test_var_base.py 61.9 KB
Newer Older
L
Leo Chen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import copy
L
Leo Chen 已提交
16
import unittest
17

18 19
import numpy as np

20
import paddle
21
import paddle.nn.functional as F
22 23
from paddle import fluid
from paddle.fluid import core
L
Leo Chen 已提交
24 25 26 27 28 29 30 31


class TestVarBase(unittest.TestCase):
    def setUp(self):
        self.shape = [512, 1234]
        self.dtype = np.float32
        self.array = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)

32
    def test_to_tensor(self):
33
        def check_with_place(place):
34
            with fluid.dygraph.guard():
35
                paddle.set_default_dtype('float32')
36
                # set_default_dtype should not take effect on int
37
                x = paddle.to_tensor(1, place=place, stop_gradient=False)
38
                np.testing.assert_array_equal(x.numpy(), [1])
39 40
                self.assertNotEqual(x.dtype, core.VarDesc.VarType.FP32)

41 42 43
                y = paddle.to_tensor(2, place=x.place)
                self.assertEqual(str(x.place), str(y.place))

44
                # set_default_dtype should not take effect on numpy
45 46 47 48 49 50 51 52
                x = paddle.to_tensor(
                    np.array([1.2]).astype('float16'),
                    place=place,
                    stop_gradient=False,
                )
                np.testing.assert_array_equal(
                    x.numpy(), np.array([1.2], 'float16')
                )
53 54
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP16)

55 56 57 58
                # set_default_dtype take effect on int
                x = paddle.to_tensor(1, place=place)
                self.assertTrue(x.dtype, core.VarDesc.VarType.INT64)

59
                # set_default_dtype take effect on float
60
                x = paddle.to_tensor(1.2, place=place, stop_gradient=False)
61 62 63
                np.testing.assert_array_equal(
                    x.numpy(), np.array([1.2]).astype('float32')
                )
64
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
Z
Zhou Wei 已提交
65
                clone_x = x.clone()
66 67 68
                np.testing.assert_array_equal(
                    clone_x.numpy(), np.array([1.2]).astype('float32')
                )
Z
Zhou Wei 已提交
69 70 71
                self.assertEqual(clone_x.dtype, core.VarDesc.VarType.FP32)
                y = clone_x**2
                y.backward()
72 73 74
                np.testing.assert_array_equal(
                    x.grad.numpy(), np.array([2.4]).astype('float32')
                )
75
                y = x.cpu()
76
                self.assertEqual(y.place.__repr__(), "Place(cpu)")
77 78
                if core.is_compiled_with_cuda():
                    y = x.pin_memory()
79
                    self.assertEqual(y.place.__repr__(), "Place(gpu_pinned)")
80
                    y = x.cuda()
81
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
82
                    y = x.cuda(None)
83
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
84
                    y = x.cuda(device_id=0)
85
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
86
                    y = x.cuda(blocking=False)
87
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
88
                    y = x.cuda(blocking=True)
89
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
90 91
                    with self.assertRaises(ValueError):
                        y = x.cuda("test")
92

93 94 95 96 97
                # support 'dtype' is core.VarType
                x = paddle.rand((2, 2))
                y = paddle.to_tensor([2, 2], dtype=x.dtype)
                self.assertEqual(y.dtype, core.VarDesc.VarType.FP32)

98
                # set_default_dtype take effect on complex
99
                x = paddle.to_tensor(1 + 2j, place=place, stop_gradient=False)
100
                np.testing.assert_array_equal(x.numpy(), [1 + 2j])
C
chentianyu03 已提交
101
                self.assertEqual(x.dtype, core.VarDesc.VarType.COMPLEX64)
102 103 104

                paddle.set_default_dtype('float64')
                x = paddle.to_tensor(1.2, place=place, stop_gradient=False)
105
                np.testing.assert_array_equal(x.numpy(), [1.2])
106 107 108
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP64)

                x = paddle.to_tensor(1 + 2j, place=place, stop_gradient=False)
109
                np.testing.assert_array_equal(x.numpy(), [1 + 2j])
C
chentianyu03 已提交
110
                self.assertEqual(x.dtype, core.VarDesc.VarType.COMPLEX128)
111

112 113 114
                x = paddle.to_tensor(
                    1, dtype='float32', place=place, stop_gradient=False
                )
115
                np.testing.assert_array_equal(x.numpy(), [1.0])
116 117 118 119 120
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
                self.assertEqual(x.shape, [1])
                self.assertEqual(x.stop_gradient, False)
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

121 122 123 124 125 126
                x = paddle.to_tensor(
                    (1, 2), dtype='float32', place=place, stop_gradient=False
                )
                x = paddle.to_tensor(
                    [1, 2], dtype='float32', place=place, stop_gradient=False
                )
127
                np.testing.assert_array_equal(x.numpy(), [1.0, 2.0])
128
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
129
                self.assertIsNone(x.grad)
130 131 132 133
                self.assertEqual(x.shape, [2])
                self.assertEqual(x.stop_gradient, False)
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

134 135 136 137 138 139
                x = paddle.to_tensor(
                    self.array,
                    dtype='float32',
                    place=place,
                    stop_gradient=False,
                )
140
                np.testing.assert_array_equal(x.numpy(), self.array)
141 142 143 144 145 146 147
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
                self.assertEqual(x.shape, self.shape)
                self.assertEqual(x.stop_gradient, False)
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

                y = paddle.to_tensor(x)
                y = paddle.to_tensor(y, dtype='float64', place=place)
148
                np.testing.assert_array_equal(y.numpy(), self.array)
149 150 151 152 153
                self.assertEqual(y.dtype, core.VarDesc.VarType.FP64)
                self.assertEqual(y.shape, self.shape)
                self.assertEqual(y.stop_gradient, True)
                self.assertEqual(y.type, core.VarDesc.VarType.LOD_TENSOR)
                z = x + y
154
                np.testing.assert_array_equal(z.numpy(), 2 * self.array)
155

156 157 158
                x = paddle.to_tensor(
                    [1 + 2j, 1 - 2j], dtype='complex64', place=place
                )
159
                y = paddle.to_tensor(x)
160
                np.testing.assert_array_equal(x.numpy(), [1 + 2j, 1 - 2j])
C
chentianyu03 已提交
161
                self.assertEqual(y.dtype, core.VarDesc.VarType.COMPLEX64)
162 163
                self.assertEqual(y.shape, [2])

164 165 166 167 168
                paddle.set_default_dtype('float32')
                x = paddle.randn([3, 4])
                x_array = np.array(x)
                self.assertEqual(x_array.shape, x.numpy().shape)
                self.assertEqual(x_array.dtype, x.numpy().dtype)
169
                np.testing.assert_array_equal(x_array, x.numpy())
170

171
                x = paddle.to_tensor(1.0, place=place)
172 173 174 175 176 177 178
                self.assertEqual(x.item(), 1.0)
                self.assertTrue(isinstance(x.item(), float))

                x = paddle.randn([3, 2, 2])
                self.assertTrue(isinstance(x.item(5), float))
                self.assertTrue(isinstance(x.item(1, 0, 1), float))
                self.assertEqual(x.item(5), x.item(1, 0, 1))
179 180 181
                np.testing.assert_array_equal(
                    x.item(1, 0, 1), x.numpy().item(1, 0, 1)
                )
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213

                x = paddle.to_tensor([[1.111111, 2.222222, 3.333333]])
                self.assertEqual(x.item(0, 2), x.item(2))
                self.assertAlmostEqual(x.item(2), 3.333333)
                self.assertTrue(isinstance(x.item(0, 2), float))

                x = paddle.to_tensor(1.0, dtype='float64')
                self.assertEqual(x.item(), 1.0)
                self.assertTrue(isinstance(x.item(), float))

                x = paddle.to_tensor(1.0, dtype='float16')
                self.assertEqual(x.item(), 1.0)
                self.assertTrue(isinstance(x.item(), float))

                x = paddle.to_tensor(1, dtype='uint8')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int8')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int16')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int32')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int64')
                self.assertEqual(x.item(), 1)
T
tianshuo78520a 已提交
214
                self.assertTrue(isinstance(x.item(), int))
215 216 217 218 219 220 221 222 223

                x = paddle.to_tensor(True)
                self.assertEqual(x.item(), True)
                self.assertTrue(isinstance(x.item(), bool))

                x = paddle.to_tensor(1 + 1j)
                self.assertEqual(x.item(), 1 + 1j)
                self.assertTrue(isinstance(x.item(), complex))

224 225 226 227 228
                # empty tensor
                x = paddle.to_tensor([])
                self.assertEqual(x.shape, [0])
                expected_result = np.array([], dtype='float32')
                self.assertEqual(x.numpy().shape, expected_result.shape)
229
                np.testing.assert_array_equal(x.numpy(), expected_result)
230

231 232 233 234 235 236
                numpy_array = np.random.randn(3, 4)
                # covert core.LoDTensor to paddle.Tensor
                lod_tensor = paddle.fluid.core.LoDTensor()
                place = paddle.fluid.framework._current_expected_place()
                lod_tensor.set(numpy_array, place)
                x = paddle.to_tensor(lod_tensor)
237
                np.testing.assert_array_equal(x.numpy(), numpy_array)
238 239 240 241 242 243 244 245
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)
                self.assertEqual(str(x.place), str(place))

                # covert core.Tensor to paddle.Tensor
                x = paddle.to_tensor(numpy_array)
                dlpack = x.value().get_tensor()._to_dlpack()
                tensor_from_dlpack = paddle.fluid.core.from_dlpack(dlpack)
                x = paddle.to_tensor(tensor_from_dlpack)
246
                np.testing.assert_array_equal(x.numpy(), numpy_array)
247 248
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

249 250 251 252 253 254 255 256
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item()
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item(18)
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item(1, 2)
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item(2, 1, 2)
257 258 259 260 261 262 263 264 265 266 267
                with self.assertRaises(TypeError):
                    paddle.to_tensor('test')
                with self.assertRaises(TypeError):
                    paddle.to_tensor(1, dtype='test')
                with self.assertRaises(ValueError):
                    paddle.to_tensor([[1], [2, 3]])
                with self.assertRaises(ValueError):
                    paddle.to_tensor([[1], [2, 3]], place='test')
                with self.assertRaises(ValueError):
                    paddle.to_tensor([[1], [2, 3]], place=1)

268 269
        check_with_place(core.CPUPlace())
        check_with_place("cpu")
270
        if core.is_compiled_with_cuda():
271 272 273 274
            check_with_place(core.CUDAPinnedPlace())
            check_with_place("gpu_pinned")
            check_with_place(core.CUDAPlace(0))
            check_with_place("gpu:0")
275

276
    def test_to_tensor_not_change_input_stop_gradient(self):
277 278 279 280 281 282 283
        with paddle.fluid.dygraph.guard(core.CPUPlace()):
            a = paddle.zeros([1024])
            a.stop_gradient = False
            b = paddle.to_tensor(a)
            self.assertEqual(a.stop_gradient, False)
            self.assertEqual(b.stop_gradient, True)

284
    def test_to_tensor_change_place(self):
285 286 287 288 289
        if core.is_compiled_with_cuda():
            a_np = np.random.rand(1024, 1024)
            with paddle.fluid.dygraph.guard(core.CPUPlace()):
                a = paddle.to_tensor(a_np, place=paddle.CUDAPinnedPlace())
                a = paddle.to_tensor(a)
290
                self.assertEqual(a.place.__repr__(), "Place(cpu)")
291 292 293 294

            with paddle.fluid.dygraph.guard(core.CUDAPlace(0)):
                a = paddle.to_tensor(a_np, place=paddle.CUDAPinnedPlace())
                a = paddle.to_tensor(a)
295
                self.assertEqual(a.place.__repr__(), "Place(gpu:0)")
296 297 298 299

            with paddle.fluid.dygraph.guard(core.CUDAPlace(0)):
                a = paddle.to_tensor(a_np, place=paddle.CPUPlace())
                a = paddle.to_tensor(a, place=paddle.CUDAPinnedPlace())
300
                self.assertEqual(a.place.__repr__(), "Place(gpu_pinned)")
301

302
    def test_to_tensor_with_lodtensor(self):
303 304 305 306 307 308
        if core.is_compiled_with_cuda():
            a_np = np.random.rand(1024, 1024)
            with paddle.fluid.dygraph.guard(core.CPUPlace()):
                lod_tensor = core.LoDTensor()
                lod_tensor.set(a_np, core.CPUPlace())
                a = paddle.to_tensor(lod_tensor)
309
                np.testing.assert_array_equal(a_np, a.numpy())
310 311 312 313

            with paddle.fluid.dygraph.guard(core.CUDAPlace(0)):
                lod_tensor = core.LoDTensor()
                lod_tensor.set(a_np, core.CUDAPlace(0))
314
                a = paddle.to_tensor(lod_tensor, place=core.CPUPlace())
315
                np.testing.assert_array_equal(a_np, a.numpy())
316
                self.assertTrue(a.place.__repr__(), "Place(cpu)")
317

318
    def test_to_variable(self):
L
Leo Chen 已提交
319 320
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array, name="abc")
321
            np.testing.assert_array_equal(var.numpy(), self.array)
L
Leo Chen 已提交
322 323 324 325 326 327 328
            self.assertEqual(var.name, 'abc')
            # default value
            self.assertEqual(var.persistable, False)
            self.assertEqual(var.stop_gradient, True)
            self.assertEqual(var.shape, self.shape)
            self.assertEqual(var.dtype, core.VarDesc.VarType.FP32)
            self.assertEqual(var.type, core.VarDesc.VarType.LOD_TENSOR)
329 330 331 332 333
            # The type of input must be 'ndarray' or 'Variable', it will raise TypeError
            with self.assertRaises(TypeError):
                var = fluid.dygraph.to_variable("test", name="abc")
            # test to_variable of LayerObjectHelper(LayerHelperBase)
            with self.assertRaises(TypeError):
334
                linear = paddle.nn.Linear(32, 64)
335
                var = linear._helper.to_variable("test", name="abc")
L
Leo Chen 已提交
336

337
    def test_list_to_variable(self):
338 339 340
        with fluid.dygraph.guard():
            array = [[[1, 2], [1, 2], [1.0, 2]], [[1, 2], [1, 2], [1, 2]]]
            var = fluid.dygraph.to_variable(array, dtype='int32')
341
            np.testing.assert_array_equal(var.numpy(), array)
342 343 344 345
            self.assertEqual(var.shape, [2, 3, 2])
            self.assertEqual(var.dtype, core.VarDesc.VarType.INT32)
            self.assertEqual(var.type, core.VarDesc.VarType.LOD_TENSOR)

346
    def test_tuple_to_variable(self):
347 348 349
        with fluid.dygraph.guard():
            array = (((1, 2), (1, 2), (1, 2)), ((1, 2), (1, 2), (1, 2)))
            var = fluid.dygraph.to_variable(array, dtype='float32')
350
            np.testing.assert_array_equal(var.numpy(), array)
351 352 353 354
            self.assertEqual(var.shape, [2, 3, 2])
            self.assertEqual(var.dtype, core.VarDesc.VarType.FP32)
            self.assertEqual(var.type, core.VarDesc.VarType.LOD_TENSOR)

355
    def test_tensor_to_variable(self):
356 357
        with fluid.dygraph.guard():
            t = fluid.Tensor()
L
Leo Chen 已提交
358
            t.set(np.random.random((1024, 1024)), fluid.CPUPlace())
359
            var = fluid.dygraph.to_variable(t)
360
            np.testing.assert_array_equal(t, var.numpy())
361

362
    def test_leaf_tensor(self):
363 364 365 366 367 368
        with fluid.dygraph.guard():
            x = paddle.to_tensor(np.random.uniform(-1, 1, size=[10, 10]))
            self.assertTrue(x.is_leaf)
            y = x + 1
            self.assertTrue(y.is_leaf)

369 370 371
            x = paddle.to_tensor(
                np.random.uniform(-1, 1, size=[10, 10]), stop_gradient=False
            )
372 373 374 375 376
            self.assertTrue(x.is_leaf)
            y = x + 1
            self.assertFalse(y.is_leaf)

            linear = paddle.nn.Linear(10, 10)
377 378 379 380
            input = paddle.to_tensor(
                np.random.uniform(-1, 1, size=[10, 10]).astype('float32'),
                stop_gradient=False,
            )
381 382 383 384 385 386 387
            self.assertTrue(input.is_leaf)

            out = linear(input)
            self.assertTrue(linear.weight.is_leaf)
            self.assertTrue(linear.bias.is_leaf)
            self.assertFalse(out.is_leaf)

388
    def test_detach(self):
Z
Zhou Wei 已提交
389 390 391 392 393
        with fluid.dygraph.guard():
            x = paddle.to_tensor(1.0, dtype="float64", stop_gradient=False)
            detach_x = x.detach()
            self.assertTrue(detach_x.stop_gradient, True)

394 395 396
            cmp_float = (
                np.allclose if core.is_compiled_with_rocm() else np.array_equal
            )
Z
Zhou Wei 已提交
397
            detach_x[:] = 10.0
Z
zhulei 已提交
398
            self.assertTrue(cmp_float(x.numpy(), [10.0]))
Z
Zhou Wei 已提交
399 400 401

            y = x**2
            y.backward()
Z
zhulei 已提交
402
            self.assertTrue(cmp_float(x.grad.numpy(), [20.0]))
403
            self.assertIsNone(detach_x.grad)
Z
Zhou Wei 已提交
404

405 406 407
            detach_x.stop_gradient = (
                False  # Set stop_gradient to be False, supported auto-grad
            )
Z
Zhou Wei 已提交
408 409
            z = 3 * detach_x**2
            z.backward()
Z
zhulei 已提交
410 411
            self.assertTrue(cmp_float(x.grad.numpy(), [20.0]))
            self.assertTrue(cmp_float(detach_x.grad.numpy(), [60.0]))
412

413 414 415 416 417
            with self.assertRaises(ValueError):
                detach_x[:] = 5.0

            detach_x.stop_gradient = True

Z
Zhou Wei 已提交
418
            # Due to sharing of data with origin Tensor, There are some unsafe operations:
419 420 421 422
            with self.assertRaises(RuntimeError):
                y = 2**x
                detach_x[:] = 5.0
                y.backward()
Z
Zhou Wei 已提交
423

424
    def test_write_property(self):
L
Leo Chen 已提交
425 426 427
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)

428
            self.assertEqual(var.name, 'generated_tensor_0')
L
Leo Chen 已提交
429 430 431 432 433 434 435 436 437 438 439
            var.name = 'test'
            self.assertEqual(var.name, 'test')

            self.assertEqual(var.persistable, False)
            var.persistable = True
            self.assertEqual(var.persistable, True)

            self.assertEqual(var.stop_gradient, True)
            var.stop_gradient = False
            self.assertEqual(var.stop_gradient, False)

440
    def test_deep_copy(self):
441
        with fluid.dygraph.guard():
姜永久 已提交
442
            empty_var = core.eager.Tensor()
443
            empty_var_copy = copy.deepcopy(empty_var)
444 445 446
            self.assertEqual(
                empty_var.stop_gradient, empty_var_copy.stop_gradient
            )
447 448 449 450
            self.assertEqual(empty_var.persistable, empty_var_copy.persistable)
            self.assertEqual(empty_var.type, empty_var_copy.type)
            self.assertEqual(empty_var.dtype, empty_var_copy.dtype)

451 452
            x = paddle.to_tensor([2.0], stop_gradient=False)
            y = paddle.to_tensor([3.0], stop_gradient=False)
453 454 455 456 457 458 459 460 461
            z = x * y
            memo = {}
            x_copy = copy.deepcopy(x, memo)
            y_copy = copy.deepcopy(y, memo)

            self.assertEqual(x_copy.stop_gradient, y_copy.stop_gradient)
            self.assertEqual(x_copy.persistable, y_copy.persistable)
            self.assertEqual(x_copy.type, y_copy.type)
            self.assertEqual(x_copy.dtype, y_copy.dtype)
462 463
            np.testing.assert_array_equal(x.numpy(), x_copy.numpy())
            np.testing.assert_array_equal(y.numpy(), y_copy.numpy())
464 465

            self.assertNotEqual(id(x), id(x_copy))
466
            np.testing.assert_array_equal(x.numpy(), [2.0])
467

468
            with self.assertRaises(ValueError):
469
                x_copy[:] = 5.0
470

471 472 473 474 475 476 477 478 479
            with self.assertRaises(RuntimeError):
                copy.deepcopy(z)

            x_copy2 = copy.deepcopy(x, memo)
            y_copy2 = copy.deepcopy(y, memo)
            self.assertEqual(id(x_copy), id(x_copy2))
            self.assertEqual(id(y_copy), id(y_copy2))

            # test copy selected rows
姜永久 已提交
480 481 482 483 484 485 486
            x = core.eager.Tensor(
                core.VarDesc.VarType.FP32,
                [3, 100],
                "selected_rows",
                core.VarDesc.VarType.SELECTED_ROWS,
                True,
            )
487

488
            selected_rows = x.value().get_selected_rows()
489 490 491
            selected_rows.get_tensor().set(
                np.random.rand(3, 100), core.CPUPlace()
            )
492 493 494 495 496 497 498 499 500 501
            selected_rows.set_height(10)
            selected_rows.set_rows([3, 5, 7])
            x_copy = copy.deepcopy(x)

            self.assertEqual(x_copy.stop_gradient, x.stop_gradient)
            self.assertEqual(x_copy.persistable, x.persistable)
            self.assertEqual(x_copy.type, x.type)
            self.assertEqual(x_copy.dtype, x.dtype)

            copy_selected_rows = x_copy.value().get_selected_rows()
502 503 504
            self.assertEqual(
                copy_selected_rows.height(), selected_rows.height()
            )
505
            self.assertEqual(copy_selected_rows.rows(), selected_rows.rows())
506 507
            np.testing.assert_array_equal(
                np.array(copy_selected_rows.get_tensor()),
508 509
                np.array(selected_rows.get_tensor()),
            )
510

L
Leo Chen 已提交
511
    # test some patched methods
512
    def test_set_value(self):
L
Leo Chen 已提交
513 514 515 516 517 518 519
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            tmp1 = np.random.uniform(0.1, 1, [2, 2, 3]).astype(self.dtype)
            self.assertRaises(AssertionError, var.set_value, tmp1)

            tmp2 = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)
            var.set_value(tmp2)
520
            np.testing.assert_array_equal(var.numpy(), tmp2)
L
Leo Chen 已提交
521

522
    def test_to_string(self):
L
Leo Chen 已提交
523 524
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
525
            self.assertTrue(isinstance(str(var), str))
L
Leo Chen 已提交
526

527
    def test_element_size(self):
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
        with fluid.dygraph.guard():
            x = paddle.to_tensor(1, dtype='bool')
            self.assertEqual(x.element_size(), 1)

            x = paddle.to_tensor(1, dtype='float16')
            self.assertEqual(x.element_size(), 2)

            x = paddle.to_tensor(1, dtype='float32')
            self.assertEqual(x.element_size(), 4)

            x = paddle.to_tensor(1, dtype='float64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.to_tensor(1, dtype='int8')
            self.assertEqual(x.element_size(), 1)

            x = paddle.to_tensor(1, dtype='int16')
            self.assertEqual(x.element_size(), 2)

            x = paddle.to_tensor(1, dtype='int32')
            self.assertEqual(x.element_size(), 4)

            x = paddle.to_tensor(1, dtype='int64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.to_tensor(1, dtype='uint8')
            self.assertEqual(x.element_size(), 1)

            x = paddle.to_tensor(1, dtype='complex64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.to_tensor(1, dtype='complex128')
            self.assertEqual(x.element_size(), 16)

562
    def test_backward(self):
L
Leo Chen 已提交
563 564 565
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            var.stop_gradient = False
566
            loss = F.relu(var)
L
Leo Chen 已提交
567 568 569 570
            loss.backward()
            grad_var = var._grad_ivar()
            self.assertEqual(grad_var.shape, self.shape)

571
    def test_gradient(self):
L
Leo Chen 已提交
572 573 574
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            var.stop_gradient = False
575
            loss = F.relu(var)
L
Leo Chen 已提交
576 577 578 579
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, self.array.shape)

580
    def test_block(self):
L
Leo Chen 已提交
581 582
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
583 584 585
            self.assertEqual(
                var.block, fluid.default_main_program().global_block()
            )
L
Leo Chen 已提交
586

587 588
    def _test_slice(self):
        w = fluid.dygraph.to_variable(
589 590
            np.random.random((784, 100, 100)).astype('float64')
        )
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612

        for i in range(3):
            nw = w[i]
            self.assertEqual((100, 100), tuple(nw.shape))

        nw = w[:]
        self.assertEqual((784, 100, 100), tuple(nw.shape))

        nw = w[:, :]
        self.assertEqual((784, 100, 100), tuple(nw.shape))

        nw = w[:, :, -1]
        self.assertEqual((784, 100), tuple(nw.shape))

        nw = w[1, 1, 1]

        self.assertEqual(len(nw.shape), 1)
        self.assertEqual(nw.shape[0], 1)

        nw = w[:, :, :-1]
        self.assertEqual((784, 100, 99), tuple(nw.shape))

613 614 615 616 617 618 619
        tensor_array = np.array(
            [
                [[1, 2, 3], [4, 5, 6], [7, 8, 9]],
                [[10, 11, 12], [13, 14, 15], [16, 17, 18]],
                [[19, 20, 21], [22, 23, 24], [25, 26, 27]],
            ]
        ).astype('float32')
620 621 622 623 624 625
        var = fluid.dygraph.to_variable(tensor_array)
        var1 = var[0, 1, 1]
        var2 = var[1:]
        var3 = var[0:1]
        var4 = var[::-1]
        var5 = var[1, 1:, 1:]
626
        var_reshape = paddle.reshape(var, [3, -1, 3])
627 628 629 630 631 632 633 634 635 636
        var6 = var_reshape[:, :, -1]
        var7 = var[:, :, :-1]
        var8 = var[:1, :1, :1]
        var9 = var[:-1, :-1, :-1]
        var10 = var[::-1, :1, :-1]
        var11 = var[:-1, ::-1, -1:]
        var12 = var[1:2, 2:, ::-1]
        var13 = var[2:10, 2:, -2:-1]
        var14 = var[1:-1, 0:2, ::-1]
        var15 = var[::-1, ::-1, ::-1]
637
        var16 = var[-4:4]
638 639
        var17 = var[:, 0, 0:0]
        var18 = var[:, 1:1:2]
640 641

        vars = [
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
            var,
            var1,
            var2,
            var3,
            var4,
            var5,
            var6,
            var7,
            var8,
            var9,
            var10,
            var11,
            var12,
            var13,
            var14,
            var15,
            var16,
            var17,
            var18,
661 662 663
        ]
        local_out = [var.numpy() for var in vars]

664 665 666 667 668 669
        np.testing.assert_array_equal(local_out[1], tensor_array[0, 1, 1:2])
        np.testing.assert_array_equal(local_out[2], tensor_array[1:])
        np.testing.assert_array_equal(local_out[3], tensor_array[0:1])
        np.testing.assert_array_equal(local_out[4], tensor_array[::-1])
        np.testing.assert_array_equal(local_out[5], tensor_array[1, 1:, 1:])
        np.testing.assert_array_equal(
670 671
            local_out[6], tensor_array.reshape((3, -1, 3))[:, :, -1]
        )
672 673 674
        np.testing.assert_array_equal(local_out[7], tensor_array[:, :, :-1])
        np.testing.assert_array_equal(local_out[8], tensor_array[:1, :1, :1])
        np.testing.assert_array_equal(local_out[9], tensor_array[:-1, :-1, :-1])
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
        np.testing.assert_array_equal(
            local_out[10], tensor_array[::-1, :1, :-1]
        )
        np.testing.assert_array_equal(
            local_out[11], tensor_array[:-1, ::-1, -1:]
        )
        np.testing.assert_array_equal(
            local_out[12], tensor_array[1:2, 2:, ::-1]
        )
        np.testing.assert_array_equal(
            local_out[13], tensor_array[2:10, 2:, -2:-1]
        )
        np.testing.assert_array_equal(
            local_out[14], tensor_array[1:-1, 0:2, ::-1]
        )
        np.testing.assert_array_equal(
            local_out[15], tensor_array[::-1, ::-1, ::-1]
        )
693 694 695
        np.testing.assert_array_equal(local_out[16], tensor_array[-4:4])
        np.testing.assert_array_equal(local_out[17], tensor_array[:, 0, 0:0])
        np.testing.assert_array_equal(local_out[18], tensor_array[:, 1:1:2])
696

697
    def _test_slice_for_tensor_attr(self):
698 699 700 701 702 703 704
        tensor_array = np.array(
            [
                [[1, 2, 3], [4, 5, 6], [7, 8, 9]],
                [[10, 11, 12], [13, 14, 15], [16, 17, 18]],
                [[19, 20, 21], [22, 23, 24], [25, 26, 27]],
            ]
        ).astype('float32')
705 706 707 708 709 710 711 712 713 714 715 716 717 718

        var = paddle.to_tensor(tensor_array)

        one = paddle.ones(shape=[1], dtype="int32")
        two = paddle.full(shape=[1], fill_value=2, dtype="int32")
        negative_one = paddle.full(shape=[1], fill_value=-1, dtype="int32")
        four = paddle.full(shape=[1], fill_value=4, dtype="int32")

        var = fluid.dygraph.to_variable(tensor_array)
        var1 = var[0, one, one]
        var2 = var[one:]
        var3 = var[0:one]
        var4 = var[::negative_one]
        var5 = var[one, one:, one:]
719
        var_reshape = paddle.reshape(var, [3, negative_one, 3])
720 721 722 723 724 725 726 727 728 729 730 731 732
        var6 = var_reshape[:, :, negative_one]
        var7 = var[:, :, :negative_one]
        var8 = var[:one, :one, :1]
        var9 = var[:-1, :negative_one, :negative_one]
        var10 = var[::negative_one, :one, :negative_one]
        var11 = var[:negative_one, ::-1, negative_one:]
        var12 = var[one:2, 2:, ::negative_one]
        var13 = var[two:10, 2:, -2:negative_one]
        var14 = var[1:negative_one, 0:2, ::negative_one]
        var15 = var[::negative_one, ::-1, ::negative_one]
        var16 = var[-4:4]

        vars = [
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
            var,
            var1,
            var2,
            var3,
            var4,
            var5,
            var6,
            var7,
            var8,
            var9,
            var10,
            var11,
            var12,
            var13,
            var14,
            var15,
            var16,
750 751 752
        ]
        local_out = [var.numpy() for var in vars]

753 754 755 756 757 758
        np.testing.assert_array_equal(local_out[1], tensor_array[0, 1, 1:2])
        np.testing.assert_array_equal(local_out[2], tensor_array[1:])
        np.testing.assert_array_equal(local_out[3], tensor_array[0:1])
        np.testing.assert_array_equal(local_out[4], tensor_array[::-1])
        np.testing.assert_array_equal(local_out[5], tensor_array[1, 1:, 1:])
        np.testing.assert_array_equal(
759 760
            local_out[6], tensor_array.reshape((3, -1, 3))[:, :, -1]
        )
761 762 763
        np.testing.assert_array_equal(local_out[7], tensor_array[:, :, :-1])
        np.testing.assert_array_equal(local_out[8], tensor_array[:1, :1, :1])
        np.testing.assert_array_equal(local_out[9], tensor_array[:-1, :-1, :-1])
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
        np.testing.assert_array_equal(
            local_out[10], tensor_array[::-1, :1, :-1]
        )
        np.testing.assert_array_equal(
            local_out[11], tensor_array[:-1, ::-1, -1:]
        )
        np.testing.assert_array_equal(
            local_out[12], tensor_array[1:2, 2:, ::-1]
        )
        np.testing.assert_array_equal(
            local_out[13], tensor_array[2:10, 2:, -2:-1]
        )
        np.testing.assert_array_equal(
            local_out[14], tensor_array[1:-1, 0:2, ::-1]
        )
        np.testing.assert_array_equal(
            local_out[15], tensor_array[::-1, ::-1, ::-1]
        )
782
        np.testing.assert_array_equal(local_out[16], tensor_array[-4:4])
783

784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
    def _test_for_getitem_ellipsis_index(self):
        shape = (64, 3, 5, 256)
        np_fp32_value = np.random.random(shape).astype('float32')
        np_int_value = np.random.randint(1, 100, shape)

        var_fp32 = paddle.to_tensor(np_fp32_value)
        var_int = paddle.to_tensor(np_int_value)

        def assert_getitem_ellipsis_index(var_tensor, var_np):
            var = [
                var_tensor[..., 0].numpy(),
                var_tensor[..., 1, 0].numpy(),
                var_tensor[0, ..., 1, 0].numpy(),
                var_tensor[1, ..., 1].numpy(),
                var_tensor[2, ...].numpy(),
                var_tensor[2, 0, ...].numpy(),
                var_tensor[2, 0, 1, ...].numpy(),
                var_tensor[...].numpy(),
                var_tensor[:, ..., 100].numpy(),
            ]

805 806 807 808 809 810 811 812 813
            np.testing.assert_array_equal(var[0], var_np[..., 0])
            np.testing.assert_array_equal(var[1], var_np[..., 1, 0])
            np.testing.assert_array_equal(var[2], var_np[0, ..., 1, 0])
            np.testing.assert_array_equal(var[3], var_np[1, ..., 1])
            np.testing.assert_array_equal(var[4], var_np[2, ...])
            np.testing.assert_array_equal(var[5], var_np[2, 0, ...])
            np.testing.assert_array_equal(var[6], var_np[2, 0, 1, ...])
            np.testing.assert_array_equal(var[7], var_np[...])
            np.testing.assert_array_equal(var[8], var_np[:, ..., 100])
814 815 816 817 818 819 820

        var_fp32 = paddle.to_tensor(np_fp32_value)
        var_int = paddle.to_tensor(np_int_value)

        assert_getitem_ellipsis_index(var_fp32, np_fp32_value)
        assert_getitem_ellipsis_index(var_int, np_int_value)

821 822
        # test 1 dim tensor
        var_one_dim = paddle.to_tensor([1, 2, 3, 4])
823 824 825
        np.testing.assert_array_equal(
            var_one_dim[..., 0].numpy(), np.array([1])
        )
826

827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
    def _test_none_index(self):
        shape = (8, 64, 5, 256)
        np_value = np.random.random(shape).astype('float32')
        var_tensor = paddle.to_tensor(np_value)

        var = [
            var_tensor[1, 0, None].numpy(),
            var_tensor[None, ..., 1, 0].numpy(),
            var_tensor[:, :, :, None].numpy(),
            var_tensor[1, ..., 1, None].numpy(),
            var_tensor[2, ..., None, None].numpy(),
            var_tensor[None, 2, 0, ...].numpy(),
            var_tensor[None, 2, None, 1].numpy(),
            var_tensor[None].numpy(),
            var_tensor[0, 0, None, 0, 0, None].numpy(),
842
            var_tensor[None, None, 0, ..., None].numpy(),
843
            var_tensor[..., None, :, None].numpy(),
844 845 846
            var_tensor[0, 1:10:2, None, None, ...].numpy(),
        ]

847 848 849 850 851 852 853 854 855
        np.testing.assert_array_equal(var[0], np_value[1, 0, None])
        np.testing.assert_array_equal(var[1], np_value[None, ..., 1, 0])
        np.testing.assert_array_equal(var[2], np_value[:, :, :, None])
        np.testing.assert_array_equal(var[3], np_value[1, ..., 1, None])
        np.testing.assert_array_equal(var[4], np_value[2, ..., None, None])
        np.testing.assert_array_equal(var[5], np_value[None, 2, 0, ...])
        np.testing.assert_array_equal(var[6], np_value[None, 2, None, 1])
        np.testing.assert_array_equal(var[7], np_value[None])
        np.testing.assert_array_equal(var[8], np_value[0, 0, None, 0, 0, None])
856 857 858
        np.testing.assert_array_equal(
            var[9], np_value[None, None, 0, ..., None]
        )
859
        np.testing.assert_array_equal(var[10], np_value[..., None, :, None])
860

861 862
        # TODO(zyfncg) there is a bug of dimensions when slice step > 1 and
        #              indexs has int type
863
        # self.assertTrue(
864
        #     np.array_equal(var[11], np_value[0, 1:10:2, None, None, ...]))
865

Z
zyfncg 已提交
866 867 868 869
    def _test_bool_index(self):
        shape = (4, 2, 5, 64)
        np_value = np.random.random(shape).astype('float32')
        var_tensor = paddle.to_tensor(np_value)
870 871 872 873 874 875 876 877 878 879
        index = [
            [True, True, True, True],
            [True, False, True, True],
            [True, False, False, True],
            [False, 0, 1, True, True],
            [False, False, False, False],
        ]
        index2d = np.array(
            [[True, True], [False, False], [True, False], [True, True]]
        )
Z
zyfncg 已提交
880 881
        tensor_index = paddle.to_tensor(index2d)
        var = [
882 883 884 885
            var_tensor[index[0]].numpy(),
            var_tensor[index[1]].numpy(),
            var_tensor[index[2]].numpy(),
            var_tensor[index[3]].numpy(),
Z
zyfncg 已提交
886 887
            var_tensor[paddle.to_tensor(index[0])].numpy(),
            var_tensor[tensor_index].numpy(),
888
            var_tensor[paddle.to_tensor(index[4])].numpy(),
Z
zyfncg 已提交
889
        ]
890 891 892 893 894 895 896
        np.testing.assert_array_equal(var[0], np_value[index[0]])
        np.testing.assert_array_equal(var[1], np_value[index[1]])
        np.testing.assert_array_equal(var[2], np_value[index[2]])
        np.testing.assert_array_equal(var[3], np_value[index[3]])
        np.testing.assert_array_equal(var[4], np_value[index[0]])
        np.testing.assert_array_equal(var[5], np_value[index2d])
        np.testing.assert_array_equal(var[6], np_value[index[4]])
897 898 899 900 901 902
        np.testing.assert_array_equal(
            var_tensor[var_tensor > 0.67], np_value[np_value > 0.67]
        )
        np.testing.assert_array_equal(
            var_tensor[var_tensor < 0.55], np_value[np_value < 0.55]
        )
Z
zyfncg 已提交
903 904 905 906 907 908 909 910 911 912

        with self.assertRaises(ValueError):
            var_tensor[[False, False, False, False]]
        with self.assertRaises(ValueError):
            var_tensor[[True, False]]
        with self.assertRaises(ValueError):
            var_tensor[[True, False, False, False, False]]
        with self.assertRaises(IndexError):
            var_tensor[paddle.to_tensor([[True, False, False, False]])]

913 914 915 916 917 918
    def _test_scalar_bool_index(self):
        shape = (1, 2, 5, 64)
        np_value = np.random.random(shape).astype('float32')
        var_tensor = paddle.to_tensor(np_value)
        index = [True]
        tensor_index = paddle.to_tensor(index)
919 920 921
        var = [
            var_tensor[tensor_index].numpy(),
        ]
922
        np.testing.assert_array_equal(var[0], np_value[index])
923

H
hong 已提交
924 925 926 927 928
    def _test_for_var(self):
        np_value = np.random.random((30, 100, 100)).astype('float32')
        w = fluid.dygraph.to_variable(np_value)

        for i, e in enumerate(w):
929
            np.testing.assert_array_equal(e.numpy(), np_value[i])
H
hong 已提交
930

931 932 933
    def _test_numpy_index(self):
        array = np.arange(120).reshape([4, 5, 6])
        t = paddle.to_tensor(array)
934 935
        np.testing.assert_array_equal(t[np.longlong(0)].numpy(), array[0])
        np.testing.assert_array_equal(
936 937 938
            t[np.longlong(0) : np.longlong(4) : np.longlong(2)].numpy(),
            array[0:4:2],
        )
939 940
        np.testing.assert_array_equal(t[np.int64(0)].numpy(), array[0])
        np.testing.assert_array_equal(
941 942
            t[np.int32(1) : np.int32(4) : np.int32(2)].numpy(), array[1:4:2]
        )
943
        np.testing.assert_array_equal(
944 945
            t[np.int16(0) : np.int16(4) : np.int16(2)].numpy(), array[0:4:2]
        )
946 947 948 949 950 951

    def _test_list_index(self):
        # case1:
        array = np.arange(120).reshape([6, 5, 4])
        x = paddle.to_tensor(array)
        py_idx = [[0, 2, 0, 1, 3], [0, 0, 1, 2, 0]]
J
JYChen 已提交
952 953 954 955 956 957 958 959 960 961 962 963 964

        # note(chenjianye):
        # Non-tuple sequence for multidimensional indexing is supported in numpy < 1.23.
        # For List case, the outermost `[]` will be treated as tuple `()` in version less than 1.23,
        # which is used to wrap index elements for multiple axes.
        # And from 1.23, this will be treat as a whole and only works on one axis.
        #
        # e.g. x[[[0],[1]]] == x[([0],[1])] == x[[0],[1]] (in version < 1.23)
        #      x[[[0],[1]]] == x[array([[0],[1]])] (in version >= 1.23)
        #
        # Here, we just modify the code to remove the impact of numpy version changes,
        # changing x[[[0],[1]]] to x[tuple([[0],[1]])] == x[([0],[1])] == x[[0],[1]].
        # Whether the paddle behavior in this case will change is still up for debate.
965
        idx = [paddle.to_tensor(py_idx[0]), paddle.to_tensor(py_idx[1])]
J
JYChen 已提交
966 967
        np.testing.assert_array_equal(x[idx].numpy(), array[tuple(py_idx)])
        np.testing.assert_array_equal(x[py_idx].numpy(), array[tuple(py_idx)])
968 969
        # case2:
        tensor_x = paddle.to_tensor(
970 971
            np.zeros(12).reshape(2, 6).astype(np.float32)
        )
972 973
        tensor_y1 = paddle.zeros([1], dtype='int32') + 2
        tensor_y2 = paddle.zeros([1], dtype='int32') + 5
974 975
        tensor_x[:, tensor_y1:tensor_y2] = 42
        res = tensor_x.numpy()
976 977 978 979 980 981
        exp = np.array(
            [
                [0.0, 0.0, 42.0, 42.0, 42.0, 0.0],
                [0.0, 0.0, 42.0, 42.0, 42.0, 0.0],
            ]
        )
982
        np.testing.assert_array_equal(res, exp)
983

W
WeiXin 已提交
984 985 986
        # case3:
        row = np.array([0, 1, 2])
        col = np.array([2, 1, 3])
987
        np.testing.assert_array_equal(array[row, col], x[row, col].numpy())
W
WeiXin 已提交
988

989
    def test_slice(self):
L
Leo Chen 已提交
990
        with fluid.dygraph.guard():
991
            self._test_slice()
992
            self._test_slice_for_tensor_attr()
H
hong 已提交
993
            self._test_for_var()
994
            self._test_for_getitem_ellipsis_index()
995
            self._test_none_index()
Z
zyfncg 已提交
996
            self._test_bool_index()
997
            self._test_scalar_bool_index()
998 999
            self._test_numpy_index()
            self._test_list_index()
1000

L
Leo Chen 已提交
1001
            var = fluid.dygraph.to_variable(self.array)
1002 1003
            np.testing.assert_array_equal(var[1, :].numpy(), self.array[1, :])
            np.testing.assert_array_equal(var[::-1].numpy(), self.array[::-1])
L
Leo Chen 已提交
1004

H
hong 已提交
1005 1006 1007
            with self.assertRaises(IndexError):
                y = var[self.shape[0]]

1008 1009 1010
            with self.assertRaises(IndexError):
                y = var[0 - self.shape[0] - 1]

W
WeiXin 已提交
1011 1012 1013 1014
            with self.assertRaises(IndexError):
                mask = np.array([1, 0, 1, 0], dtype=bool)
                var[paddle.to_tensor([0, 1]), mask]

1015
    def test_var_base_to_np(self):
L
Leo Chen 已提交
1016 1017
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
W
wanghuancoder 已提交
1018
            np.testing.assert_array_equal(var.numpy(), var.numpy(False))
L
Leo Chen 已提交
1019

1020
    def test_var_base_as_np(self):
1021 1022
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
1023
            np.testing.assert_array_equal(var.numpy(), np.array(var))
1024 1025 1026
            np.testing.assert_array_equal(
                var.numpy(), np.array(var, dtype=np.float32)
            )
1027

1028
    def test_if(self):
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
        with fluid.dygraph.guard():
            var1 = fluid.dygraph.to_variable(np.array([[[0]]]))
            var2 = fluid.dygraph.to_variable(np.array([[[1]]]))

            var1_bool = False
            var2_bool = False

            if var1:
                var1_bool = True

            if var2:
                var2_bool = True

1042 1043 1044 1045
            assert not var1_bool, "if var1 should be false"
            assert var2_bool, "if var2 should be true"
            assert not bool(var1), "bool(var1) is False"
            assert bool(var2), "bool(var2) is True"
1046

1047
    def test_to_static_var(self):
1048
        with fluid.dygraph.guard():
W
wanghuancoder 已提交
1049
            # Convert Tensor into Variable or Parameter
1050 1051 1052 1053 1054 1055 1056 1057
            var_base = fluid.dygraph.to_variable(self.array, name="var_base_1")
            static_var = var_base._to_static_var()
            self._assert_to_static(var_base, static_var)

            var_base = fluid.dygraph.to_variable(self.array, name="var_base_2")
            static_param = var_base._to_static_var(to_parameter=True)
            self._assert_to_static(var_base, static_param, True)

W
wanghuancoder 已提交
1058
            # Convert EagerParamBase into Parameter
1059
            fc = paddle.nn.Linear(
1060 1061
                10,
                20,
1062
                weight_attr=paddle.ParamAttr(
1063 1064
                    learning_rate=0.001,
                    do_model_average=True,
1065
                    regularizer=paddle.regularizer.L1Decay(),
1066 1067
                ),
            )
1068 1069 1070 1071 1072 1073 1074 1075
            weight = fc.parameters()[0]
            static_param = weight._to_static_var()
            self._assert_to_static(weight, static_param, True)

    def _assert_to_static(self, var_base, static_var, is_param=False):
        if is_param:
            self.assertTrue(isinstance(static_var, fluid.framework.Parameter))
            self.assertTrue(static_var.persistable, True)
W
wanghuancoder 已提交
1076
            if isinstance(var_base, fluid.framework.EagerParamBase):
1077
                for attr in ['trainable', 'is_distributed', 'do_model_average']:
1078 1079 1080
                    self.assertEqual(
                        getattr(var_base, attr), getattr(static_var, attr)
                    )
1081

1082 1083 1084
                self.assertEqual(
                    static_var.optimize_attr['learning_rate'], 0.001
                )
1085
                self.assertTrue(
1086 1087 1088 1089
                    isinstance(
                        static_var.regularizer, fluid.regularizer.L1Decay
                    )
                )
1090 1091 1092 1093 1094 1095 1096 1097 1098
        else:
            self.assertTrue(isinstance(static_var, fluid.framework.Variable))

        attr_keys = ['block', 'dtype', 'type', 'name']
        for attr in attr_keys:
            self.assertEqual(getattr(var_base, attr), getattr(static_var, attr))

        self.assertListEqual(list(var_base.shape), list(static_var.shape))

1099
    def test_tensor_str(self):
Z
Zhou Wei 已提交
1100
        paddle.enable_static()
1101
        paddle.disable_static(paddle.CPUPlace())
C
cnn 已提交
1102
        paddle.seed(10)
1103 1104 1105 1106
        a = paddle.rand([10, 20])
        paddle.set_printoptions(4, 100, 3)
        a_str = str(a)

1107
        expected = '''Tensor(shape=[10, 20], dtype=float32, place=Place(cpu), stop_gradient=True,
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
       [[0.2727, 0.5489, 0.8655, ..., 0.2916, 0.8525, 0.9000],
        [0.3806, 0.8996, 0.0928, ..., 0.9535, 0.8378, 0.6409],
        [0.1484, 0.4038, 0.8294, ..., 0.0148, 0.6520, 0.4250],
        ...,
        [0.3426, 0.1909, 0.7240, ..., 0.4218, 0.2676, 0.5679],
        [0.5561, 0.2081, 0.0676, ..., 0.9778, 0.3302, 0.9559],
        [0.2665, 0.8483, 0.5389, ..., 0.4956, 0.6862, 0.9178]])'''

        self.assertEqual(a_str, expected)

1118
    def test_tensor_str2(self):
1119 1120 1121 1122
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor([[1.5111111, 1.0], [0, 0]])
        a_str = str(a)

1123
        expected = '''Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
1124 1125 1126 1127 1128
       [[1.5111, 1.    ],
        [0.    , 0.    ]])'''

        self.assertEqual(a_str, expected)

1129
    def test_tensor_str3(self):
1130 1131 1132 1133
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor([[-1.5111111, 1.0], [0, -0.5]])
        a_str = str(a)

1134
        expected = '''Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
1135 1136 1137 1138 1139
       [[-1.5111,  1.    ],
        [ 0.    , -0.5000]])'''

        self.assertEqual(a_str, expected)

1140
    def test_tensor_str_scaler(self):
1141 1142 1143 1144
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor(np.array(False))
        a_str = str(a)

1145
        expected = '''Tensor(shape=[], dtype=bool, place=Place(cpu), stop_gradient=True,
1146 1147 1148 1149
       False)'''

        self.assertEqual(a_str, expected)

1150
    def test_tensor_str_shape_with_zero(self):
1151 1152
        paddle.disable_static(paddle.CPUPlace())
        x = paddle.ones((10, 10))
1153
        y = paddle.nonzero(x == 0)
1154 1155
        a_str = str(y)

1156
        expected = '''Tensor(shape=[0, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
1157 1158 1159 1160
       [])'''

        self.assertEqual(a_str, expected)

1161
    def test_tensor_str_linewidth(self):
1162 1163 1164
        paddle.disable_static(paddle.CPUPlace())
        paddle.seed(2021)
        x = paddle.rand([128])
1165 1166 1167
        paddle.set_printoptions(
            precision=4, threshold=1000, edgeitems=3, linewidth=80
        )
1168 1169
        a_str = str(x)

1170
        expected = '''Tensor(shape=[128], dtype=float32, place=Place(cpu), stop_gradient=True,
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
       [0.3759, 0.0278, 0.2489, 0.3110, 0.9105, 0.7381, 0.1905, 0.4726, 0.2435,
        0.9142, 0.3367, 0.7243, 0.7664, 0.9915, 0.2921, 0.1363, 0.8096, 0.2915,
        0.9564, 0.9972, 0.2573, 0.2597, 0.3429, 0.2484, 0.9579, 0.7003, 0.4126,
        0.4274, 0.0074, 0.9686, 0.9910, 0.0144, 0.6564, 0.2932, 0.7114, 0.9301,
        0.6421, 0.0538, 0.1273, 0.5771, 0.9336, 0.6416, 0.1832, 0.9311, 0.7702,
        0.7474, 0.4479, 0.3382, 0.5579, 0.0444, 0.9802, 0.9874, 0.3038, 0.5640,
        0.2408, 0.5489, 0.8866, 0.1006, 0.5881, 0.7560, 0.7928, 0.8604, 0.4670,
        0.9285, 0.1482, 0.4541, 0.1307, 0.6221, 0.4902, 0.1147, 0.4415, 0.2987,
        0.7276, 0.2077, 0.7551, 0.9652, 0.4369, 0.2282, 0.0047, 0.2934, 0.4308,
        0.4190, 0.1442, 0.3650, 0.3056, 0.6535, 0.1211, 0.8721, 0.7408, 0.4220,
        0.5937, 0.3123, 0.9198, 0.0275, 0.5338, 0.4622, 0.7521, 0.3609, 0.4703,
        0.1736, 0.8976, 0.7616, 0.3756, 0.2416, 0.2907, 0.3246, 0.4305, 0.5717,
        0.0735, 0.0361, 0.5534, 0.4399, 0.9260, 0.6525, 0.3064, 0.4573, 0.9210,
        0.8269, 0.2424, 0.7494, 0.8945, 0.7098, 0.8078, 0.4707, 0.5715, 0.7232,
        0.4678, 0.5047])'''

        self.assertEqual(a_str, expected)

1189
    def test_tensor_str_linewidth2(self):
1190 1191 1192 1193 1194 1195
        paddle.disable_static(paddle.CPUPlace())
        paddle.seed(2021)
        x = paddle.rand([128])
        paddle.set_printoptions(precision=4, linewidth=160, sci_mode=True)
        a_str = str(x)

1196
        expected = '''Tensor(shape=[128], dtype=float32, place=Place(cpu), stop_gradient=True,
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
       [3.7587e-01, 2.7798e-02, 2.4891e-01, 3.1097e-01, 9.1053e-01, 7.3811e-01, 1.9045e-01, 4.7258e-01, 2.4354e-01, 9.1415e-01, 3.3666e-01, 7.2428e-01,
        7.6640e-01, 9.9146e-01, 2.9215e-01, 1.3625e-01, 8.0957e-01, 2.9153e-01, 9.5642e-01, 9.9718e-01, 2.5732e-01, 2.5973e-01, 3.4292e-01, 2.4841e-01,
        9.5794e-01, 7.0029e-01, 4.1260e-01, 4.2737e-01, 7.3788e-03, 9.6863e-01, 9.9102e-01, 1.4416e-02, 6.5640e-01, 2.9318e-01, 7.1136e-01, 9.3008e-01,
        6.4209e-01, 5.3849e-02, 1.2730e-01, 5.7712e-01, 9.3359e-01, 6.4155e-01, 1.8320e-01, 9.3110e-01, 7.7021e-01, 7.4736e-01, 4.4793e-01, 3.3817e-01,
        5.5794e-01, 4.4412e-02, 9.8023e-01, 9.8735e-01, 3.0376e-01, 5.6397e-01, 2.4082e-01, 5.4893e-01, 8.8659e-01, 1.0065e-01, 5.8812e-01, 7.5600e-01,
        7.9280e-01, 8.6041e-01, 4.6701e-01, 9.2852e-01, 1.4821e-01, 4.5410e-01, 1.3074e-01, 6.2210e-01, 4.9024e-01, 1.1466e-01, 4.4154e-01, 2.9868e-01,
        7.2758e-01, 2.0766e-01, 7.5508e-01, 9.6522e-01, 4.3688e-01, 2.2823e-01, 4.7394e-03, 2.9342e-01, 4.3083e-01, 4.1902e-01, 1.4416e-01, 3.6500e-01,
        3.0560e-01, 6.5350e-01, 1.2115e-01, 8.7206e-01, 7.4081e-01, 4.2203e-01, 5.9372e-01, 3.1230e-01, 9.1979e-01, 2.7486e-02, 5.3383e-01, 4.6224e-01,
        7.5211e-01, 3.6094e-01, 4.7034e-01, 1.7355e-01, 8.9763e-01, 7.6165e-01, 3.7557e-01, 2.4157e-01, 2.9074e-01, 3.2458e-01, 4.3049e-01, 5.7171e-01,
        7.3509e-02, 3.6087e-02, 5.5341e-01, 4.3993e-01, 9.2601e-01, 6.5248e-01, 3.0640e-01, 4.5727e-01, 9.2104e-01, 8.2688e-01, 2.4243e-01, 7.4937e-01,
        8.9448e-01, 7.0981e-01, 8.0783e-01, 4.7065e-01, 5.7154e-01, 7.2319e-01, 4.6777e-01, 5.0465e-01])'''

        self.assertEqual(a_str, expected)

1211
    def test_tensor_str_bf16(self):
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor([[1.5, 1.0], [0, 0]])
        a = paddle.cast(a, dtype=core.VarDesc.VarType.BF16)
        paddle.set_printoptions(precision=4)
        a_str = str(a)

        expected = '''Tensor(shape=[2, 2], dtype=bfloat16, place=Place(cpu), stop_gradient=True,
       [[1.5000, 1.    ],
        [0.    , 0.    ]])'''

        self.assertEqual(a_str, expected)

1224
    def test_print_tensor_dtype(self):
L
Leo Chen 已提交
1225 1226 1227 1228 1229 1230 1231
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.rand([1])
        a_str = str(a.dtype)

        expected = 'paddle.float32'

        self.assertEqual(a_str, expected)
1232

L
Leo Chen 已提交
1233

1234
class TestVarBaseSetitem(unittest.TestCase):
1235
    def func_setUp(self):
1236 1237 1238
        self.set_dtype()
        self.tensor_x = paddle.to_tensor(np.ones((4, 2, 3)).astype(self.dtype))
        self.np_value = np.random.random((2, 3)).astype(self.dtype)
1239 1240
        self.tensor_value = paddle.to_tensor(self.np_value)

1241 1242 1243
    def set_dtype(self):
        self.dtype = "int32"

1244
    def _test(self, value):
1245
        id_origin = id(self.tensor_x)
1246
        self.tensor_x[0] = value
1247
        if isinstance(value, (int, float)):
1248
            result = np.zeros((2, 3)).astype(self.dtype) + value
1249 1250 1251 1252

        else:
            result = self.np_value

1253
        np.testing.assert_array_equal(self.tensor_x[0].numpy(), result)
1254 1255 1256
        self.assertEqual(id_origin, id(self.tensor_x))

        self.tensor_x[1:2] = value
1257
        np.testing.assert_array_equal(self.tensor_x[1].numpy(), result)
1258 1259 1260
        self.assertEqual(id_origin, id(self.tensor_x))

        self.tensor_x[...] = value
1261
        np.testing.assert_array_equal(self.tensor_x[3].numpy(), result)
1262 1263
        self.assertEqual(id_origin, id(self.tensor_x))

W
wanghuancoder 已提交
1264
    def func_test_value_tensor(self):
1265 1266
        self._test(self.tensor_value)

W
wanghuancoder 已提交
1267
    def test_value_tensor(self):
1268
        self.func_setUp()
W
wanghuancoder 已提交
1269 1270 1271
        self.func_test_value_tensor()

    def func_test_value_numpy(self):
1272 1273
        self._test(self.np_value)

W
wanghuancoder 已提交
1274
    def test_value_numpy(self):
1275
        self.func_setUp()
W
wanghuancoder 已提交
1276 1277 1278
        self.func_test_value_numpy()

    def func_test_value_int(self):
1279 1280
        self._test(10)

W
wanghuancoder 已提交
1281
    def test_value_int(self):
1282
        self.func_setUp()
W
wanghuancoder 已提交
1283 1284
        self.func_test_value_int()

1285 1286 1287 1288 1289 1290 1291 1292 1293 1294

class TestVarBaseSetitemInt64(TestVarBaseSetitem):
    def set_dtype(self):
        self.dtype = "int64"


class TestVarBaseSetitemFp32(TestVarBaseSetitem):
    def set_dtype(self):
        self.dtype = "float32"

1295
    def func_test_value_float(self):
1296 1297 1298
        paddle.disable_static()
        self._test(3.3)

1299 1300 1301 1302
    def test_value_float(self):
        self.func_setUp()
        self.func_test_value_float()

1303

1304 1305 1306 1307 1308
class TestVarBaseSetitemFp64(TestVarBaseSetitem):
    def set_dtype(self):
        self.dtype = "float64"


1309
class TestVarBaseSetitemBoolIndex(unittest.TestCase):
1310
    def func_setUp(self):
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
        paddle.disable_static()
        self.set_dtype()
        self.set_input()

    def set_input(self):
        self.tensor_x = paddle.to_tensor(np.ones((4, 2, 3)).astype(self.dtype))
        self.np_value = np.random.random((2, 3)).astype(self.dtype)
        self.tensor_value = paddle.to_tensor(self.np_value)

    def set_dtype(self):
        self.dtype = "int32"

    def _test(self, value):
        paddle.disable_static()
        self.assertEqual(self.tensor_x.inplace_version, 0)

        id_origin = id(self.tensor_x)
        index_1 = paddle.to_tensor(np.array([True, False, False, False]))
        self.tensor_x[index_1] = value
        self.assertEqual(self.tensor_x.inplace_version, 1)

1332
        if isinstance(value, (int, float)):
1333 1334 1335 1336 1337
            result = np.zeros((2, 3)).astype(self.dtype) + value

        else:
            result = self.np_value

1338
        np.testing.assert_array_equal(self.tensor_x[0].numpy(), result)
1339 1340 1341 1342 1343
        self.assertEqual(id_origin, id(self.tensor_x))

        index_2 = paddle.to_tensor(np.array([False, True, False, False]))
        self.tensor_x[index_2] = value
        self.assertEqual(self.tensor_x.inplace_version, 2)
1344
        np.testing.assert_array_equal(self.tensor_x[1].numpy(), result)
1345 1346 1347 1348 1349
        self.assertEqual(id_origin, id(self.tensor_x))

        index_3 = paddle.to_tensor(np.array([True, True, True, True]))
        self.tensor_x[index_3] = value
        self.assertEqual(self.tensor_x.inplace_version, 3)
1350
        np.testing.assert_array_equal(self.tensor_x[3].numpy(), result)
1351 1352
        self.assertEqual(id_origin, id(self.tensor_x))

1353
    def func_test_value_tensor(self):
1354 1355 1356
        paddle.disable_static()
        self._test(self.tensor_value)

1357 1358 1359 1360 1361
    def test_value_tensor(self):
        self.func_setUp()
        self.func_test_value_tensor()

    def func_test_value_numpy(self):
1362 1363 1364
        paddle.disable_static()
        self._test(self.np_value)

1365 1366 1367 1368 1369
    def test_value_numpy(self):
        self.func_setUp()
        self.func_test_value_numpy()

    def func_test_value_int(self):
1370 1371 1372
        paddle.disable_static()
        self._test(10)

1373 1374 1375 1376
    def test_value_int(self):
        self.func_setUp()
        self.func_test_value_int()

1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392

class TestVarBaseSetitemBoolScalarIndex(unittest.TestCase):
    def set_input(self):
        self.tensor_x = paddle.to_tensor(np.ones((1, 2, 3)).astype(self.dtype))
        self.np_value = np.random.random((2, 3)).astype(self.dtype)
        self.tensor_value = paddle.to_tensor(self.np_value)

    def _test(self, value):
        paddle.disable_static()
        self.assertEqual(self.tensor_x.inplace_version, 0)

        id_origin = id(self.tensor_x)
        index = paddle.to_tensor(np.array([True]))
        self.tensor_x[index] = value
        self.assertEqual(self.tensor_x.inplace_version, 1)

1393
        if isinstance(value, (int, float)):
1394 1395 1396 1397 1398
            result = np.zeros((2, 3)).astype(self.dtype) + value

        else:
            result = self.np_value

1399
        np.testing.assert_array_equal(self.tensor_x[0].numpy(), result)
1400 1401 1402
        self.assertEqual(id_origin, id(self.tensor_x))


1403
class TestVarBaseInplaceVersion(unittest.TestCase):
1404
    def test_setitem(self):
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
        paddle.disable_static()

        var = paddle.ones(shape=[4, 2, 3], dtype="float32")
        self.assertEqual(var.inplace_version, 0)

        var[1] = 1
        self.assertEqual(var.inplace_version, 1)

        var[1:2] = 1
        self.assertEqual(var.inplace_version, 2)

1416
    def test_bump_inplace_version(self):
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
        paddle.disable_static()
        var = paddle.ones(shape=[4, 2, 3], dtype="float32")
        self.assertEqual(var.inplace_version, 0)

        var._bump_inplace_version()
        self.assertEqual(var.inplace_version, 1)

        var._bump_inplace_version()
        self.assertEqual(var.inplace_version, 2)


1428
class TestVarBaseSlice(unittest.TestCase):
1429
    def test_slice(self):
1430 1431 1432 1433 1434 1435 1436 1437 1438
        paddle.disable_static()
        np_x = np.random.random((3, 8, 8))
        x = paddle.to_tensor(np_x, dtype="float64")
        actual_x = x._slice(0, 1)
        actual_x = paddle.to_tensor(actual_x)
        self.assertEqual(actual_x.numpy().all(), np_x[0:1].all())


class TestVarBaseClear(unittest.TestCase):
1439
    def test_clear(self):
1440 1441 1442 1443 1444 1445 1446 1447
        paddle.disable_static()
        np_x = np.random.random((3, 8, 8))
        x = paddle.to_tensor(np_x, dtype="float64")
        x._clear()
        self.assertEqual(str(x), "Tensor(Not initialized)")


class TestVarBaseOffset(unittest.TestCase):
1448
    def test_offset(self):
1449 1450 1451 1452 1453 1454 1455 1456 1457
        paddle.disable_static()
        np_x = np.random.random((3, 8, 8))
        x = paddle.to_tensor(np_x, dtype="float64")
        expected_offset = 0
        actual_x = x._slice(expected_offset, 1)
        actual_x = paddle.to_tensor(actual_x)
        self.assertEqual(actual_x._offset(), expected_offset)


1458
class TestVarBaseShareBufferTo(unittest.TestCase):
1459
    def test_share_buffer_To(self):
1460
        paddle.disable_static()
1461 1462 1463
        np_src = np.random.random((3, 8, 8))
        src = paddle.to_tensor(np_src, dtype="float64")
        # empty_var
姜永久 已提交
1464
        dst = core.eager.Tensor()
1465 1466
        src._share_buffer_to(dst)
        self.assertEqual(src._is_shared_buffer_with(dst), True)
1467 1468 1469


class TestVarBaseTo(unittest.TestCase):
1470
    def func_setUp(self):
1471 1472 1473 1474
        paddle.disable_static()
        self.np_x = np.random.random((3, 8, 8))
        self.x = paddle.to_tensor(self.np_x, dtype="float32")

1475
    def func_test_to_api(self):
1476 1477
        x_double = self.x._to(dtype='double')
        self.assertEqual(x_double.dtype, paddle.fluid.core.VarDesc.VarType.FP64)
1478
        np.testing.assert_allclose(self.np_x, x_double, rtol=1e-05)
1479 1480 1481

        x_ = self.x._to()
        self.assertEqual(self.x.dtype, paddle.fluid.core.VarDesc.VarType.FP64)
1482
        np.testing.assert_allclose(self.np_x, x_, rtol=1e-05)
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495

        if paddle.fluid.is_compiled_with_cuda():
            x_gpu = self.x._to(device=paddle.CUDAPlace(0))
            self.assertTrue(x_gpu.place.is_gpu_place())
            self.assertEqual(x_gpu.place.gpu_device_id(), 0)

            x_gpu0 = self.x._to(device='gpu:0')
            self.assertTrue(x_gpu0.place.is_gpu_place())
            self.assertEqual(x_gpu0.place.gpu_device_id(), 0)

            x_gpu1 = self.x._to(device='gpu:0', dtype="float64")
            self.assertTrue(x_gpu1.place.is_gpu_place())
            self.assertEqual(x_gpu1.place.gpu_device_id(), 0)
1496 1497 1498
            self.assertEqual(
                x_gpu1.dtype, paddle.fluid.core.VarDesc.VarType.FP64
            )
1499 1500 1501 1502

            x_gpu2 = self.x._to(device='gpu:0', dtype="float16")
            self.assertTrue(x_gpu2.place.is_gpu_place())
            self.assertEqual(x_gpu2.place.gpu_device_id(), 0)
1503 1504 1505
            self.assertEqual(
                x_gpu2.dtype, paddle.fluid.core.VarDesc.VarType.FP16
            )
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523

        x_cpu = self.x._to(device=paddle.CPUPlace())
        self.assertTrue(x_cpu.place.is_cpu_place())

        x_cpu0 = self.x._to(device='cpu')
        self.assertTrue(x_cpu0.place.is_cpu_place())

        x_cpu1 = self.x._to(device=paddle.CPUPlace(), dtype="float64")
        self.assertTrue(x_cpu1.place.is_cpu_place())
        self.assertEqual(x_cpu1.dtype, paddle.fluid.core.VarDesc.VarType.FP64)

        x_cpu2 = self.x._to(device='cpu', dtype="float16")
        self.assertTrue(x_cpu2.place.is_cpu_place())
        self.assertEqual(x_cpu2.dtype, paddle.fluid.core.VarDesc.VarType.FP16)

        self.assertRaises(ValueError, self.x._to, device=1)
        self.assertRaises(AssertionError, self.x._to, blocking=1)

1524 1525 1526 1527
    def test_to_api(self):
        self.func_setUp()
        self.func_test_to_api()

1528 1529

class TestVarBaseInitVarBaseFromTensorWithDevice(unittest.TestCase):
1530
    def test_varbase_init(self):
1531 1532 1533 1534 1535 1536 1537
        paddle.disable_static()
        t = fluid.Tensor()
        np_x = np.random.random((3, 8, 8))
        t.set(np_x, fluid.CPUPlace())

        if paddle.fluid.is_compiled_with_cuda():
            device = paddle.CUDAPlace(0)
姜永久 已提交
1538
            tmp = fluid.core.eager.Tensor(t, device)
1539 1540 1541 1542
            self.assertTrue(tmp.place.is_gpu_place())
            self.assertEqual(tmp.numpy().all(), np_x.all())

        device = paddle.CPUPlace()
姜永久 已提交
1543
        tmp = fluid.core.eager.Tensor(t, device)
1544 1545 1546 1547
        self.assertEqual(tmp.numpy().all(), np_x.all())


class TestVarBaseNumel(unittest.TestCase):
1548
    def test_numel_normal(self):
1549 1550 1551 1552 1553 1554 1555
        paddle.disable_static()
        np_x = np.random.random((3, 8, 8))
        x = paddle.to_tensor(np_x, dtype="float64")
        x_actual_numel = x._numel()
        x_expected_numel = np.product((3, 8, 8))
        self.assertEqual(x_actual_numel, x_expected_numel)

1556
    def test_numel_without_holder(self):
1557
        paddle.disable_static()
姜永久 已提交
1558
        x_without_holder = core.eager.Tensor()
1559 1560 1561
        x_actual_numel = x_without_holder._numel()
        self.assertEqual(x_actual_numel, 0)

1562 1563

class TestVarBaseCopyGradientFrom(unittest.TestCase):
1564
    def test_copy_gradient_from(self):
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
        paddle.disable_static()
        np_x = np.random.random((2, 2))
        np_y = np.random.random((2, 2))
        x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False)
        y = paddle.to_tensor(np_y, dtype="float64")
        out = x + x
        out.backward()
        x._copy_gradient_from(y)
        self.assertEqual(x.grad.numpy().all(), np_y.all())


1576 1577
class TestEagerTensorGradNameValue(unittest.TestCase):
    def test_eager_tensor_grad_name_value(self):
1578 1579 1580 1581 1582 1583 1584 1585
        a_np = np.array([2, 3]).astype('float32')
        a = paddle.to_tensor(a_np)
        a.stop_gradient = False
        b = a**2
        self.assertIsNone(a._grad_value())
        b.backward()
        # Note, for new dygraph, there are no generated grad name, so we skip the name check.
        self.assertIsNotNone(a._grad_value())
1586 1587


L
Leo Chen 已提交
1588 1589
if __name__ == '__main__':
    unittest.main()