pool_op.cc 11.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/pool_op.h"

namespace paddle {
namespace operators {

C
chengduoZH 已提交
20
int OutputSizePool(int input_size, int filter_size, int padding, int stride) {
21 22 23 24
  int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
  return output_size;
}

25 26 27 28 29 30 31
void PoolOp::InferShape(framework::InferShapeContext *ctx) const {
  PADDLE_ENFORCE(ctx->HasInput("X"), "X(Input) of Pooling should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("Out"),
                 "Out(Output) of Pooling should not be null.");

  auto in_x_dims = ctx->GetInputDim("X");

C
chengduoZH 已提交
32
  std::string pooling_type = ctx->Attrs().Get<std::string>("pooling_type");
33 34 35 36 37
  std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");

  PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
C
chengduoZH 已提交
38
                 "Pooling intput should be 4-D or 5-D tensor.");
39

C
chengduoZH 已提交
40
  if (ctx->Attrs().Get<bool>("global_pooling")) {
41
    ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
C
fix bug  
chengduoZH 已提交
42 43
    for (size_t i = 0; i < ksize.size(); ++i) {
      paddings[i] = 0;
44
      ksize[i] = static_cast<int>(in_x_dims[i + 2]);
C
fix bug  
chengduoZH 已提交
45
    }
46
  }
47 48 49 50 51 52 53 54 55 56 57 58

  PADDLE_ENFORCE(in_x_dims.size() - ksize.size() == 2U,
                 "Input size and pooling size should be consistent.");
  PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
                    "Strides size and pooling size should be the same.");
  PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(),
                    "Paddings size and pooling size should be the same.");

  std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
  for (size_t i = 0; i < ksize.size(); ++i) {
    output_shape.push_back(
        OutputSizePool(in_x_dims[i + 2], ksize[i], paddings[i], strides[i]));
59
  }
60
  ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
61
  ctx->ShareLoD("X", "Out");
62 63
}

64 65 66
framework::OpKernelType PoolOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
67
  use_cudnn &= platform::dynload::HasCUDNN();
68 69 70 71 72 73 74 75 76 77 78 79 80 81
  framework::LibraryType library_;
  if (use_cudnn) {
    library_ = framework::LibraryType::kCUDNN;
  } else {
    library_ = framework::LibraryType::kPlain;
  }

  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace(),
      layout_, library_);
}

82 83 84 85 86 87 88
void PoolOpGrad::InferShape(framework::InferShapeContext *ctx) const {
  PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
  PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                 "Input(X@GRAD) should not be null.");
  ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}

89 90 91
framework::OpKernelType PoolOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
92
  use_cudnn &= platform::dynload::HasCUDNN();
93 94 95 96 97 98 99 100 101 102 103 104 105 106
  framework::LibraryType library_;
  if (use_cudnn) {
    library_ = framework::LibraryType::kCUDNN;
  } else {
    library_ = framework::LibraryType::kPlain;
  }

  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace(),
      layout_, library_);
}

107
Pool2dOpMaker::Pool2dOpMaker(OpProto *proto, OpAttrChecker *op_checker)
108 109 110
    : OpProtoAndCheckerMaker(proto, op_checker) {
  AddInput(
      "X",
C
chengduoZH 已提交
111
      "(Tensor) The input tensor of pooling operator. "
K
kexinzhao 已提交
112 113 114
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
115
  AddOutput("Out",
K
kexinzhao 已提交
116 117 118 119 120
            "(Tensor) The output tensor of pooling operator. "
            "The format of output tensor is also NCHW, "
            "where N is batch size, C is the number of channels, "
            "H is the height of the feature, "
            "and W is the width of the feature.");
121

C
chengduoZH 已提交
122
  AddAttr<std::string>("pooling_type",
C
chengduoZH 已提交
123 124
                       "(string), pooling type, can be \"max\" for max-pooling "
                       "and \"avg\" for average-pooling.")
125
      .InEnum({"max", "avg"});
C
fix bug  
chengduoZH 已提交
126
  AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
127 128
                            "(vector<int>) The pooling window "
                            "size(height, width) of the pooling operator. "
C
chengduoZH 已提交
129
                            "If global_pooling = true, ksize and paddings will "
C
fix bug  
chengduoZH 已提交
130 131
                            "be ignored.");  // TODO(Chengduo): Add checker.
                                             // (Currently,
C
fix doc  
chengduoZH 已提交
132
  // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
133
  AddAttr<bool>("global_pooling",
K
kexinzhao 已提交
134
                "(bool, default false) Whether to use the global pooling. "
C
chengduoZH 已提交
135
                "If global_pooling = true, ksize and paddings will be ignored.")
136
      .SetDefault(false);
K
kexinzhao 已提交
137 138 139
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default {1, 1}), strides(height, "
                            "width) of pooling operator.")
140 141
      .SetDefault({1, 1});
  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
142 143 144
  // TypedAttrChecker don't support vector type.)
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
145
      "(vector<int>, default {0,0}), paddings(height, width) of pooling "
K
kexinzhao 已提交
146
      "operator."
C
chengduoZH 已提交
147
      "If global_pooling = true, paddings and ksize will be ignored.")
148 149 150 151 152 153 154 155 156 157 158 159 160
      .SetDefault({0, 0});
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
161 162

  AddComment(R"DOC(
K
kexinzhao 已提交
163 164
Pool2d Operator.

C
chengduoZH 已提交
165
The pooling2d operation calculates the output based on
C
chengduoZH 已提交
166
the input, pooling_type and ksize, strides, paddings parameters.
K
kexinzhao 已提交
167 168
Input(X) and output(Out) are in NCHW format, where N is batch size, C is the
number of channels, H is the height of the feature, and W is the width of the feature.
C
fix doc  
chengduoZH 已提交
169 170
Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
C
chengduoZH 已提交
171 172
The input(X) size and output(Out) size may be different.

C
chengduoZH 已提交
173
Example:   
C
chengduoZH 已提交
174
  Input:
K
kexinzhao 已提交
175
       X shape: $(N, C, H_{in}, W_{in})$
C
chengduoZH 已提交
176
  Output:
K
kexinzhao 已提交
177
       Out shape: $(N, C, H_{out}, W_{out})$
C
chengduoZH 已提交
178
  Where
K
kexinzhao 已提交
179
       $$ 
C
chengduoZH 已提交
180 181
       H_{out} = \frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1
K
kexinzhao 已提交
182 183
       $$

184
)DOC");
185 186
}

187
Pool3dOpMaker::Pool3dOpMaker(OpProto *proto, OpAttrChecker *op_checker)
188
    : OpProtoAndCheckerMaker(proto, op_checker) {
K
kexinzhao 已提交
189 190 191 192 193 194
  AddInput("X",
           "(Tensor) The input tensor of pooling operator. "
           "The format of input tensor is NCDHW, where N is batch size, C is "
           "the number of channels, and D, H and W is the depth, height and "
           "width of "
           "the feature, respectively.");
195
  AddOutput("Out",
C
chengduoZH 已提交
196
            "(Tensor) The output tensor of pooling operator."
K
kexinzhao 已提交
197 198 199 200
            "The format of output tensor is also NCDHW, "
            "where N is batch size, C is "
            "the number of channels, and D, H and W is the depth, height and "
            "width of the feature, respectively.");
201

C
chengduoZH 已提交
202
  AddAttr<std::string>("pooling_type",
K
kexinzhao 已提交
203
                       "(string) Pooling type, can be \"max\" for max-pooling "
C
chengduoZH 已提交
204
                       "and \"avg\" for average-pooling.")
205
      .InEnum({"max", "avg"});
K
kexinzhao 已提交
206 207 208 209
  AddAttr<std::vector<int>>(
      "ksize",
      "(vector<int>) The pooling window size(depth, height, "
      "width) of pooling operator. "
C
chengduoZH 已提交
210
      "If global_pooling = true, ksize and paddings will "
K
kexinzhao 已提交
211 212
      "be ignored.");  // TODO(Chengduo): Add checker.
                       // (Currently,
C
fix bug  
chengduoZH 已提交
213
  // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
214 215 216 217
  AddAttr<bool>(
      "global_pooling",
      "(bool, default false) Whether to use the global pooling. "
      "If global_pooling = true, ksize and paddings wille be ignored.")
218
      .SetDefault(false);
K
kexinzhao 已提交
219 220 221 222
  AddAttr<std::vector<int>>(
      "strides",
      "(vector<int>, default {1,1,1}) Strides(depth, height, "
      "width) of the pooling operator.")
223 224
      .SetDefault({1, 1, 1});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
225 226
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
227
      "(vector<int>, default {0,0,0}), paddings(depth, height, "
K
kexinzhao 已提交
228
      "width) of pooling operator. "
C
chengduoZH 已提交
229
      "If global_pooling = true, ksize and paddings will be ignored.")
230 231 232
      .SetDefault({0, 0, 0});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)

233 234 235 236 237 238 239 240 241 242 243 244 245
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function

246
  AddComment(R"DOC(
K
kexinzhao 已提交
247 248
Pool3d Operator.

C
chengduoZH 已提交
249
The pooling3d operation calculates the output based on
C
chengduoZH 已提交
250
the input, pooling_type, ksize, strides, and paddings parameters.
K
kexinzhao 已提交
251 252 253 254 255
Input(X) and output(Out) are in NCDHW format, where N is batch
size, C is the number of channels, and D, H and W are the depth, height and
width of the feature, respectively. Parameters(ksize, strides, paddings) 
are three elements. These three elements represent depth, height and 
width, respectively. The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
256 257 258

Example:
  Input:
K
kexinzhao 已提交
259
       X shape: $(N, C, D_{in}, H_{in}, W_{in})$
C
chengduoZH 已提交
260
  Output:
K
kexinzhao 已提交
261
       Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
C
chengduoZH 已提交
262 263 264 265 266 267
  Where
  $$
       D_{out} = \frac{(D_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
       H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2])}{strides[2]} + 1
  $$
K
kexinzhao 已提交
268

269
)DOC");
270
}
271 272 273 274 275 276 277 278
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP(pool2d, ops::PoolOp, ops::Pool2dOpMaker, pool2d_grad,
            ops::PoolOpGrad);

Q
QI JUN 已提交
279 280 281 282 283 284
REGISTER_OP_CPU_KERNEL(
    pool2d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool2d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>)
285 286 287 288

REGISTER_OP(pool3d, ops::PoolOp, ops::Pool3dOpMaker, pool3d_grad,
            ops::PoolOpGrad);

Q
QI JUN 已提交
289 290 291 292 293 294
REGISTER_OP_CPU_KERNEL(
    pool3d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool3d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);