gpu_info.cc 8.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
liaogang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/platform/gpu_info.h"
L
liaogang 已提交
16

17
#include <algorithm>
L
liaogang 已提交
18

19
#include "gflags/gflags.h"
Y
Yi Wang 已提交
20
#include "paddle/fluid/platform/enforce.h"
21
#include "paddle/fluid/string/split.h"
L
liaogang 已提交
22

23
#ifndef _WIN32
P
peizhilin 已提交
24
constexpr static float fraction_of_gpu_memory_to_use = 0.92f;
25
#else
P
peizhilin 已提交
26 27 28
// fraction_of_gpu_memory_to_use cannot be too high on windows,
// since the win32 graphic sub-system can occupy some GPU memory
// which may lead to insufficient memory left for paddle
P
peizhilin 已提交
29
constexpr static float fraction_of_gpu_memory_to_use = 0.5f;
30 31 32
#endif

DEFINE_double(fraction_of_gpu_memory_to_use, fraction_of_gpu_memory_to_use,
X
Xin Pan 已提交
33 34 35 36 37
              "Allocate a trunk of gpu memory that is this fraction of the "
              "total gpu memory size. Future memory usage will be allocated "
              "from the trunk. If the trunk doesn't have enough gpu memory, "
              "additional trunks of the same size will be requested from gpu "
              "until the gpu has no memory left for another trunk.");
L
liaogang 已提交
38

39 40 41 42 43 44 45 46 47 48
DEFINE_bool(
    enable_cublas_tensor_op_math, false,
    "The enable_cublas_tensor_op_math indicate whether to use Tensor Core, "
    "but it may loss precision. Currently, There are two CUDA libraries that"
    " use Tensor Cores, cuBLAS and cuDNN. cuBLAS uses Tensor Cores to speed up"
    " GEMM computations(the matrices must be either half precision or single "
    "precision); cuDNN uses Tensor Cores to speed up both convolutions(the "
    "input and output must be half precision) and recurrent neural networks "
    "(RNNs).");

49 50 51 52 53 54 55 56 57
DEFINE_string(selected_gpus, "",
              "A list of device ids separated by comma, like: 0,1,2,3. "
              "This option is useful when doing multi process training and "
              "each process have only one device (GPU). If you want to use "
              "all visible devices, set this to empty string. NOTE: the "
              "reason of doing this is that we want to use P2P communication"
              "between GPU devices, use CUDA_VISIBLE_DEVICES can only use"
              "share-memory only.");

L
liaogang 已提交
58 59 60
namespace paddle {
namespace platform {

61
int GetCUDADeviceCount() {
L
liaogang 已提交
62
  int count;
L
liaogang 已提交
63
  PADDLE_ENFORCE(
L
liaogang 已提交
64
      cudaGetDeviceCount(&count),
65
      "cudaGetDeviceCount failed in paddle::platform::GetCUDADeviceCount");
L
liaogang 已提交
66 67 68
  return count;
}

69 70 71 72 73 74 75 76 77
int GetCUDAComputeCapability(int id) {
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(), "id must less than GPU count");
  cudaDeviceProp device_prop;
  PADDLE_ENFORCE(cudaGetDeviceProperties(&device_prop, id),
                 "cudaGetDeviceProperties failed in "
                 "paddle::platform::GetCUDAComputeCapability");
  return device_prop.major * 10 + device_prop.minor;
}

C
chengduo 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
int GetCUDARuntimeVersion(int id) {
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(), "id must less than GPU count");
  int runtime_version = 0;
  PADDLE_ENFORCE(cudaRuntimeGetVersion(&runtime_version),
                 "cudaRuntimeGetVersion failed in "
                 "paddle::platform::cudaRuntimeGetVersion");
  return runtime_version;
}

int GetCUDADriverVersion(int id) {
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(), "id must less than GPU count");
  int driver_version = 0;
  PADDLE_ENFORCE(cudaDriverGetVersion(&driver_version),
                 "cudaDriverGetVersion failed in "
                 "paddle::platform::GetCUDADriverVersion");
  return driver_version;
}

96 97 98 99 100 101 102 103 104 105
bool TensorCoreAvailable() {
#if CUDA_VERSION >= 9000
  int device = GetCurrentDeviceId();
  int driver_version = GetCUDAComputeCapability(device);
  return driver_version >= 70;
#else
  return false;
#endif
}

C
chengduoZH 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
int GetCUDAMultiProcessors(int id) {
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(), "id must less than GPU count");
  int count;
  PADDLE_ENFORCE(
      cudaDeviceGetAttribute(&count, cudaDevAttrMultiProcessorCount, id),
      "cudaDeviceGetAttribute failed in "
      "paddle::platform::GetCUDAMultiProcessors");
  return count;
}

int GetCUDAMaxThreadsPerMultiProcessor(int id) {
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(), "id must less than GPU count");
  int count;
  PADDLE_ENFORCE(cudaDeviceGetAttribute(
                     &count, cudaDevAttrMaxThreadsPerMultiProcessor, id),
                 "cudaDeviceGetAttribute failed in "
                 "paddle::platform::GetCUDAMaxThreadsPerMultiProcessor");
  return count;
}

L
liaogang 已提交
126 127
int GetCurrentDeviceId() {
  int device_id;
L
liaogang 已提交
128
  PADDLE_ENFORCE(
L
liaogang 已提交
129 130 131 132 133
      cudaGetDevice(&device_id),
      "cudaGetDevice failed in paddle::platform::GetCurrentDeviceId");
  return device_id;
}

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
//! Get a list of device ids from environment variable or use all.
std::vector<int> GetSelectedDevices() {
  // use user specified GPUs in single-node multi-process mode.
  std::vector<int> devices;
  if (!FLAGS_selected_gpus.empty()) {
    auto devices_str = paddle::string::Split(FLAGS_selected_gpus, ',');
    for (auto id : devices_str) {
      devices.push_back(atoi(id.c_str()));
    }
  } else {
    int count = GetCUDADeviceCount();
    for (int i = 0; i < count; ++i) {
      devices.push_back(i);
    }
  }
  return devices;
}

L
liaogang 已提交
152
void SetDeviceId(int id) {
Q
qijun 已提交
153
  // TODO(qijun): find a better way to cache the cuda device count
Y
Yang Yang 已提交
154
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(), "id must less than GPU count");
L
liaogang 已提交
155
  PADDLE_ENFORCE(cudaSetDevice(id),
L
liaogang 已提交
156 157 158
                 "cudaSetDevice failed in paddle::platform::SetDeviceId");
}

159 160
void GpuMemoryUsage(size_t *available, size_t *total) {
  PADDLE_ENFORCE(cudaMemGetInfo(available, total),
L
liaogang 已提交
161 162 163 164 165 166 167
                 "cudaMemGetInfo failed in paddle::platform::GetMemoryUsage");
}

size_t GpuMaxAllocSize() {
  size_t total = 0;
  size_t available = 0;

168
  GpuMemoryUsage(&available, &total);
L
liaogang 已提交
169

L
liaogang 已提交
170
  // Reserve the rest for page tables, etc.
L
liaogang 已提交
171
  return static_cast<size_t>(total * FLAGS_fraction_of_gpu_memory_to_use);
L
liaogang 已提交
172 173
}

L
liaogang 已提交
174 175 176 177 178 179 180
size_t GpuMinChunkSize() {
  // Allow to allocate the minimum chunk size is 256 bytes.
  return 1 << 8;
}

size_t GpuMaxChunkSize() {
  size_t total = 0;
C
chenweihang 已提交
181
  size_t available = 0;
L
liaogang 已提交
182

C
chenweihang 已提交
183
  GpuMemoryUsage(&available, &total);
M
minqiyang 已提交
184 185
  VLOG(10) << "GPU Usage " << available / 1024 / 1024 << "M/"
           << total / 1024 / 1024 << "M";
186
  size_t reserving = static_cast<size_t>(0.05 * total);
L
liaogang 已提交
187
  // If available less than minimum chunk size, no usable memory exists.
C
chenweihang 已提交
188 189 190
  available =
      std::min(std::max(available, GpuMinChunkSize()) - GpuMinChunkSize(),
               total - reserving);
191 192

  // Reserving the rest memory for page tables, etc.
L
liaogang 已提交
193

C
chenweihang 已提交
194 195
  size_t allocating = static_cast<size_t>(FLAGS_fraction_of_gpu_memory_to_use *
                                          (total - reserving));
L
liaogang 已提交
196

C
chenweihang 已提交
197 198
  PADDLE_ENFORCE_LE(allocating, available,
                    "Insufficient GPU memory to allocation.");
199

C
chenweihang 已提交
200
  return allocating;
L
liaogang 已提交
201 202
}

L
liaogang 已提交
203 204
void GpuMemcpyAsync(void *dst, const void *src, size_t count,
                    enum cudaMemcpyKind kind, cudaStream_t stream) {
L
liaogang 已提交
205 206
  PADDLE_ENFORCE(cudaMemcpyAsync(dst, src, count, kind, stream),
                 "cudaMemcpyAsync failed in paddle::platform::GpuMemcpyAsync");
L
liaogang 已提交
207 208
}

209 210 211 212 213 214 215 216
void GpuMemcpySync(void *dst, const void *src, size_t count,
                   enum cudaMemcpyKind kind) {
  PADDLE_ENFORCE(cudaMemcpy(dst, src, count, kind),
                 "cudaMemcpy failed in paddle::platform::GpuMemcpySync");
}

void GpuMemcpyPeerAsync(void *dst, int dst_device, const void *src,
                        int src_device, size_t count, cudaStream_t stream) {
L
liaogang 已提交
217
  PADDLE_ENFORCE(
L
liaogang 已提交
218
      cudaMemcpyPeerAsync(dst, dst_device, src, src_device, count, stream),
219 220 221 222 223 224 225 226
      "cudaMemcpyPeerAsync failed in paddle::platform::GpuMemcpyPeerAsync");
}

void GpuMemcpyPeerSync(void *dst, int dst_device, const void *src,
                       int src_device, size_t count) {
  PADDLE_ENFORCE(
      cudaMemcpyPeer(dst, dst_device, src, src_device, count),
      "cudaMemcpyPeer failed in paddle::platform::GpuMemcpyPeerSync");
L
liaogang 已提交
227
}
D
dzhwinter 已提交
228 229 230 231 232

void GpuMemsetAsync(void *dst, int value, size_t count, cudaStream_t stream) {
  PADDLE_ENFORCE(cudaMemsetAsync(dst, value, count, stream),
                 "cudaMemsetAsync failed in paddle::platform::GpuMemsetAsync");
}
L
liaogang 已提交
233 234
}  // namespace platform
}  // namespace paddle