test_imperative_basic.py 31.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
Xin Pan 已提交
15
import contextlib
16 17 18 19 20
import unittest
import numpy as np

import paddle.fluid as fluid
from paddle.fluid import core
21
from paddle.fluid import Linear
22
from paddle.fluid.layer_helper import LayerHelper
M
minqiyang 已提交
23
from test_imperative_base import new_program_scope
24
import paddle.fluid.dygraph_utils as dygraph_utils
25
from paddle.fluid.dygraph.layer_object_helper import LayerObjectHelper
26
import paddle
27 28


29
class MyLayer(fluid.Layer):
30 31
    def __init__(self):
        super(MyLayer, self).__init__()
32 33

    def forward(self, inputs):
M
minqiyang 已提交
34
        x = fluid.layers.relu(inputs)
35
        self._x_for_debug = x
X
Xin Pan 已提交
36 37 38
        x = fluid.layers.elementwise_mul(x, x)
        x = fluid.layers.reduce_sum(x)
        return [x]
39 40


41
class MLP(fluid.Layer):
42 43
    def __init__(self, input_size):
        super(MLP, self).__init__()
S
songyouwei 已提交
44
        self._linear1 = None
45 46 47 48 49 50 51 52 53 54 55 56 57 58
        self._linear1 = Linear(
            input_size,
            3,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.1)),
            bias_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.1)))
        self._linear2 = Linear(
            3,
            4,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.1)),
            bias_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.1)))
X
Xin Pan 已提交
59 60

    def forward(self, inputs):
61 62
        x = self._linear1(inputs)
        x = self._linear2(x)
X
Xin Pan 已提交
63 64 65 66
        x = fluid.layers.reduce_sum(x)
        return x


67
class SimpleRNNCell(fluid.Layer):
68 69
    def __init__(self, step_input_size, hidden_size, output_size, param_attr):
        super(SimpleRNNCell, self).__init__()
70 71 72
        self.step_input_size = step_input_size
        self.hidden_size = hidden_size
        self.output_size = output_size
73 74
        self._dtype = core.VarDesc.VarType.FP32
        self.param_attr = param_attr
75 76 77 78

        i2h_param_shape = [self.step_input_size, self.hidden_size]
        h2h_param_shape = [self.hidden_size, self.hidden_size]
        h2o_param_shape = [self.output_size, self.hidden_size]
S
songyouwei 已提交
79
        self._i2h_w = None
80 81
        self._i2h_w = self.create_parameter(
            attr=self.param_attr,
82 83 84
            shape=i2h_param_shape,
            dtype=self._dtype,
            is_bias=False)
85 86
        self._h2h_w = self.create_parameter(
            attr=self.param_attr,
87 88 89
            shape=h2h_param_shape,
            dtype=self._dtype,
            is_bias=False)
90 91
        self._h2o_w = self.create_parameter(
            attr=self.param_attr,
92 93 94 95 96
            shape=h2o_param_shape,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, input, pre_hidden):
97 98 99 100 101 102
        tmp_i2h = self.create_variable(dtype=self._dtype)
        tmp_h2h = self.create_variable(dtype=self._dtype)
        hidden = self.create_variable(dtype=self._dtype)
        out = self.create_variable(dtype=self._dtype)
        softmax_out = self.create_variable(dtype=self._dtype)
        reduce_out = self.create_variable(dtype=self._dtype)
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
        self._helper.append_op(
            type="mul",
            inputs={"X": input,
                    "Y": self._i2h_w},
            outputs={"Out": tmp_i2h},
            attrs={"x_num_col_dims": 1,
                   "y_num_col_dims": 1})

        self._helper.append_op(
            type="mul",
            inputs={"X": pre_hidden,
                    "Y": self._h2h_w},
            outputs={"Out": tmp_h2h},
            attrs={"x_num_col_dims": 1,
                   "y_num_col_dims": 1})

        self._helper.append_op(
            type="elementwise_add",
            inputs={'X': tmp_h2h,
                    'Y': tmp_i2h},
            outputs={'Out': hidden},
            attrs={'axis': -1,
                   'use_mkldnn': False})
126
        hidden = self._helper.append_activation(hidden, act='tanh')
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145

        self._helper.append_op(
            type="mul",
            inputs={"X": hidden,
                    "Y": self._h2o_w},
            outputs={"Out": out},
            attrs={"x_num_col_dims": 1,
                   "y_num_col_dims": 1})

        self._helper.append_op(
            type="softmax",
            inputs={"X": out},
            outputs={"Out": softmax_out},
            attrs={"use_cudnn": False})

        self._helper.append_op(
            type='reduce_sum',
            inputs={'X': softmax_out},
            outputs={'Out': reduce_out},
146
            attrs={'keep_dim': False,
147 148 149 150 151
                   'reduce_all': True})

        return reduce_out, hidden


152
class SimpleRNN(fluid.Layer):
153 154
    def __init__(self):
        super(SimpleRNN, self).__init__()
J
JiabinYang 已提交
155 156 157 158 159 160
        self.seq_len = 4
        self._cell = SimpleRNNCell(
            3,
            3,
            3,
            fluid.ParamAttr(initializer=fluid.initializer.Constant(value=0.1)))
J
JiabinYang 已提交
161 162

    def forward(self, inputs):
J
JiabinYang 已提交
163
        outs = list()
J
JiabinYang 已提交
164 165
        pre_hiddens = list()

166
        init_hidden = self.create_parameter(
J
JiabinYang 已提交
167 168 169 170 171 172
            attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.1)),
            shape=[1, 3],
            dtype='float32',
            is_bias=False)
        pre_hidden = init_hidden
J
JiabinYang 已提交
173
        for i in range(self.seq_len):
J
JiabinYang 已提交
174 175 176
            input = fluid.layers.slice(
                inputs, axes=[1], starts=[i], ends=[i + 1])
            input = fluid.layers.reshape(input, shape=[1, 3])
J
JiabinYang 已提交
177 178
            out_softmax, pre_hidden = self._cell(input, pre_hidden)
            outs.append(out_softmax)
J
JiabinYang 已提交
179

J
JiabinYang 已提交
180
        return outs, pre_hiddens
J
JiabinYang 已提交
181 182


M
minqiyang 已提交
183
class TestImperative(unittest.TestCase):
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
    def test_functional_dygraph_context(self):
        self.assertFalse(fluid.dygraph.enabled())
        fluid.enable_dygraph()
        self.assertTrue(fluid.dygraph.enabled())
        np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
        var_inp = fluid.dygraph.base.to_variable(np_inp)
        mlp = MLP(input_size=2)
        out = mlp(var_inp)
        dy_out1 = out.numpy()
        out.backward()
        dy_grad1 = mlp._linear1.weight.gradient()
        fluid.disable_dygraph()
        self.assertFalse(fluid.dygraph.enabled())
        with fluid.dygraph.guard():
            self.assertTrue(fluid.dygraph.enabled())
            var_inp = fluid.dygraph.base.to_variable(np_inp)
            mlp = MLP(input_size=2)
            out = mlp(var_inp)
            dy_out2 = out.numpy()
            out.backward()
            dy_grad2 = mlp._linear1.weight.gradient()
        self.assertFalse(fluid.dygraph.enabled())
        self.assertTrue(np.array_equal(dy_out1, dy_out2))
207 208 209
        self.assertTrue(np.array_equal(dy_grad1, dy_grad2))

    def test_functional_paddle_imperative_dygraph_context(self):
210 211 212
        self.assertFalse(paddle.in_dynamic_mode())
        paddle.disable_static()
        self.assertTrue(paddle.in_dynamic_mode())
213
        np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
Z
Zhou Wei 已提交
214
        var_inp = paddle.to_tensor(np_inp)
215 216 217 218 219
        mlp = MLP(input_size=2)
        out = mlp(var_inp)
        dy_out1 = out.numpy()
        out.backward()
        dy_grad1 = mlp._linear1.weight.gradient()
220 221 222 223
        paddle.enable_static()
        self.assertFalse(paddle.in_dynamic_mode())
        paddle.disable_static()
        self.assertTrue(paddle.in_dynamic_mode())
Z
Zhou Wei 已提交
224
        var_inp = paddle.to_tensor(np_inp)
225 226 227 228 229 230 231
        mlp = MLP(input_size=2)
        out = mlp(var_inp)
        dy_out2 = out.numpy()
        out.backward()
        dy_grad2 = mlp._linear1.weight.gradient()
        paddle.enable_static()
        self.assertFalse(paddle.in_dynamic_mode())
232
        self.assertTrue(np.array_equal(dy_out1, dy_out2))
233 234
        self.assertTrue(np.array_equal(dy_grad1, dy_grad2))

235 236 237 238 239 240 241 242 243 244 245
    def test_isinstance(self):
        var = fluid.layers.data(shape=[1], name='x', dtype='float32')
        self.assertTrue(isinstance(var, fluid.Variable))
        with fluid.dygraph.guard():
            var_base = fluid.dygraph.base.to_variable(np.array([3, 4, 5]))
            self.assertTrue(isinstance(var_base, core.VarBase))
            self.assertTrue(isinstance(var_base, fluid.Variable))

    def test_create_VarBase(self):
        x = np.ones([2, 2], np.float32)
        y = np.zeros([3, 3], np.float32)
246 247
        t = fluid.Tensor()
        t.set(x, fluid.CPUPlace())
248 249 250 251 252 253
        with fluid.dygraph.guard():
            tmp = fluid.core.VarBase(value=x, place=fluid.core.CPUPlace())
            tmp2 = fluid.core.VarBase(y, fluid.core.CPUPlace())
            tmp3 = fluid.dygraph.base.to_variable(x)
            tmp4 = fluid.core.VarBase(y)
            tmp5 = fluid.core.VarBase(value=x)
254
            tmp6 = fluid.core.VarBase(t)
255 256 257 258 259 260

            self.assertTrue(np.array_equal(x, tmp.numpy()))
            self.assertTrue(np.array_equal(y, tmp2.numpy()))
            self.assertTrue(np.array_equal(x, tmp3.numpy()))
            self.assertTrue(np.array_equal(y, tmp4.numpy()))
            self.assertTrue(np.array_equal(x, tmp5.numpy()))
261
            self.assertTrue(np.array_equal(x, tmp6.numpy()))
262

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
    def test_no_grad_guard(self):
        data = np.array([[2, 3], [4, 5]]).astype('float32')
        with fluid.dygraph.guard():
            l0 = fluid.Linear(2, 2)
            self.assertTrue(l0.weight._grad_ivar() is None)
            l1 = fluid.Linear(2, 2)
            with fluid.dygraph.no_grad():
                self.assertTrue(l1.weight.stop_gradient is False)
                tmp = l1.weight * 2
                self.assertTrue(tmp.stop_gradient)
            x = fluid.dygraph.to_variable(data)
            y = l0(x) + tmp
            o = l1(y)
            o.backward()

            self.assertTrue(tmp._grad_ivar() is None)
            self.assertTrue(l0.weight._grad_ivar() is not None)

281 282 283 284 285 286
    def test_paddle_imperative_no_grad_guard(self):
        data = np.array([[2, 3], [4, 5]]).astype('float32')
        with fluid.dygraph.guard():
            l0 = fluid.Linear(2, 2)
            self.assertTrue(l0.weight._grad_ivar() is None)
            l1 = fluid.Linear(2, 2)
287
            with paddle.no_grad():
288 289
                self.assertTrue(l1.weight.stop_gradient is False)
                tmp = l1.weight * 2
290
                self.assertTrue(tmp.stop_gradient)
291 292 293 294 295
            x = fluid.dygraph.to_variable(data)
            y = l0(x) + tmp
            o = l1(y)
            o.backward()

296
            self.assertTrue(tmp._grad_ivar() is None)
297 298
            self.assertTrue(l0.weight._grad_ivar() is not None)

M
minqiyang 已提交
299 300
    def test_sum_op(self):
        x = np.ones([2, 2], np.float32)
L
lujun 已提交
301
        with fluid.dygraph.guard():
M
minqiyang 已提交
302 303
            inputs = []
            for _ in range(10):
304 305 306
                tmp = fluid.dygraph.base.to_variable(x)
                tmp.stop_gradient = False
                inputs.append(tmp)
M
minqiyang 已提交
307 308
            ret = fluid.layers.sums(inputs)
            loss = fluid.layers.reduce_sum(ret)
L
lujun 已提交
309
            loss.backward()
310 311 312
        with fluid.dygraph.guard():
            inputs2 = []
            for _ in range(10):
313 314 315
                tmp = fluid.dygraph.base.to_variable(x)
                tmp.stop_gradient = False
                inputs2.append(tmp)
316 317
            ret2 = fluid.layers.sums(inputs2)
            loss2 = fluid.layers.reduce_sum(ret2)
318 319
            fluid.set_flags({'FLAGS_sort_sum_gradient': True})
            loss2.backward()
320

321 322
            self.assertTrue(np.allclose(ret.numpy(), x * 10))
            self.assertTrue(np.allclose(inputs[0].gradient(), x))
323 324 325
            self.assertTrue(np.allclose(ret2.numpy(), x * 10))
            a = inputs2[0].gradient()
            self.assertTrue(np.allclose(inputs2[0].gradient(), x))
M
minqiyang 已提交
326

327 328 329 330 331 332 333 334 335
    def test_empty_var(self):
        with fluid.dygraph.guard():
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(
                name="X", shape=[-1, 23, 48], dtype='float32')
            try:
                new_variable.numpy()
            except Exception as e:
336
                assert type(e) == ValueError
337 338 339 340

            try:
                new_variable.backward()
            except Exception as e:
341
                assert type(e) == core.EnforceNotMet
342 343 344 345

            try:
                new_variable.clear_gradient()
            except Exception as e:
346
                assert type(e) == core.EnforceNotMet
347 348 349 350 351 352 353 354 355 356 357 358 359

    def test_empty_grad(self):
        with fluid.dygraph.guard():
            x = np.ones([2, 2], np.float32)
            new_var = fluid.dygraph.base.to_variable(x)
            try:
                new_var.gradient()
            except Exception as e:
                assert type(e) == ValueError

            try:
                new_var.clear_gradient()
            except Exception as e:
360
                assert type(e) == core.EnforceNotMet
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377

        with fluid.dygraph.guard():
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(
                name="X", shape=[-1, 23, 48], dtype='float32')
            try:
                new_variable.gradient()
            except Exception as e:
                assert type(e) == ValueError

    def test_set_persistable(self):
        with fluid.dygraph.guard():
            x = np.ones([2, 2], np.float32)
            new_var = fluid.dygraph.base.to_variable(x)
            self.assertFalse(new_var.persistable)
            new_var.persistable = True
378
            self.assertTrue(new_var.persistable)
379

M
minqiyang 已提交
380
    def test_layer(self):
L
lujun 已提交
381
        with fluid.dygraph.guard():
M
minqiyang 已提交
382 383
            cl = core.Layer()
            cl.forward([])
384
            l = fluid.Layer("l")
M
minqiyang 已提交
385 386 387 388
            self.assertRaises(NotImplementedError, l.forward, [])

    def test_layer_in_out(self):
        np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32)
L
lujun 已提交
389 390
        with fluid.dygraph.guard():
            var_inp = fluid.dygraph.base.to_variable(np_inp)
391
            var_inp.stop_gradient = False
392
            l = MyLayer()
M
minqiyang 已提交
393 394
            x = l(var_inp)[0]
            self.assertIsNotNone(x)
395
            dy_out = x.numpy()
L
lujun 已提交
396
            x.backward()
397
            dy_grad = l._x_for_debug.gradient()
M
minqiyang 已提交
398

399 400
        with fluid.dygraph.guard():
            var_inp2 = fluid.dygraph.base.to_variable(np_inp)
401
            var_inp2.stop_gradient = False
402
            l2 = MyLayer()
403 404 405
            x2 = l2(var_inp2)[0]
            self.assertIsNotNone(x2)
            dy_out2 = x2.numpy()
406 407
            fluid.set_flags({'FLAGS_sort_sum_gradient': True})
            x2.backward()
408 409
            dy_grad2 = l2._x_for_debug.gradient()

M
minqiyang 已提交
410 411 412
        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[3], append_batch_size=False)
413
            l = MyLayer()
M
minqiyang 已提交
414 415 416 417 418 419 420 421 422 423 424 425
            x = l(inp)[0]
            param_grads = fluid.backward.append_backward(
                x, parameter_list=[l._x_for_debug.name])[0]
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))

            static_out, static_grad = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[x.name, param_grads[1].name])

        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad, static_grad))
426 427
        self.assertTrue(np.allclose(dy_out2, static_out))
        self.assertTrue(np.allclose(dy_grad2, static_grad))
M
minqiyang 已提交
428 429 430

    def test_mlp(self):
        np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
L
lujun 已提交
431 432
        with fluid.dygraph.guard():
            var_inp = fluid.dygraph.base.to_variable(np_inp)
433
            mlp = MLP(input_size=2)
M
minqiyang 已提交
434
            out = mlp(var_inp)
435
            dy_out = out.numpy()
L
lujun 已提交
436
            out.backward()
437
            dy_grad = mlp._linear1.weight.gradient()
M
minqiyang 已提交
438

439 440
        with fluid.dygraph.guard():
            var_inp2 = fluid.dygraph.base.to_variable(np_inp)
441
            mlp2 = MLP(input_size=2)
442 443
            out2 = mlp2(var_inp2)
            dy_out2 = out2.numpy()
444 445
            fluid.set_flags({'FLAGS_sort_sum_gradient': True})
            out2.backward()
446
            dy_grad2 = mlp2._linear1.weight.gradient()
447

M
minqiyang 已提交
448 449 450
        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
451
            mlp = MLP(input_size=2)
M
minqiyang 已提交
452 453
            out = mlp(inp)
            param_grads = fluid.backward.append_backward(
454
                out, parameter_list=[mlp._linear1.weight.name])[0]
M
minqiyang 已提交
455 456 457 458 459 460 461 462 463 464
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
            exe.run(fluid.default_startup_program())

            static_out, static_grad = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[out.name, param_grads[1].name])

        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad, static_grad))
465 466
        self.assertTrue(np.allclose(dy_out2, static_out))
        self.assertTrue(np.allclose(dy_grad2, static_grad))
M
minqiyang 已提交
467 468

        params = mlp.parameters(True)
469 470 471 472
        self.assertEqual("linear_0.w_0", params[0].name)
        self.assertEqual("linear_0.b_0", params[1].name)
        self.assertEqual("linear_1.w_0", params[2].name)
        self.assertEqual("linear_1.b_0", params[3].name)
M
minqiyang 已提交
473 474 475
        self.assertEqual(len(params), 4)

        sublayers = mlp.sublayers(True)
476 477
        self.assertEqual(mlp._linear1, sublayers[0])
        self.assertEqual(mlp._linear2, sublayers[1])
M
minqiyang 已提交
478 479
        self.assertEqual(len(sublayers), 2)

480 481 482 483 484 485 486 487 488 489
    def test_gradient_accumulation(self):
        def test_single_api(sort_sum_gradient):
            fluid.set_flags({'FLAGS_sort_sum_gradient': sort_sum_gradient})
            x = paddle.to_tensor(5., stop_gradient=False)
            for i in range(10):
                y = paddle.pow(x, 4.0)
                y.backward()
                self.assertEqual(x.grad, (i + 1) * 500)
            x.clear_gradient()
            self.assertEqual(x.grad, 0.)
490
            for i in range(10):
491 492 493
                y = paddle.pow(x, 4.0)
                y.backward()
                self.assertEqual(x.grad, (i + 1) * 500)
494 495
            x.clear_grad()
            self.assertEqual(x.grad, 0.)
496 497 498 499 500 501 502 503 504 505

        def test_simple_net(sort_sum_gradient):
            fluid.set_flags({'FLAGS_sort_sum_gradient': sort_sum_gradient})
            x = paddle.to_tensor(5., stop_gradient=False)
            y = paddle.to_tensor(2., stop_gradient=False)
            z = paddle.to_tensor(3., stop_gradient=False)

            def fun(x, y, z):
                loss1 = x * x * y
                loss2 = x * z
506 507 508 509 510 511 512 513 514
                loss1.backward(retain_graph=True)
                loss2.backward(retain_graph=True)
                self.assertTrue(np.array_equal(x.grad, [23.]))
                self.assertTrue(np.array_equal(y.grad, [25.]))
                self.assertTrue(np.array_equal(z.grad, [5.]))
                x.clear_grad()
                y.clear_grad()
                z.clear_grad()

515 516
                dx = paddle.grad([loss1], x, create_graph=True)[0]
                loss = loss1 + loss2 + dx
517
                # loss = x*x*y + x*z + 2*x*y
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
                return loss

            loss = fun(x, y, z)
            loss.backward(retain_graph=True)
            # x.grad = 2*x*y + z + 2*y = 27 
            self.assertTrue(np.array_equal(x.grad, [27]))

            loss.backward(retain_graph=True)
            self.assertTrue(np.array_equal(x.grad, [54]))

            loss.backward()
            self.assertTrue(np.array_equal(x.grad, [81]))

            with self.assertRaises(RuntimeError):
                loss.backward()

            loss1 = x * x * y
            loss2 = x * z
            dx = paddle.grad([loss1], x, create_graph=True)[0]
            loss = loss1 + loss2 + dx
            loss.backward()
            self.assertTrue(np.array_equal(dx.grad, [1]))
            self.assertTrue(np.array_equal(x.grad, [108]))

        def test_mlp(sort_sum_gradient):
            fluid.set_flags({'FLAGS_sort_sum_gradient': sort_sum_gradient})
            input_size = 5
            paddle.seed(1)
            mlp1 = MLP(input_size=input_size)
            # generate the gradient of each step
            mlp2 = MLP(input_size=input_size)

550 551 552 553
            expected_weight1_grad = 0.
            expected_bias1_grad = 0.
            expected_weight2_grad = 0.
            expected_bias2_grad = 0.
554

555
            for batch_id in range(100):
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
                x = paddle.uniform([10, input_size])
                detach_x = x.detach()
                clear_loss = mlp2(detach_x)
                clear_loss.backward()
                expected_weight1_grad = expected_weight1_grad + mlp2._linear1.weight.grad
                expected_bias1_grad = expected_bias1_grad + mlp2._linear1.bias.grad
                expected_weight2_grad = expected_weight2_grad + mlp2._linear2.weight.grad
                expected_bias2_grad = expected_bias2_grad + mlp2._linear2.bias.grad

                loss = mlp1(x)
                loss.backward()

                self.assertTrue(np.array_equal(loss.grad, [1]))
                self.assertTrue(
                    np.allclose(mlp1._linear1.weight.grad,
                                expected_weight1_grad))
                self.assertTrue(
                    np.allclose(mlp1._linear1.bias.grad, expected_bias1_grad))
                self.assertTrue(
                    np.allclose(mlp1._linear2.weight.grad,
                                expected_weight2_grad))
                self.assertTrue(
                    np.allclose(mlp1._linear2.bias.grad, expected_bias2_grad))

                mlp2.clear_gradients()
                self.assertTrue(np.array_equal(clear_loss.grad, [1]))
582
                if ((batch_id + 1) % 10) == 0:
583
                    mlp1.clear_gradients()
584 585 586 587
                    expected_weight1_grad = 0.
                    expected_bias1_grad = 0.
                    expected_weight2_grad = 0.
                    expected_bias2_grad = 0.
588 589 590 591 592 593 594 595 596

        with fluid.dygraph.guard():
            test_single_api(False)
            test_single_api(True)
            test_simple_net(False)
            test_simple_net(True)
            test_mlp(False)
            test_mlp(True)

X
Xin Pan 已提交
597
    def test_dygraph_vs_static(self):
598 599
        np_inp1 = np.random.rand(4, 3, 3)
        np_inp2 = np.random.rand(4, 3, 3)
X
Xin Pan 已提交
600 601 602

        # dynamic graph
        with fluid.dygraph.guard():
603 604 605
            inp1 = fluid.dygraph.to_variable(np_inp1)
            inp2 = fluid.dygraph.to_variable(np_inp2)
            if np.sum(np_inp1) < np.sum(np_inp2):
X
Xin Pan 已提交
606 607 608
                x = fluid.layers.elementwise_add(inp1, inp2)
            else:
                x = fluid.layers.elementwise_sub(inp1, inp2)
L
lujun 已提交
609
            dygraph_result = x.numpy()
X
Xin Pan 已提交
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642

        # static graph
        with new_program_scope():
            inp_data1 = fluid.layers.data(
                name='inp1', shape=[3, 3], dtype=np.float32)
            inp_data2 = fluid.layers.data(
                name='inp2', shape=[3, 3], dtype=np.float32)

            a = fluid.layers.expand(
                fluid.layers.reshape(
                    fluid.layers.reduce_sum(inp_data1), [1, 1]), [4, 1])
            b = fluid.layers.expand(
                fluid.layers.reshape(
                    fluid.layers.reduce_sum(inp_data2), [1, 1]), [4, 1])
            cond = fluid.layers.less_than(x=a, y=b)

            ie = fluid.layers.IfElse(cond)
            with ie.true_block():
                d1 = ie.input(inp_data1)
                d2 = ie.input(inp_data2)
                d3 = fluid.layers.elementwise_add(d1, d2)
                ie.output(d3)

            with ie.false_block():
                d1 = ie.input(inp_data1)
                d2 = ie.input(inp_data2)
                d3 = fluid.layers.elementwise_sub(d1, d2)
                ie.output(d3)
            out = ie()

            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
            static_result = exe.run(fluid.default_main_program(),
643 644
                                    feed={'inp1': np_inp1,
                                          'inp2': np_inp2},
X
Xin Pan 已提交
645 646 647
                                    fetch_list=out)[0]
        self.assertTrue(np.allclose(dygraph_result, static_result))

M
minqiyang 已提交
648 649 650 651 652
    def test_rnn(self):
        np_inp = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0],
                           [10.0, 11.0, 12.0]])
        np_inp = np_inp.reshape((1, 4, 3))
        np_inp = np_inp.astype(np.float32)
L
lujun 已提交
653 654
        with fluid.dygraph.guard():
            var_inp = fluid.dygraph.base.to_variable(np_inp)
M
minqiyang 已提交
655
            var_inp = fluid.layers.reshape(var_inp, shape=[1, 4, 3])
656
            simple_rnn = SimpleRNN()
M
minqiyang 已提交
657
            outs, pre_hiddens = simple_rnn.forward(var_inp)
658
            dy_out = outs[3].numpy()
L
lujun 已提交
659
            outs[3].backward()
660 661 662
            dy_grad_h2o = simple_rnn._cell._h2o_w.gradient()
            dy_grad_h2h = simple_rnn._cell._h2h_w.gradient()
            dy_grad_i2h = simple_rnn._cell._i2h_w.gradient()
M
minqiyang 已提交
663

664 665 666
        with fluid.dygraph.guard():
            var_inp2 = fluid.dygraph.base.to_variable(np_inp)
            var_inp2 = fluid.layers.reshape(var_inp2, shape=[1, 4, 3])
667
            simple_rnn2 = SimpleRNN()
668 669
            outs2, pre_hiddens2 = simple_rnn2.forward(var_inp2)
            dy_out2 = outs2[3].numpy()
670 671
            fluid.set_flags({'FLAGS_sort_sum_gradient': True})
            outs2[3].backward()
672 673 674 675
            dy_grad_h2o2 = simple_rnn2._cell._h2o_w.gradient()
            dy_grad_h2h2 = simple_rnn2._cell._h2h_w.gradient()
            dy_grad_i2h2 = simple_rnn2._cell._i2h_w.gradient()

M
minqiyang 已提交
676 677 678
        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[1, 4, 3], append_batch_size=False)
679
            simple_rnn = SimpleRNN()
M
minqiyang 已提交
680 681 682 683 684 685 686 687 688 689
            outs, pre_hiddens = simple_rnn(inp)
            param_grads = fluid.backward.append_backward(outs[3])
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            static_out, static_grad_h2o, static_grad_h2h, static_grad_i2h = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[
                    outs[3].name, param_grads[0][1].name,
                    param_grads[1][1].name, param_grads[2][1].name
                ])
690

M
minqiyang 已提交
691 692 693 694
        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad_h2o, static_grad_h2o))
        self.assertTrue(np.allclose(dy_grad_h2h, static_grad_h2h))
        self.assertTrue(np.allclose(dy_grad_i2h, static_grad_i2h))
695 696 697 698
        self.assertTrue(np.allclose(dy_out2, static_out))
        self.assertTrue(np.allclose(dy_grad_h2o2, static_grad_h2o))
        self.assertTrue(np.allclose(dy_grad_h2h2, static_grad_h2h))
        self.assertTrue(np.allclose(dy_grad_i2h2, static_grad_i2h))
M
minqiyang 已提交
699

700 701 702 703 704 705 706
    def test_layer_attrs(self):
        layer = fluid.dygraph.Layer("test")
        layer.test_attr = 1
        self.assertFalse(hasattr(layer, "whatever"))
        self.assertTrue(hasattr(layer, "test_attr"))
        self.assertEqual(layer.test_attr, 1)

707 708 709 710 711 712 713 714 715 716 717 718 719
        my_layer = MyLayer()
        my_layer.w1 = my_layer.create_parameter([3, 3])
        my_layer.add_parameter('w2', None)
        self.assertEqual(len(my_layer.parameters()), 1)
        self.assertRaises(TypeError, my_layer.__setattr__, 'w1', 'str')
        my_layer.w1 = None
        self.assertEqual(len(my_layer.parameters()), 0)
        my_layer.l1 = fluid.dygraph.Linear(3, 3)
        self.assertEqual(len(my_layer.sublayers()), 1)
        self.assertRaises(TypeError, my_layer.__setattr__, 'l1', 'str')
        my_layer.l1 = None
        self.assertEqual(len(my_layer.sublayers()), 0)

720

721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
class TestDygraphUtils(unittest.TestCase):
    def test_append_activation_in_dygraph_exception(self):
        with new_program_scope():
            np_inp = np.random.random(size=(10, 20, 30)).astype(np.float32)
            a = fluid.layers.data("a", [10, 20])
            func = dygraph_utils._append_activation_in_dygraph
            self.assertRaises(AssertionError, func, a, act="sigmoid")

    def test_append_activation_in_dygraph1(self):
        a_np = np.random.random(size=(10, 20, 30)).astype(np.float32)
        func = dygraph_utils._append_activation_in_dygraph
        with fluid.dygraph.guard():
            a = fluid.dygraph.to_variable(a_np)
            res1 = func(a, act="hard_sigmoid")
            res2 = fluid.layers.hard_sigmoid(a)
            self.assertTrue(np.array_equal(res1.numpy(), res2.numpy()))

    def test_append_activation_in_dygraph2(self):
        a_np = np.random.random(size=(10, 20, 30)).astype(np.float32)
        func = dygraph_utils._append_activation_in_dygraph
        with fluid.dygraph.guard():
            a = fluid.dygraph.to_variable(a_np)
            res1 = func(a, act="sigmoid", use_mkldnn=True, use_cudnn=True)
            res2 = fluid.layers.sigmoid(a)
745
            self.assertTrue(np.allclose(res1.numpy(), res2.numpy()))
746

747 748 749 750 751 752 753 754 755 756
    def test_append_activation_in_dygraph3(self):
        a_np = np.random.random(size=(10, 20, 30)).astype(np.float32)
        helper = LayerObjectHelper(fluid.unique_name.generate("test"))
        func = helper.append_activation
        with fluid.dygraph.guard():
            a = fluid.dygraph.to_variable(a_np)
            res1 = func(a, act="sigmoid", use_cudnn=True)
            res2 = fluid.layers.sigmoid(a)
            self.assertTrue(np.array_equal(res1.numpy(), res2.numpy()))

757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
    def test_append_activation_in_dygraph_use_mkldnn(self):
        a_np = np.random.uniform(-2, 2, (10, 20, 30)).astype(np.float32)
        helper = LayerHelper(
            fluid.unique_name.generate("test"), act="relu", use_mkldnn=True)
        func = helper.append_activation
        with fluid.dygraph.guard():
            a = fluid.dygraph.to_variable(a_np)
            res1 = func(a)
            res2 = fluid.layers.relu(a)
            self.assertTrue(np.array_equal(res1.numpy(), res2.numpy()))

    def test_append_activation_in_dygraph_global_use_mkldnn(self):
        a_np = np.random.uniform(-2, 2, (10, 20, 30)).astype(np.float32)
        helper = LayerHelper(fluid.unique_name.generate("test"), act="relu")
        func = helper.append_activation
772
        with fluid.dygraph.guard(fluid.core.CPUPlace()):
773 774 775 776 777 778 779 780 781
            a = fluid.dygraph.to_variable(a_np)
            fluid.set_flags({'FLAGS_use_mkldnn': True})
            try:
                res1 = func(a)
            finally:
                fluid.set_flags({'FLAGS_use_mkldnn': False})
            res2 = fluid.layers.relu(a)
        self.assertTrue(np.array_equal(res1.numpy(), res2.numpy()))

782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
    def test_append_bias_in_dygraph_exception(self):
        with new_program_scope():
            np_inp = np.random.random(size=(10, 20, 30)).astype(np.float32)
            a = fluid.layers.data("a", [10, 20])
            func = dygraph_utils._append_bias_in_dygraph
            self.assertRaises(AssertionError, func, a)

    def test_append_bias_in_dygraph(self):
        a_np = np.random.random(size=(10, 20, 30)).astype(np.float32)
        func = dygraph_utils._append_bias_in_dygraph
        with fluid.dygraph.guard():
            a = fluid.dygraph.to_variable(a_np)
            res1 = func(a, bias=a)
            res2 = a + a
            self.assertTrue(np.array_equal(res1.numpy(), res2.numpy()))


799 800 801 802 803 804 805 806 807
class TestDygraphGuardWithError(unittest.TestCase):
    def test_without_guard(self):
        with fluid.dygraph.guard():
            x = fluid.dygraph.to_variable(np.zeros([10, 10]))
        with self.assertRaisesRegexp(TypeError,
                                     "Please use `with fluid.dygraph.guard()"):
            y = fluid.layers.matmul(x, x)


808
if __name__ == '__main__':
809
    paddle.enable_static()
810
    unittest.main()