
      cudnnTensorDescriptor_t data_desc_;
      cudnnTensorDescriptor_t bn_param_desc_;
      cudnnBatchNormMode_t mode_;

975
      PADDLE_ENFORCE_CUDA_SUCCESS(
976
          platform::dynload::cudnnCreateTensorDescriptor(&data_desc_));
977
      PADDLE_ENFORCE_CUDA_SUCCESS(
978
          platform::dynload::cudnnCreateTensorDescriptor(&bn_param_desc_));
979
#endif
980 981 982 983 984 985
      if (epsilon <= CUDNN_BN_MIN_EPSILON - FLT_EPSILON) {
        LOG(ERROR) << "Provided epsilon is smaller than "
                   << "CUDNN_BN_MIN_EPSILON. Setting it to "
                   << "CUDNN_BN_MIN_EPSILON instead.";
      }
      epsilon = std::max(epsilon, CUDNN_BN_MIN_EPSILON);
986
#ifdef PADDLE_WITH_HIP
987 988
// TODO(wangran16): wait for MIOpen to improve the performance of BN
// mode_ = miopenBNSpatial;
989
#elif CUDNN_VERSION_MIN(7, 0, 1)
W
Wu Yi 已提交
990 991 992 993 994
      if (FLAGS_cudnn_batchnorm_spatial_persistent) {
        mode_ = CUDNN_BATCHNORM_SPATIAL_PERSISTENT;
      } else {
        mode_ = CUDNN_BATCHNORM_SPATIAL;
      }
995
#else
996
      mode_ = CUDNN_BATCHNORM_SPATIAL;
997
#endif  // CUDNN_VERSION_MIN(7, 0, 1)
998

999
#ifdef PADDLE_WITH_HIP
1000 1001 1002 1003 1004 1005 1006 1007
// TODO(wangran16): wait for MIOpen to improve the performance of BN
// PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::miopenSetTensorDescriptor(
//     data_desc_, CudnnDataType<T>::type,
//     x_dims.size() > 3 ? x_dims.size() : 4, const_cast<int *>(dims.data()),
//     const_cast<int *>(strides.data())));
// PADDLE_ENFORCE_CUDA_SUCCESS(
//     platform::dynload::miopenDeriveBNTensorDescriptor(bn_param_desc_,
//                                                       data_desc_, mode_));
1008
#else
1009
      PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetTensorNdDescriptor(
1010 1011
          data_desc_, CudnnDataType<T>::type,
          x_dims.size() > 3 ? x_dims.size() : 4, dims.data(), strides.data()));
1012 1013 1014
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnDeriveBNTensorDescriptor(bn_param_desc_,
                                                           data_desc_, mode_));
1015
#endif
1016 1017 1018

      const auto *saved_mean = ctx.Input<Tensor>("SavedMean");
      const auto *saved_var = ctx.Input<Tensor>("SavedVariance");
L
lvmengsi 已提交
1019
      const auto *saved_mean_data =
1020
          saved_mean->template data<BatchNormParamType<T>>();
L
lvmengsi 已提交
1021
      const auto *saved_var_data =
1022 1023
          saved_var->template data<BatchNormParamType<T>>();

K
Kaipeng Deng 已提交
1024 1025 1026 1027 1028 1029 1030 1031
      if (is_inplace) {
        inplace_functor(compute_format, transformed_x.data<T>(),
                        scale->template data<BatchNormParamType<T>>(),
                        bias->template data<BatchNormParamType<T>>(),
                        saved_mean_data, saved_var_data, epsilon, C, H * W * D,
                        num, transformed_x.data<T>(), grid2, block, stream);
      }

1032
      // This branch calls CUDNN APIs
L
lvmengsi 已提交
1033
      if (d_scale && d_bias) {
1034 1035
        bool called = false;
#if CUDNN_VERSION_MIN(7, 4, 1)
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
        called = true;
        size_t workspace_size = 0;
        void *workspace_ptr = nullptr;
        Tensor workspace_tensor;
        auto reserve_space_size = reserve_space->memory_size();
        // --------------- cudnn batchnorm workspace ---------------
        PADDLE_ENFORCE_CUDA_SUCCESS(
            platform::dynload::
                cudnnGetBatchNormalizationBackwardExWorkspaceSize(
                    /*handle=*/dev_ctx.cudnn_handle(),
                    /*mode=*/mode_,
                    /*bnIps=*/CUDNN_BATCHNORM_OPS_BN,
                    /*xDesc=*/data_desc_,
                    /*yDesc=*/data_desc_,
                    /*dyDesc=*/data_desc_,
                    /*dzDesc=*/nullptr,
                    /*dxDesc=*/data_desc_,
                    /*bnScaleBiasMeanVarDesc=*/bn_param_desc_,
                    /*activationDesc=*/nullptr,
                    /*sizeInBytes=*/&workspace_size));

        workspace_ptr = workspace_tensor.mutable_data(
            ctx.GetPlace(), transformed_x.type(), workspace_size);

        PADDLE_ENFORCE_CUDA_SUCCESS(
            platform::dynload::cudnnBatchNormalizationBackwardEx(
                /*handle=*/dev_ctx.cudnn_handle(),
                /*mode=*/mode_,
                /*bnOps=*/CUDNN_BATCHNORM_OPS_BN,
                /*alphaDataDiff=*/CudnnDataType<T>::kOne(),
                /*betaDataDiff=*/CudnnDataType<T>::kZero(),
                /*alphaParamDiff=*/CudnnDataType<T>::kOne(),
                /*betaParamDiff=*/CudnnDataType<T>::kZero(),
                /*xDesc=*/data_desc_,
                /*xData=*/transformed_x.template data<T>(),
                /*yDesc=*/nullptr,
                /*yData=*/nullptr,
                /*dyDesc=*/data_desc_,
                /*dyData=*/transformed_d_y.template data<T>(),
                /*dzDesc=*/nullptr,
                /*dzData=*/nullptr,
                /*dxDesc=*/data_desc_,
                /*dxData=*/transformed_d_x.template mutable_data<T>(
                    ctx.GetPlace()),
                /*dBnScaleBiasDesc=*/bn_param_desc_,
                /*bnScaleData=*/scale->template data<BatchNormParamType<T>>(),
                /*bnBiasData=*/nullptr,
                /*dBnScaleData=*/d_scale
                    ->template mutable_data<BatchNormParamType<T>>(
                        ctx.GetPlace()),
                /*dBnBiasData=*/d_bias
                    ->template mutable_data<BatchNormParamType<T>>(
                        ctx.GetPlace()),
                /*epsilon=*/epsilon,
                /*savedMean=*/saved_mean_data,
                /*savedInvVariance=*/saved_var_data,
                /*activationDesc=*/nullptr,
                /*workspace=*/workspace_ptr,
                /*workSpaceSizeInBytes=*/workspace_size,
                /*reserveSpace=*/const_cast<T *>(
                    reserve_space->template data<T>()),
                /*reserveSpaceSizeInBytes=*/reserve_space_size));
#endif  // CUDNN_VERSION_MIN(7, 4, 1)
1099
        if (!called) {
1100
#ifdef PADDLE_WITH_HIP
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
          if (compute_format == DataLayout::kNCHW) {
            BNBackward<
                T, block,
                DataLayout::kNCHW><<<grid2, block, 0, dev_ctx.stream()>>>(
                transformed_d_y.template data<T>(),
                transformed_x.template data<T>(),
                scale->template data<BatchNormParamType<T>>(), saved_mean_data,
                saved_var_data, C, N, H * W * D, epsilon,
                transformed_d_x.template data<T>(),
                d_scale->template mutable_data<BatchNormParamType<T>>(
                    ctx.GetPlace()),
                d_bias->template mutable_data<BatchNormParamType<T>>(
                    ctx.GetPlace()));
          } else {
            BNBackward<
                T, block,
                DataLayout::kNHWC><<<grid2, block, 0, dev_ctx.stream()>>>(
                transformed_d_y.template data<T>(),
                transformed_x.template data<T>(),
                scale->template data<BatchNormParamType<T>>(), saved_mean_data,
                saved_var_data, C, N, H * W * D, epsilon,
                transformed_d_x.template data<T>(),
                d_scale->template mutable_data<BatchNormParamType<T>>(
                    ctx.GetPlace()),
                d_bias->template mutable_data<BatchNormParamType<T>>(
                    ctx.GetPlace()));
          }

// TODO(wangran16): wait for MIOpen to improve the performance of BN
// PADDLE_ENFORCE_CUDA_SUCCESS(
//     platform::dynload::miopenBatchNormalizationBackward(
//         dev_ctx.cudnn_handle(), mode_, CudnnDataType<T>::kOne(),
//         CudnnDataType<T>::kZero(), CudnnDataType<T>::kOne(),
//         CudnnDataType<T>::kZero(), data_desc_,
//         transformed_x.template data<T>(), data_desc_,
//         transformed_d_y.template data<T>(), data_desc_,
//         transformed_d_x.template mutable_data<T>(ctx.GetPlace()),
//         bn_param_desc_, scale->template data<BatchNormParamType<T>>(),
//         d_scale->template mutable_data<BatchNormParamType<T>>(
//             ctx.GetPlace()),
//         d_bias->template mutable_data<BatchNormParamType<T>>(
//             ctx.GetPlace()),
//         epsilon, saved_mean_data, saved_var_data));
1144
#else
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
          PADDLE_ENFORCE_CUDA_SUCCESS(
              platform::dynload::cudnnBatchNormalizationBackward(
                  dev_ctx.cudnn_handle(), mode_, CudnnDataType<T>::kOne(),
                  CudnnDataType<T>::kZero(), CudnnDataType<T>::kOne(),
                  CudnnDataType<T>::kZero(), data_desc_,
                  transformed_x.template data<T>(), data_desc_,
                  transformed_d_y.template data<T>(), data_desc_,
                  transformed_d_x.template mutable_data<T>(ctx.GetPlace()),
                  bn_param_desc_, scale->template data<BatchNormParamType<T>>(),
                  d_scale->template mutable_data<BatchNormParamType<T>>(
                      ctx.GetPlace()),
                  d_bias->template mutable_data<BatchNormParamType<T>>(
                      ctx.GetPlace()),
                  epsilon, saved_mean_data, saved_var_data));
1159
#endif
1160 1161 1162 1163 1164 1165 1166 1167
        }

        if (data_layout == DataLayout::kNHWC &&
            compute_format == DataLayout::kNCHW) {
          VLOG(3) << "Transform batchnorm output from NCHW to NHWC";
          TransToChannelLast<paddle::platform::CUDADeviceContext, T>(
              ctx, &transformed_d_x, d_x);
        }
L
lvmengsi 已提交
1168
      } else {
1169
        // This branch call CUDA kernels
1170
        if (compute_format == DataLayout::kNCHW) {
L
lvmengsi 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179
          if (d_x) {
            BNBackwardData<T, block, framework::DataLayout::kNCHW><<<
                grid2, block, 0, dev_ctx.stream()>>>(
                d_y->data<T>(), scale->data<BatchNormParamType<T>>(),
                saved_mean_data, x->data<T>(), saved_var_data, C, N, H * W * D,
                d_x->data<T>());
          }
        } else {
          if (d_x) {
L
Lv Mengsi 已提交
1180
            BNBackwardData<T, block, framework::DataLayout::kNHWC><<<
L
lvmengsi 已提交
1181 1182 1183 1184 1185 1186 1187
                grid2, block, 0, dev_ctx.stream()>>>(
                d_y->data<T>(), scale->data<BatchNormParamType<T>>(),
                saved_mean_data, x->data<T>(), saved_var_data, C, N, H * W * D,
                d_x->data<T>());
          }
        }
      }
1188

1189
#ifdef PADDLE_WITH_HIP
1190 1191 1192 1193 1194 1195
// TODO(wangran16): wait for MIOpen to improve the performance of BN
// clean when exit.
// PADDLE_ENFORCE_CUDA_SUCCESS(
//     platform::dynload::miopenDestroyTensorDescriptor(data_desc_));
// PADDLE_ENFORCE_CUDA_SUCCESS(
//     platform::dynload::miopenDestroyTensorDescriptor(bn_param_desc_));
1196
#else
1197
      // clean when exit.
1198
      PADDLE_ENFORCE_CUDA_SUCCESS(
1199
          platform::dynload::cudnnDestroyTensorDescriptor(data_desc_));
1200
      PADDLE_ENFORCE_CUDA_SUCCESS(
1201
          platform::dynload::cudnnDestroyTensorDescriptor(bn_param_desc_));
1202
#endif
1203 1204 1205 1206 1207 1208 1209 1210 1211
    } else {
      const auto *running_mean = ctx.Input<Tensor>("Mean");
      const auto *running_var = ctx.Input<Tensor>("Variance");

      const auto *running_mean_data =
          running_mean->template data<BatchNormParamType<T>>();
      const auto *running_var_data =
          running_var->template data<BatchNormParamType<T>>();

K
Kaipeng Deng 已提交
1212 1213 1214 1215 1216 1217 1218 1219 1220
      if (is_inplace) {
        auto px = *x;
        inplace_functor(data_layout, px.mutable_data<T>(ctx.GetPlace()),
                        scale->template data<BatchNormParamType<T>>(),
                        bias->template data<BatchNormParamType<T>>(),
                        running_mean_data, running_var_data, epsilon, C,
                        H * W * D, num, x->data<T>(), grid2, block, stream);
      }

1221
      if (compute_format == DataLayout::kNCHW) {
1222
        if (d_x) {
K
Kaipeng Deng 已提交
1223 1224
          KeBNBackwardData<
              T, framework::DataLayout::kNCHW><<<grid1, block, 0, stream>>>(
1225 1226 1227 1228
              d_y->data<T>(), scale->data<BatchNormParamType<T>>(),
              running_var_data, epsilon, C, H * W, num, d_x->data<T>());
        }
        if (d_scale && d_bias) {
K
Kaipeng Deng 已提交
1229 1230 1231
          KeBNBackwardScaleBias<
              T, block,
              framework::DataLayout::kNCHW><<<grid2, block, 0, stream>>>(
1232
              d_y->data<T>(), x->data<T>(), running_mean_data, running_var_data,
Q
qingqing01 已提交
1233
              epsilon, N, C, H * W * D, d_scale->data<BatchNormParamType<T>>(),
1234 1235 1236 1237
              d_bias->data<BatchNormParamType<T>>());
        }
      } else {
        if (d_x) {
K
Kaipeng Deng 已提交
1238 1239
          KeBNBackwardData<
              T, framework::DataLayout::kNHWC><<<grid1, block, 0, stream>>>(
1240 1241 1242 1243
              d_y->data<T>(), scale->data<BatchNormParamType<T>>(),
              running_var_data, epsilon, C, H * W, num, d_x->data<T>());
        }
        if (d_scale && d_bias) {
K
Kaipeng Deng 已提交
1244 1245 1246
          KeBNBackwardScaleBias<
              T, block,
              framework::DataLayout::kNHWC><<<grid2, block, 0, stream>>>(
1247
              d_y->data<T>(), x->data<T>(), running_mean_data, running_var_data,
Q
qingqing01 已提交
1248
              epsilon, N, C, H * W * D, d_scale->data<BatchNormParamType<T>>(),
1249 1250 1251 1252
              d_bias->data<BatchNormParamType<T>>());
        }
      }
    }
Q
Qiao Longfei 已提交
1253 1254 1255
  }
};

1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
template <typename T>
class BatchNormDoubleGradKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *X = ctx.Input<Tensor>("X");
    const auto *Scale = ctx.Input<Tensor>("Scale");
    const auto *dY = ctx.Input<Tensor>("DY");
    const auto *Saved_mean = ctx.Input<Tensor>("SavedMean");
    const auto *Saved_variance = ctx.Input<Tensor>("SavedVariance");
    const double epsilon = static_cast<double>(ctx.Attr<float>("epsilon"));
    const bool use_global_stats = ctx.Attr<bool>("use_global_stats");
    const bool is_test = ctx.Attr<bool>("is_test");

    PADDLE_ENFORCE_EQ(
        is_test, false,
        platform::errors::InvalidArgument(
            "`is_test = True` CANNOT be used in train program. If "
            "you want to use global status in pre_train model, "
            "please set `use_global_stats = True`"));

    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);

    const auto *ddX = ctx.Input<Tensor>("DDX");
    const auto *ddScale = ctx.Input<Tensor>("DDScale");
    const auto *ddBias = ctx.Input<Tensor>("DDBias");

    auto *dX = ctx.Output<Tensor>("DX");
    auto *dScale = ctx.Output<Tensor>("DScale");
    auto *ddY = ctx.Output<Tensor>("DDY");

    NormDoubleGradFunctor<platform::CUDADeviceContext, T>(
        ctx, data_layout, X, Scale, dY, Saved_mean, Saved_variance, epsilon,
        use_global_stats, ddX, ddScale, ddBias, dX, dScale, ddY);
  }
};

Q
Qiao Longfei 已提交
1295 1296 1297 1298
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
K
Kexin Zhao 已提交
1299
namespace plat = paddle::platform;
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
#ifdef PADDLE_WITH_HIP
// MIOPEN do not support double
REGISTER_OP_CUDA_KERNEL(
    batch_norm, ops::BatchNormKernel<plat::CUDADeviceContext, float>,
    ops::BatchNormKernel<plat::CUDADeviceContext, plat::float16>);
REGISTER_OP_CUDA_KERNEL(
    batch_norm_grad, ops::BatchNormGradKernel<plat::CUDADeviceContext, float>,
    ops::BatchNormGradKernel<plat::CUDADeviceContext, plat::float16>);
REGISTER_OP_CUDA_KERNEL(
    batch_norm_grad_grad,
    ops::BatchNormDoubleGradKernel<plat::CUDADeviceContext, float>);
#else
Q
QI JUN 已提交
1312
REGISTER_OP_CUDA_KERNEL(
K
Kexin Zhao 已提交
1313
    batch_norm, ops::BatchNormKernel<plat::CUDADeviceContext, float>,
D
dzhwinter 已提交
1314
    ops::BatchNormKernel<plat::CUDADeviceContext, double>,
K
Kexin Zhao 已提交
1315
    ops::BatchNormKernel<plat::CUDADeviceContext, plat::float16>);
Q
QI JUN 已提交
1316
REGISTER_OP_CUDA_KERNEL(
D
dzhwinter 已提交
1317
    batch_norm_grad, ops::BatchNormGradKernel<plat::CUDADeviceContext, float>,
C
chengduo 已提交
1318 1319
    ops::BatchNormGradKernel<plat::CUDADeviceContext, double>,
    ops::BatchNormGradKernel<plat::CUDADeviceContext, plat::float16>);
1320 1321 1322 1323
REGISTER_OP_CUDA_KERNEL(
    batch_norm_grad_grad,
    ops::BatchNormDoubleGradKernel<plat::CUDADeviceContext, float>,
    ops::BatchNormDoubleGradKernel<plat::CUDADeviceContext, double>);
1324
#endif