yolov3_loss_op.h 20.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

28
using Array5 = Eigen::DSizes<int64_t, 5>;
29 30 31

template <typename T>
static inline bool isZero(T x) {
D
dengkaipeng 已提交
32
  return fabs(x) < 1e-6;
33 34 35
}

template <typename T>
36
static inline T sigmoid(T x) {
37 38 39
  return 1.0 / (exp(-1.0 * x) + 1.0);
}

40 41 42 43 44 45 46 47 48 49 50 51
template <typename T>
static inline T CalcMaskPointNum(const Tensor& mask) {
  auto mask_t = EigenVector<int>::Flatten(mask);
  T count = 0.0;
  for (int i = 0; i < mask_t.dimensions()[0]; i++) {
    if (mask_t(i)) {
      count += 1.0;
    }
  }
  return count;
}

52 53 54 55 56
template <typename T>
static inline T CalcMSEWithMask(const Tensor& x, const Tensor& y,
                                const Tensor& mask) {
  auto x_t = EigenVector<T>::Flatten(x);
  auto y_t = EigenVector<T>::Flatten(y);
57
  auto mask_t = EigenVector<int>::Flatten(mask);
D
dengkaipeng 已提交
58 59 60 61 62 63 64 65 66 67

  T error_sum = 0.0;
  T points = 0.0;
  for (int i = 0; i < x_t.dimensions()[0]; i++) {
    if (mask_t(i)) {
      error_sum += pow(x_t(i) - y_t(i), 2);
      points += 1;
    }
  }
  return (error_sum / points);
68 69
}

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
template <typename T>
static void CalcMSEGradWithMask(Tensor* grad, const Tensor& x, const Tensor& y,
                                const Tensor& mask, T mf) {
  auto grad_t = EigenVector<T>::Flatten(*grad).setConstant(0.0);
  auto x_t = EigenVector<T>::Flatten(x);
  auto y_t = EigenVector<T>::Flatten(y);
  auto mask_t = EigenVector<int>::Flatten(mask);

  for (int i = 0; i < x_t.dimensions()[0]; i++) {
    if (mask_t(i)) {
      grad_t(i) = 2.0 * (x_t(i) - y_t(i)) / mf;
    }
  }
}

85 86 87 88 89
template <typename T>
static inline T CalcBCEWithMask(const Tensor& x, const Tensor& y,
                                const Tensor& mask) {
  auto x_t = EigenVector<T>::Flatten(x);
  auto y_t = EigenVector<T>::Flatten(y);
90
  auto mask_t = EigenVector<int>::Flatten(mask);
91

D
dengkaipeng 已提交
92 93 94 95 96 97 98 99 100 101
  T error_sum = 0.0;
  T points = 0.0;
  for (int i = 0; i < x_t.dimensions()[0]; i++) {
    if (mask_t(i)) {
      error_sum +=
          -1.0 * (y_t(i) * log(x_t(i)) + (1.0 - y_t(i)) * log(1.0 - x_t(i)));
      points += 1;
    }
  }
  return (error_sum / points);
102 103 104
}

template <typename T>
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
static inline void CalcBCEGradWithMask(Tensor* grad, const Tensor& x,
                                       const Tensor& y, const Tensor& mask,
                                       T mf) {
  auto grad_t = EigenVector<T>::Flatten(*grad).setConstant(0.0);
  auto x_t = EigenVector<T>::Flatten(x);
  auto y_t = EigenVector<T>::Flatten(y);
  auto mask_t = EigenVector<int>::Flatten(mask);

  for (int i = 0; i < x_t.dimensions()[0]; i++) {
    if (mask_t(i)) {
      grad_t(i) = ((1.0 - y_t(i)) / (1.0 - x_t(i)) - y_t(i) / x_t(i)) / mf;
    }
  }
}

template <typename T>
static void CalcPredResult(const Tensor& input, Tensor* pred_conf,
                           Tensor* pred_class, Tensor* pred_x, Tensor* pred_y,
                           Tensor* pred_w, Tensor* pred_h, const int anchor_num,
                           const int class_num) {
125 126 127 128 129 130
  const int n = input.dims()[0];
  const int h = input.dims()[2];
  const int w = input.dims()[3];
  const int box_attr_num = 5 + class_num;

  auto input_t = EigenTensor<T, 4>::From(input);
131 132
  auto pred_conf_t = EigenTensor<T, 4>::From(*pred_conf);
  auto pred_class_t = EigenTensor<T, 5>::From(*pred_class);
133 134 135 136 137 138 139 140 141 142
  auto pred_x_t = EigenTensor<T, 4>::From(*pred_x);
  auto pred_y_t = EigenTensor<T, 4>::From(*pred_y);
  auto pred_w_t = EigenTensor<T, 4>::From(*pred_w);
  auto pred_h_t = EigenTensor<T, 4>::From(*pred_h);

  for (int i = 0; i < n; i++) {
    for (int an_idx = 0; an_idx < anchor_num; an_idx++) {
      for (int j = 0; j < h; j++) {
        for (int k = 0; k < w; k++) {
          pred_x_t(i, an_idx, j, k) =
143
              sigmoid(input_t(i, box_attr_num * an_idx, j, k));
144
          pred_y_t(i, an_idx, j, k) =
145
              sigmoid(input_t(i, box_attr_num * an_idx + 1, j, k));
146
          pred_w_t(i, an_idx, j, k) =
D
dengkaipeng 已提交
147
              input_t(i, box_attr_num * an_idx + 2, j, k);
148
          pred_h_t(i, an_idx, j, k) =
D
dengkaipeng 已提交
149
              input_t(i, box_attr_num * an_idx + 3, j, k);
150

151 152
          pred_conf_t(i, an_idx, j, k) =
              sigmoid(input_t(i, box_attr_num * an_idx + 4, j, k));
153 154

          for (int c = 0; c < class_num; c++) {
155 156
            pred_class_t(i, an_idx, j, k, c) =
                sigmoid(input_t(i, box_attr_num * an_idx + 5 + c, j, k));
157 158 159 160 161 162 163 164
          }
        }
      }
    }
  }
}

template <typename T>
D
dengkaipeng 已提交
165 166 167 168 169 170 171 172 173 174 175 176
static T CalcBoxIoU(std::vector<T> box1, std::vector<T> box2) {
  T b1_x1 = box1[0] - box1[2] / 2;
  T b1_x2 = box1[0] + box1[2] / 2;
  T b1_y1 = box1[1] - box1[3] / 2;
  T b1_y2 = box1[1] + box1[3] / 2;
  T b2_x1 = box2[0] - box2[2] / 2;
  T b2_x2 = box2[0] + box2[2] / 2;
  T b2_y1 = box2[1] - box2[3] / 2;
  T b2_y2 = box2[1] + box2[3] / 2;

  T b1_area = (b1_x2 - b1_x1) * (b1_y2 - b1_y1);
  T b2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1);
177 178 179 180 181

  T inter_rect_x1 = std::max(b1_x1, b2_x1);
  T inter_rect_y1 = std::max(b1_y1, b2_y1);
  T inter_rect_x2 = std::min(b1_x2, b2_x2);
  T inter_rect_y2 = std::min(b1_y2, b2_y2);
D
dengkaipeng 已提交
182 183
  T inter_area = std::max(inter_rect_x2 - inter_rect_x1, static_cast<T>(0.0)) *
                 std::max(inter_rect_y2 - inter_rect_y1, static_cast<T>(0.0));
184

D
dengkaipeng 已提交
185
  return inter_area / (b1_area + b2_area - inter_area);
186 187 188
}

template <typename T>
D
dengkaipeng 已提交
189 190 191 192 193
static void PreProcessGTBox(const Tensor& gt_box, const Tensor& gt_label,
                            const float ignore_thresh, std::vector<int> anchors,
                            const int grid_size, Tensor* obj_mask,
                            Tensor* noobj_mask, Tensor* tx, Tensor* ty,
                            Tensor* tw, Tensor* th, Tensor* tconf,
D
dengkaipeng 已提交
194
                            Tensor* tclass) {
D
dengkaipeng 已提交
195 196
  const int n = gt_box.dims()[0];
  const int b = gt_box.dims()[1];
197
  const int anchor_num = anchors.size() / 2;
D
dengkaipeng 已提交
198 199
  auto gt_box_t = EigenTensor<T, 3>::From(gt_box);
  auto gt_label_t = EigenTensor<int, 2>::From(gt_label);
D
dengkaipeng 已提交
200 201
  auto obj_mask_t = EigenTensor<int, 4>::From(*obj_mask).setConstant(0);
  auto noobj_mask_t = EigenTensor<int, 4>::From(*noobj_mask).setConstant(1);
202 203 204 205 206 207 208 209 210
  auto tx_t = EigenTensor<T, 4>::From(*tx).setConstant(0.0);
  auto ty_t = EigenTensor<T, 4>::From(*ty).setConstant(0.0);
  auto tw_t = EigenTensor<T, 4>::From(*tw).setConstant(0.0);
  auto th_t = EigenTensor<T, 4>::From(*th).setConstant(0.0);
  auto tconf_t = EigenTensor<T, 4>::From(*tconf).setConstant(0.0);
  auto tclass_t = EigenTensor<T, 5>::From(*tclass).setConstant(0.0);

  for (int i = 0; i < n; i++) {
    for (int j = 0; j < b; j++) {
D
dengkaipeng 已提交
211 212
      if (isZero<T>(gt_box_t(i, j, 0)) && isZero<T>(gt_box_t(i, j, 1)) &&
          isZero<T>(gt_box_t(i, j, 2)) && isZero<T>(gt_box_t(i, j, 3))) {
213 214 215
        continue;
      }

D
dengkaipeng 已提交
216 217 218 219 220
      int cur_label = gt_label_t(i, j);
      T gx = gt_box_t(i, j, 0) * grid_size;
      T gy = gt_box_t(i, j, 1) * grid_size;
      T gw = gt_box_t(i, j, 2) * grid_size;
      T gh = gt_box_t(i, j, 3) * grid_size;
221 222 223
      int gi = static_cast<int>(gx);
      int gj = static_cast<int>(gy);

224
      T max_iou = static_cast<T>(0);
225 226
      T iou;
      int best_an_index = -1;
D
dengkaipeng 已提交
227
      std::vector<T> gt_box_shape({0, 0, gw, gh});
228 229 230
      for (int an_idx = 0; an_idx < anchor_num; an_idx++) {
        std::vector<T> anchor_shape({0, 0, static_cast<T>(anchors[2 * an_idx]),
                                     static_cast<T>(anchors[2 * an_idx + 1])});
D
dengkaipeng 已提交
231
        iou = CalcBoxIoU<T>(gt_box_shape, anchor_shape);
232 233 234 235 236
        if (iou > max_iou) {
          max_iou = iou;
          best_an_index = an_idx;
        }
        if (iou > ignore_thresh) {
237
          noobj_mask_t(i, an_idx, gj, gi) = 0;
238 239
        }
      }
240 241
      obj_mask_t(i, best_an_index, gj, gi) = 1;
      noobj_mask_t(i, best_an_index, gj, gi) = 0;
242 243
      tx_t(i, best_an_index, gj, gi) = gx - gi;
      ty_t(i, best_an_index, gj, gi) = gy - gj;
D
dengkaipeng 已提交
244 245
      tw_t(i, best_an_index, gj, gi) = log(gw / anchors[2 * best_an_index]);
      th_t(i, best_an_index, gj, gi) = log(gh / anchors[2 * best_an_index + 1]);
D
dengkaipeng 已提交
246
      tclass_t(i, best_an_index, gj, gi, cur_label) = 1;
247
      tconf_t(i, best_an_index, gj, gi) = 1;
248 249
    }
  }
250 251 252 253 254 255 256 257 258 259 260 261 262 263
}

static void ExpandObjMaskByClassNum(Tensor* obj_mask_expand,
                                    const Tensor& obj_mask) {
  const int n = obj_mask_expand->dims()[0];
  const int an_num = obj_mask_expand->dims()[1];
  const int h = obj_mask_expand->dims()[2];
  const int w = obj_mask_expand->dims()[3];
  const int class_num = obj_mask_expand->dims()[4];
  auto obj_mask_expand_t = EigenTensor<int, 5>::From(*obj_mask_expand);
  auto obj_mask_t = EigenTensor<int, 4>::From(obj_mask);

  obj_mask_expand_t = obj_mask_t.reshape(Array5(n, an_num, h, w, 1))
                          .broadcast(Array5(1, 1, 1, 1, class_num));
264 265
}

266 267 268 269 270
template <typename T>
static void AddAllGradToInputGrad(
    Tensor* grad, T loss, const Tensor& pred_x, const Tensor& pred_y,
    const Tensor& pred_conf, const Tensor& pred_class, const Tensor& grad_x,
    const Tensor& grad_y, const Tensor& grad_w, const Tensor& grad_h,
D
dengkaipeng 已提交
271 272 273 274
    const Tensor& grad_conf_target, const Tensor& grad_conf_notarget,
    const Tensor& grad_class, const int class_num, const float loss_weight_xy,
    const float loss_weight_wh, const float loss_weight_conf_target,
    const float loss_weight_conf_notarget, const float loss_weight_class) {
275 276 277 278 279 280 281 282 283 284 285 286 287 288
  const int n = pred_x.dims()[0];
  const int an_num = pred_x.dims()[1];
  const int h = pred_x.dims()[2];
  const int w = pred_x.dims()[3];
  const int attr_num = class_num + 5;
  auto grad_t = EigenTensor<T, 4>::From(*grad).setConstant(0.0);
  auto pred_x_t = EigenTensor<T, 4>::From(pred_x);
  auto pred_y_t = EigenTensor<T, 4>::From(pred_y);
  auto pred_conf_t = EigenTensor<T, 4>::From(pred_conf);
  auto pred_class_t = EigenTensor<T, 5>::From(pred_class);
  auto grad_x_t = EigenTensor<T, 4>::From(grad_x);
  auto grad_y_t = EigenTensor<T, 4>::From(grad_y);
  auto grad_w_t = EigenTensor<T, 4>::From(grad_w);
  auto grad_h_t = EigenTensor<T, 4>::From(grad_h);
D
dengkaipeng 已提交
289 290
  auto grad_conf_target_t = EigenTensor<T, 4>::From(grad_conf_target);
  auto grad_conf_notarget_t = EigenTensor<T, 4>::From(grad_conf_notarget);
291 292 293 294 295 296
  auto grad_class_t = EigenTensor<T, 5>::From(grad_class);

  for (int i = 0; i < n; i++) {
    for (int j = 0; j < an_num; j++) {
      for (int k = 0; k < h; k++) {
        for (int l = 0; l < w; l++) {
D
dengkaipeng 已提交
297 298
          grad_t(i, j * attr_num, k, l) =
              grad_x_t(i, j, k, l) * pred_x_t(i, j, k, l) *
D
dengkaipeng 已提交
299
              (1.0 - pred_x_t(i, j, k, l)) * loss * loss_weight_xy;
300 301
          grad_t(i, j * attr_num + 1, k, l) =
              grad_y_t(i, j, k, l) * pred_y_t(i, j, k, l) *
D
dengkaipeng 已提交
302
              (1.0 - pred_y_t(i, j, k, l)) * loss * loss_weight_xy;
D
dengkaipeng 已提交
303
          grad_t(i, j * attr_num + 2, k, l) =
D
dengkaipeng 已提交
304
              grad_w_t(i, j, k, l) * loss * loss_weight_wh;
D
dengkaipeng 已提交
305
          grad_t(i, j * attr_num + 3, k, l) =
D
dengkaipeng 已提交
306
              grad_h_t(i, j, k, l) * loss * loss_weight_wh;
307
          grad_t(i, j * attr_num + 4, k, l) =
D
dengkaipeng 已提交
308 309
              grad_conf_target_t(i, j, k, l) * pred_conf_t(i, j, k, l) *
              (1.0 - pred_conf_t(i, j, k, l)) * loss * loss_weight_conf_target;
310
          grad_t(i, j * attr_num + 4, k, l) +=
D
dengkaipeng 已提交
311 312 313
              grad_conf_notarget_t(i, j, k, l) * pred_conf_t(i, j, k, l) *
              (1.0 - pred_conf_t(i, j, k, l)) * loss *
              loss_weight_conf_notarget;
314 315 316 317

          for (int c = 0; c < class_num; c++) {
            grad_t(i, j * attr_num + 5 + c, k, l) =
                grad_class_t(i, j, k, l, c) * pred_class_t(i, j, k, l, c) *
D
dengkaipeng 已提交
318
                (1.0 - pred_class_t(i, j, k, l, c)) * loss * loss_weight_class;
319 320 321 322 323 324 325
          }
        }
      }
    }
  }
}

326
template <typename T>
327 328 329 330
class Yolov3LossKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("X");
D
dengkaipeng 已提交
331 332
    auto* gt_box = ctx.Input<Tensor>("GTBox");
    auto* gt_label = ctx.Input<Tensor>("GTLabel");
D
dengkaipeng 已提交
333
    auto* loss = ctx.Output<Tensor>("Loss");
334 335 336
    auto anchors = ctx.Attr<std::vector<int>>("anchors");
    int class_num = ctx.Attr<int>("class_num");
    float ignore_thresh = ctx.Attr<float>("ignore_thresh");
D
dengkaipeng 已提交
337 338 339 340 341 342
    float loss_weight_xy = ctx.Attr<float>("loss_weight_xy");
    float loss_weight_wh = ctx.Attr<float>("loss_weight_wh");
    float loss_weight_conf_target = ctx.Attr<float>("loss_weight_conf_target");
    float loss_weight_conf_notarget =
        ctx.Attr<float>("loss_weight_conf_notarget");
    float loss_weight_class = ctx.Attr<float>("loss_weight_class");
343 344 345 346 347 348 349

    const int n = input->dims()[0];
    const int h = input->dims()[2];
    const int w = input->dims()[3];
    const int an_num = anchors.size() / 2;

    Tensor pred_x, pred_y, pred_w, pred_h;
350
    Tensor pred_conf, pred_class;
351 352 353 354
    pred_x.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    pred_y.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    pred_w.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    pred_h.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
355 356 357 358
    pred_conf.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    pred_class.mutable_data<T>({n, an_num, h, w, class_num}, ctx.GetPlace());
    CalcPredResult<T>(*input, &pred_conf, &pred_class, &pred_x, &pred_y,
                      &pred_w, &pred_h, an_num, class_num);
359

D
dengkaipeng 已提交
360
    Tensor obj_mask, noobj_mask;
361
    Tensor tx, ty, tw, th, tconf, tclass;
D
dengkaipeng 已提交
362 363
    obj_mask.mutable_data<int>({n, an_num, h, w}, ctx.GetPlace());
    noobj_mask.mutable_data<int>({n, an_num, h, w}, ctx.GetPlace());
364 365 366 367 368 369
    tx.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    ty.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    tw.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    th.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    tconf.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    tclass.mutable_data<T>({n, an_num, h, w, class_num}, ctx.GetPlace());
D
dengkaipeng 已提交
370
    PreProcessGTBox<T>(*gt_box, *gt_label, ignore_thresh, anchors, h, &obj_mask,
371
                       &noobj_mask, &tx, &ty, &tw, &th, &tconf, &tclass);
D
dengkaipeng 已提交
372

373 374 375 376 377
    Tensor obj_mask_expand;
    obj_mask_expand.mutable_data<int>({n, an_num, h, w, class_num},
                                      ctx.GetPlace());
    ExpandObjMaskByClassNum(&obj_mask_expand, obj_mask);

D
dengkaipeng 已提交
378 379 380 381
    T loss_x = CalcMSEWithMask<T>(pred_x, tx, obj_mask);
    T loss_y = CalcMSEWithMask<T>(pred_y, ty, obj_mask);
    T loss_w = CalcMSEWithMask<T>(pred_w, tw, obj_mask);
    T loss_h = CalcMSEWithMask<T>(pred_h, th, obj_mask);
D
dengkaipeng 已提交
382 383
    T loss_conf_target = CalcBCEWithMask<T>(pred_conf, tconf, obj_mask);
    T loss_conf_notarget = CalcBCEWithMask<T>(pred_conf, tconf, noobj_mask);
384
    T loss_class = CalcBCEWithMask<T>(pred_class, tclass, obj_mask_expand);
D
dengkaipeng 已提交
385 386

    auto* loss_data = loss->mutable_data<T>({1}, ctx.GetPlace());
D
dengkaipeng 已提交
387 388 389 390 391
    loss_data[0] = loss_weight_xy * (loss_x + loss_y) +
                   loss_weight_wh * (loss_w + loss_h) +
                   loss_weight_conf_target * loss_conf_target +
                   loss_weight_conf_notarget * loss_conf_notarget +
                   loss_weight_class * loss_class;
392 393 394
  }
};

395
template <typename T>
396 397 398
class Yolov3LossGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
399
    auto* input = ctx.Input<Tensor>("X");
D
dengkaipeng 已提交
400 401
    auto* gt_box = ctx.Input<Tensor>("GTBox");
    auto* gt_label = ctx.Input<Tensor>("GTLabel");
402 403 404 405 406 407
    auto anchors = ctx.Attr<std::vector<int>>("anchors");
    int class_num = ctx.Attr<int>("class_num");
    float ignore_thresh = ctx.Attr<float>("ignore_thresh");
    auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* output_grad = ctx.Input<Tensor>(framework::GradVarName("Loss"));
    const T loss = output_grad->data<T>()[0];
D
dengkaipeng 已提交
408 409 410 411 412 413
    float loss_weight_xy = ctx.Attr<float>("loss_weight_xy");
    float loss_weight_wh = ctx.Attr<float>("loss_weight_wh");
    float loss_weight_conf_target = ctx.Attr<float>("loss_weight_conf_target");
    float loss_weight_conf_notarget =
        ctx.Attr<float>("loss_weight_conf_notarget");
    float loss_weight_class = ctx.Attr<float>("loss_weight_class");
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441

    const int n = input->dims()[0];
    const int c = input->dims()[1];
    const int h = input->dims()[2];
    const int w = input->dims()[3];
    const int an_num = anchors.size() / 2;

    Tensor pred_x, pred_y, pred_w, pred_h;
    Tensor pred_conf, pred_class;
    pred_x.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    pred_y.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    pred_w.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    pred_h.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    pred_conf.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    pred_class.mutable_data<T>({n, an_num, h, w, class_num}, ctx.GetPlace());
    CalcPredResult<T>(*input, &pred_conf, &pred_class, &pred_x, &pred_y,
                      &pred_w, &pred_h, an_num, class_num);

    Tensor obj_mask, noobj_mask;
    Tensor tx, ty, tw, th, tconf, tclass;
    obj_mask.mutable_data<int>({n, an_num, h, w}, ctx.GetPlace());
    noobj_mask.mutable_data<int>({n, an_num, h, w}, ctx.GetPlace());
    tx.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    ty.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    tw.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    th.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    tconf.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    tclass.mutable_data<T>({n, an_num, h, w, class_num}, ctx.GetPlace());
D
dengkaipeng 已提交
442
    PreProcessGTBox<T>(*gt_box, *gt_label, ignore_thresh, anchors, h, &obj_mask,
443 444 445 446 447 448 449 450
                       &noobj_mask, &tx, &ty, &tw, &th, &tconf, &tclass);

    Tensor obj_mask_expand;
    obj_mask_expand.mutable_data<int>({n, an_num, h, w, class_num},
                                      ctx.GetPlace());
    ExpandObjMaskByClassNum(&obj_mask_expand, obj_mask);

    Tensor grad_x, grad_y, grad_w, grad_h;
D
dengkaipeng 已提交
451
    Tensor grad_conf_target, grad_conf_notarget, grad_class;
452 453 454 455
    grad_x.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    grad_y.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    grad_w.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    grad_h.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
D
dengkaipeng 已提交
456 457
    grad_conf_target.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    grad_conf_notarget.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
458 459 460 461 462 463 464 465
    grad_class.mutable_data<T>({n, an_num, h, w, class_num}, ctx.GetPlace());
    T obj_mf = CalcMaskPointNum<int>(obj_mask);
    T noobj_mf = CalcMaskPointNum<int>(noobj_mask);
    T obj_expand_mf = CalcMaskPointNum<int>(obj_mask_expand);
    CalcMSEGradWithMask<T>(&grad_x, pred_x, tx, obj_mask, obj_mf);
    CalcMSEGradWithMask<T>(&grad_y, pred_y, ty, obj_mask, obj_mf);
    CalcMSEGradWithMask<T>(&grad_w, pred_w, tw, obj_mask, obj_mf);
    CalcMSEGradWithMask<T>(&grad_h, pred_h, th, obj_mask, obj_mf);
D
dengkaipeng 已提交
466 467 468
    CalcBCEGradWithMask<T>(&grad_conf_target, pred_conf, tconf, obj_mask,
                           obj_mf);
    CalcBCEGradWithMask<T>(&grad_conf_notarget, pred_conf, tconf, noobj_mask,
469 470 471 472 473 474 475
                           noobj_mf);
    CalcBCEGradWithMask<T>(&grad_class, pred_class, tclass, obj_mask_expand,
                           obj_expand_mf);

    input_grad->mutable_data<T>({n, c, h, w}, ctx.GetPlace());
    AddAllGradToInputGrad<T>(
        input_grad, loss, pred_x, pred_y, pred_conf, pred_class, grad_x, grad_y,
D
dengkaipeng 已提交
476 477 478
        grad_w, grad_h, grad_conf_target, grad_conf_notarget, grad_class,
        class_num, loss_weight_xy, loss_weight_wh, loss_weight_conf_target,
        loss_weight_conf_notarget, loss_weight_class);
479 480 481 482 483
  }
};

}  // namespace operators
}  // namespace paddle