backward.py 82.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
T
tangwei12 已提交
16
from .proto import framework_pb2
17

18
from paddle.fluid import framework as framework
F
update  
fengjiayi 已提交
19
from . import core
F
update  
fengjiayi 已提交
20
import collections
21
import copy
22
import six
23
import logging
M
minqiyang 已提交
24
from .. import compat as cpt
25
from . import unique_name
26
from . import log_helper
L
liym27 已提交
27
import paddle.fluid
28
from .data_feeder import check_type
M
mapingshuo 已提交
29 30 31 32 33
__all__ = [
    'append_backward',
    'gradients',
]

34 35 36
_logger = log_helper.get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')

M
mapingshuo 已提交
37 38 39 40 41 42 43 44 45 46 47

class ProgramStats(object):
    def __init__(self, block, ops):
        self.block = block
        self.ops = ops
        self.op_deps = {}  # op-> in_ops, out_ops
        self.var_op_deps = {}  # var as input op, var as output op

    def get_input_nodes(self):
        input_names = []
        for name in self.var_op_deps:
48
            if len(self.var_op_deps[name]["var_as_output_ops"]) == 0 and \
T
tangwei12 已提交
49
                    len(self.var_op_deps[name]["var_as_input_ops"]) > 0:
M
mapingshuo 已提交
50 51 52 53 54 55 56 57 58 59 60
                if self.block.var(name).persistable:
                    continue
                input_names.append(name)
        for op in self.ops:
            if op.desc.type() == "read":
                input_names.extend(op.desc.output_arg_names())
        return input_names

    def get_reserved_vars(self):
        var_name = []
        for op in self.ops:
M
mapingshuo 已提交
61
            if op.desc.type() == "seed":
M
mapingshuo 已提交
62 63 64 65 66 67 68 69 70 71 72
                var_name.extend(op.desc.output_arg_names())
        return var_name

    def get_out_of_subgraph_vars(self, begin_op_idx, end_op_idx):
        var_name = []
        for i in range(begin_op_idx, end_op_idx, 1):
            for name in self.ops[i].desc.output_arg_names():
                if name in self.var_op_deps:
                    for idx in self.var_op_deps[name]["var_as_input_ops"]:
                        if idx >= end_op_idx:
                            var_name.append(name)
M
mapingshuo 已提交
73 74 75 76 77
            for name in self.ops[i].desc.input_arg_names():
                if name in self.var_op_deps:
                    for idx in self.var_op_deps[name]["var_as_output_ops"]:
                        if idx < begin_op_idx:
                            var_name.append(name)
M
mapingshuo 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
        return var_name

    def is_subgraph(self, var_group1, var_group2):
        # should traverse from var_group1 to var_group2
        # max op idx in var_group2
        # min op idx in var_group1
        min_op_idx = len(self.ops)
        max_op_idx = -1
        for name in var_group1:
            if name not in self.var_op_deps:
                return False, min_op_idx, max_op_idx
        for name in var_group2:
            if name not in self.var_op_deps:
                return False, min_op_idx, max_op_idx
        for name in var_group1:
            op_idx = self.var_op_deps[name]["var_as_input_ops"]
            for idx in op_idx:
                min_op_idx = min(min_op_idx, idx)
        for name in var_group2:
            op_idx = self.var_op_deps[name]["var_as_output_ops"]
            for idx in op_idx:
                max_op_idx = max(max_op_idx, idx)
        if min_op_idx >= max_op_idx:
            return False, min_op_idx, max_op_idx
J
JZ-LIANG 已提交
102

M
mapingshuo 已提交
103 104
        return True, min_op_idx, max_op_idx

J
JZ-LIANG 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117
    def _update_segment_start(self, min_idx, pre_segment_end_idx):
        """
        persist vars of amp-related cast should be included in recompute segment
        """

        def is_amp_cast(op):
            return op.desc.type() == 'cast' and self.block.var(
                op.desc.input_arg_names()[0]).persistable

        idx_ = min_idx - 1
        updated_min_idx = min_idx
        while idx_ > pre_segment_end_idx:
            if is_amp_cast(self.ops[idx_]):
118
                _logger.info("found amp-cast op: {}, : {}".format(self.ops[
J
JZ-LIANG 已提交
119 120 121 122 123 124 125 126 127
                    idx_].desc.type(), self.ops[idx_].desc.input_arg_names()[
                        0]))
                updated_min_idx = idx_
                idx_ -= 1
            else:
                break

        return updated_min_idx

M
mapingshuo 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
    def build_stats(self):
        for i, op in enumerate(self.ops):
            self.op_deps[i] = {"in_ops": [], "out_ops": []}
            for j, name in enumerate(op.desc.input_arg_names()):
                if name in self.var_op_deps:
                    self.op_deps[i]["in_ops"].extend(self.var_op_deps[name][
                        "var_as_output_ops"])
            for j, name in enumerate(op.desc.input_arg_names()):
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_input_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = [i]
                    self.var_op_deps[name]["var_as_output_ops"] = []

            for j, name in enumerate(op.desc.output_arg_names()):
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_output_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = []
                    self.var_op_deps[name]["var_as_output_ops"] = [i]

            for op_idx in self.op_deps[i]["in_ops"]:
                self.op_deps[op_idx]["out_ops"].extend([i])

154 155 156 157
    def sort_checkpoints(self, checkpoints_name):
        sorted_checkpoints = []
        for name in checkpoints_name:
            if name not in self.var_op_deps:
158
                _logger.info(
159 160 161 162 163 164 165 166 167 168 169
                    "Recompute Optimizer: deleted %s from checkpoints, because it is not used in paddle program."
                    % name)
            elif self.var_op_deps[name]["var_as_output_ops"] == []:
                # input nodes
                sorted_checkpoints.append((name, -1))
            else:
                sorted_checkpoints.append(
                    (name, max(self.var_op_deps[name]["var_as_output_ops"])))
        sorted_checkpoints = sorted(sorted_checkpoints, key=lambda x: x[1])
        return [x[0] for x in sorted_checkpoints]

M
mapingshuo 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
    def modify_forward_desc_for_recompute(self):
        op_types = [op.desc.type() for op in self.ops]
        if "dropout" not in op_types:
            return

        op_idx = 0
        while (op_idx < len(self.ops)):
            op = self.ops[op_idx]
            if op.desc.type() != "dropout":
                op_idx += 1
                continue
            # add a seed op so that the two dropout op can generate same output
            op_unique_name = unique_name.generate("seed")
            var_unique_name = unique_name.generate_with_ignorable_key(".".join(
                [op_unique_name, 'tmp']))
            added_var = self.block.create_var(
                name=var_unique_name,
                dtype='int32',
                type=core.VarDesc.VarType.LOD_TENSOR,
                persistable=False,
                stop_gradient=False)
            seed = 0 if op.attr("fix_seed") is False else int(op.attr("seed"))
            added_op = self.block._insert_op(
                index=op.idx,
                type='seed',
                inputs={},
                outputs={'Out': [added_var]},
                attrs={'seed': seed})
            self.ops.insert(op_idx, added_op)
            # modify dropout op desc so that it accept a seed var as input
            op.desc.set_input("Seed", [var_unique_name])
            op.desc.remove_attr("fix_seed")
            op.desc.remove_attr("seed")
            self.block._sync_with_cpp()
            op_idx += 2

M
mapingshuo 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218

def _pretty_op_desc_(op_desc, prefix):
    out_s = "%s\tname:[%s]\n%s    \tinputs:[%s]\n%s    \toutputs:[%s]" % \
            (prefix + "_op", str(op_desc.type()), prefix + "_input", " ".join(op_desc.input_arg_names()),
             prefix + "_output", " ".join(op_desc.output_arg_names()))
    return out_s


def _add_needed_descs_to_block(descs, block, main_block, in_memory_vars):
    if len(descs) == 0:
        return []
    result_descs = []
    op_role_attr_name = \
T
tangwei12 已提交
219
        core.op_proto_and_checker_maker.kOpRoleAttrName()
M
mapingshuo 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
        if isinstance(desc, framework.Operator):
            desc = desc.desc
        if isinstance(desc, tuple):
            desc = desc[0]
        is_needed = False
        for name in desc.output_arg_names():
            if main_block.has_var(name) and main_block.var(name).persistable:
                continue
            if name not in in_memory_vars:
                is_needed = True
        if is_needed:
            new_op_desc = block.desc.append_op()
            new_op_desc.copy_from(desc)
            new_op_desc._set_attr(op_role_attr_name, backward)
236 237
            if desc.has_attr('op_device'):
                new_op_desc._set_attr('op_device', desc.attr('op_device'))
M
mapingshuo 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
            result_descs.append(new_op_desc)
    return result_descs


def _add_descs_to_block(descs, block):
    if len(descs) == 0:
        return []
    result_descs = []
    op_role_attr_name = \
        core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
        if isinstance(desc, framework.Operator):
            desc = desc.desc
        if isinstance(desc, tuple):
            desc = desc[0]
        new_op_desc = block.desc.append_op()
        new_op_desc.copy_from(desc)
        new_op_desc._set_attr(op_role_attr_name, backward)
257 258
        if desc.has_attr('op_device'):
            new_op_desc._set_attr('op_device', desc.attr('op_device'))
M
mapingshuo 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271
        result_descs.append(new_op_desc)
    return result_descs


def _find_loss_op_(loss):
    for op in reversed(loss.block.ops):
        assert isinstance(op, framework.Operator)
        if len(op.output_arg_names) == 1 and op.output_arg_names[
                0] == loss.name:
            loss.op = op
            break
    if loss.op is None:
        raise ValueError("loss.op is None. Should not happend")
272 273


274 275
def _rename_arg_(op_descs, old_name, new_name, begin_idx=None, end_idx=None):
    """
276
    Traverse all ops in op_descs[begin_idx : end_idx],
277 278
    if any op has inputs/outputs named "old_name", rename it as 'new_name'
    """
F
update  
fengjiayi 已提交
279 280 281
    if begin_idx is None:
        begin_idx = 0
    if end_idx is None:
282
        end_idx = len(op_descs)
283 284 285 286 287 288 289 290 291 292 293 294 295
    if isinstance(op_descs, (list, tuple)):
        for i in range(begin_idx, end_idx):
            op_desc = op_descs[i]
            if isinstance(op_desc, tuple):
                op_desc = op_desc[0]
            op_desc._rename_input(old_name, new_name)
            op_desc._rename_output(old_name, new_name)
    if isinstance(op_descs, collections.OrderedDict):
        for key, value in op_descs.items():
            if isinstance(value, (list, tuple)):
                for op_desc in value:
                    op_desc._rename_input(old_name, new_name)
                    op_desc._rename_output(old_name, new_name)
F
update  
fengjiayi 已提交
296 297


F
fengjiayi 已提交
298
def _create_op_desc_(op_type, inputs, outputs, attrs):
299 300 301
    """
    Create a C++ OpDesc object with specified inputs, outputs and attributes.
    """
F
fengjiayi 已提交
302 303
    op_desc = core.OpDesc()
    op_desc.set_type(op_type)
M
minqiyang 已提交
304
    for para, args in six.iteritems(inputs):
305 306 307 308 309
        op_desc.set_input(
            para,
            list(
                map(lambda arg: arg.decode() if isinstance(arg, six.binary_type) else arg,
                    args)))
M
minqiyang 已提交
310
    for para, args in six.iteritems(outputs):
311 312 313 314 315
        op_desc.set_output(
            para,
            list(
                map(lambda arg: arg.decode() if isinstance(arg, six.binary_type) else arg,
                    args)))
Y
yuyang18 已提交
316 317

    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
318
    op_device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
Y
yuyang18 已提交
319 320 321 322

    if op_role_attr_name not in attrs:
        attrs[
            op_role_attr_name] = core.op_proto_and_checker_maker.OpRole.Backward
323 324
    if op_device_attr_name not in attrs:
        attrs[op_device_attr_name] = ""
M
minqiyang 已提交
325
    for name, val in six.iteritems(attrs):
F
fengjiayi 已提交
326 327 328
        if isinstance(val, framework.Block):
            op_desc.set_block_attr(name, val.desc)
        else:
W
Wu Yi 已提交
329
            op_desc._set_attr(name, val)
F
fengjiayi 已提交
330 331 332
    return op_desc


M
mapingshuo 已提交
333 334 335 336 337 338 339 340 341 342
def _create_loss_op_desc_(loss):
    op_desc = _create_op_desc_(
        "fill_constant", {}, {"Out": [_append_grad_suffix_(loss.name)]}, {
            "shape": [1],
            "value": 1.0,
            "dtype": loss.dtype,
            "force_cpu": False,
            core.op_proto_and_checker_maker.kOpRoleAttrName():
            int(core.op_proto_and_checker_maker.OpRole.Backward) |
            int(core.op_proto_and_checker_maker.OpRole.Loss),
343 344
            core.op_proto_and_checker_maker.kOpDeviceAttrName():
            loss.op.attr(core.op_proto_and_checker_maker.kOpDeviceAttrName())
M
mapingshuo 已提交
345 346 347 348
        })
    return op_desc


349
def _infer_var_data_type_shape_(grad_var_name, block):
350
    """
351
    Infer the data type and shape of given grad variable
352
    """
M
minqiyang 已提交
353 354 355 356
    grad_var = block.desc.find_var(cpt.to_bytes(grad_var_name))
    fwd_name = _strip_grad_suffix_(grad_var_name)
    if block.desc.has_var_recursive(cpt.to_bytes(fwd_name)):
        fwd_var = block.desc.find_var_recursive(cpt.to_bytes(fwd_name))
F
fengjiayi 已提交
357
        grad_var.set_dtype(fwd_var.dtype())
358
        grad_var.set_shape(fwd_var.shape())
F
fengjiayi 已提交
359
    else:
360
        grad_var.set_dtype(core.VarDesc.VarType.FP32)
F
fengjiayi 已提交
361 362


F
fengjiayi 已提交
363
def _all_in_set_(cands, s):
364 365 366
    """
    Test if all elements of 'cands' are in set 's'
    """
F
fengjiayi 已提交
367 368
    if len(cands) == 0:
        return False
F
fengjiayi 已提交
369 370 371 372 373 374
    for c in cands:
        if not c in s:
            return False
    return True


375 376 377 378 379 380
def _some_in_set_(cands, s):
    """
    Test if some elements of 'cands' are in set 's'
    """
    if len(cands) == 0:
        return False
M
minqiyang 已提交
381 382
    literal_set = cpt.to_text(s)
    literal_cands = cpt.to_text(cands)
M
minqiyang 已提交
383 384
    for c in literal_cands:
        if c in literal_set:
385 386 387 388
            return True
    return False


F
fengjiayi 已提交
389
def _strip_grad_suffix_(name):
390
    """
M
mapingshuo 已提交
391
    Strip the grad suffix from the given variable name
392 393 394
    e.g. x@GRAD ==> x
         y@GRAD@RENAME@1 ==> y
    """
M
minqiyang 已提交
395
    name = cpt.to_text(name)
M
minqiyang 已提交
396
    pos = name.find(core.grad_var_suffix())
F
fengjiayi 已提交
397
    return name[:pos] if pos != -1 else name
F
fengjiayi 已提交
398 399 400


def _append_grad_suffix_(name):
401 402 403 404
    """
    Append grad suffix to the given variable name
    e.g. x ==> x@GRAD
    """
M
minqiyang 已提交
405
    return cpt.to_text(name) + core.grad_var_suffix()
F
fengjiayi 已提交
406 407


T
tangwei12 已提交
408 409 410 411 412
def _accumulate_gradients_by_sum_op_(var_name,
                                     renamed_vars,
                                     pending_sum_ops,
                                     op_idx,
                                     op_device=""):
413 414 415 416 417 418
    """
    Use sum op to accumulate_gradients, the gradients are stored in renamed_vars.
    """
    if op_idx not in pending_sum_ops.keys():
        pending_sum_ops[op_idx] = []
    pending_sum_ops[op_idx].append(
T
tangwei12 已提交
419 420 421 422
        _create_op_desc_("sum", {"X": renamed_vars[var_name]}, {
            "Out": [var_name]
        }, {"use_mkldnn": False,
            "op_device": op_device}))
423 424 425
    renamed_vars[var_name] = [var_name]


T
tangwei12 已提交
426 427 428 429 430
def _accumulate_gradients_by_add_ops_(var_name,
                                      renamed_vars,
                                      pending_sum_ops,
                                      op_idx,
                                      op_device=""):
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
    """
    Use several inplace add op to accumulate_gradients, the gradients are stored in renamed_vars.
    """
    if op_idx not in pending_sum_ops.keys():
        pending_sum_ops[op_idx] = []
    out_name = renamed_vars[var_name][0]
    for i in range(1, len(renamed_vars[var_name])):
        x_name = out_name
        y_name = renamed_vars[var_name][i]
        if i != len(renamed_vars[var_name]) - 1:
            out_name = var_name + '@ADD@' + str(i)
        else:
            out_name = var_name
        pending_sum_ops[op_idx].append(
            _create_op_desc_("grad_add", {"X": [x_name],
                                          "Y": [y_name]}, {"Out": [out_name]},
T
tangwei12 已提交
447 448
                             {"use_mkldnn": False,
                              "op_device": op_device}))
449 450 451
    renamed_vars[var_name] = [var_name]


452
def _addup_repetitive_outputs_(op_descs, block_idx):
453 454
    """
    In backward part, an variable may be the output of more than one ops.
F
fengjiayi 已提交
455 456
    And one op may yield its multiple outputs to the same variable.
    In these cases, the variable should be the accumulation of all the outputs.
457 458
    `sum_op`s are added to implement the accumulate.
    """
459
    _MAX_ADD_NUM_ = framework._global_flags()['FLAGS_max_inplace_grad_add']
460 461
    #pending_sum_ops = []
    pending_sum_ops = collections.OrderedDict()
F
update  
fengjiayi 已提交
462
    var_rename_count = collections.defaultdict(int)
F
fengjiayi 已提交
463
    renamed_vars = collections.defaultdict(list)
464
    renamed_var_start_idx = collections.defaultdict(list)
465
    var_device = collections.defaultdict(str)
F
fengjiayi 已提交
466
    for idx, op_desc in enumerate(op_descs):
T
tangwei12 已提交
467 468 469 470 471
        op_device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName(
        )
        op_device = ""
        if op_desc.has_attr(op_device_attr_name):
            op_device = op_desc.attr(op_device_attr_name)
F
update  
fengjiayi 已提交
472
        for var_name in op_desc.input_arg_names():
M
mapingshuo 已提交
473 474
            if "@GRAD" not in var_name:
                continue
F
fengjiayi 已提交
475
            if len(renamed_vars[var_name]) > 1:
476
                if len(renamed_vars[var_name]) > _MAX_ADD_NUM_:
W
WangXi 已提交
477 478 479
                    _accumulate_gradients_by_sum_op_(var_name, renamed_vars,
                                                     pending_sum_ops, idx,
                                                     var_device[var_name])
480
                else:
W
WangXi 已提交
481 482 483
                    _accumulate_gradients_by_add_ops_(var_name, renamed_vars,
                                                      pending_sum_ops, idx,
                                                      var_device[var_name])
484

F
update  
fengjiayi 已提交
485
        for param_idx, param_name in enumerate(op_desc.output_names()):
F
fengjiayi 已提交
486 487
            arg_names = op_desc.output(param_name)
            for arg_idx, var_name in enumerate(arg_names):
M
mapingshuo 已提交
488 489
                if "@GRAD" not in var_name:
                    continue
T
tangwei12 已提交
490
                # if "@RENAME@" in var_name:
M
mapingshuo 已提交
491
                #    continue
F
fengjiayi 已提交
492 493 494 495 496 497 498
                if var_name == core.empty_var_name(
                ) or var_name in op_desc.input_arg_names():
                    # empty variable or inplace op
                    continue
                if len(renamed_vars[var_name]) == 0:
                    # it's the first time we get the variable
                    renamed_vars[var_name] = [var_name]
499
                    renamed_var_start_idx[var_name] = idx
F
fengjiayi 已提交
500 501
                else:
                    if len(renamed_vars[var_name]) == 1:
502
                        new_name = var_name + "@RENAME@block" + str(block_idx) + "@" + \
F
fengjiayi 已提交
503 504 505 506
                            str(var_rename_count[var_name])
                        var_rename_count[var_name] += 1
                        # rename original var_name
                        renamed_vars[var_name][0] = new_name
507 508 509 510 511 512
                        # before change: _rename_arg_(op_descs, var_name,
                        #                             new_name, 0, idx)
                        # rename arg from idx of the first appearance
                        # in backward, not always from 0
                        _rename_arg_(op_descs, var_name, new_name,
                                     renamed_var_start_idx[var_name], idx)
F
fengjiayi 已提交
513 514
                        _rename_arg_(pending_sum_ops, var_name, new_name)

F
update  
fengjiayi 已提交
515 516 517 518 519 520 521 522 523 524 525 526 527
                        for p in op_desc.output_names()[:param_idx]:
                            p_arg_names = op_desc.output(p)
                            if var_name in p_arg_names:
                                op_desc.set_output(p, [
                                    new_name if x == var_name else x
                                    for x in p_arg_names
                                ])

                        arg_names = [
                            new_name if x == var_name else x
                            for x in arg_names[:arg_idx]
                        ] + arg_names[arg_idx:]

528
                    new_name = var_name + "@RENAME@block" + str(block_idx) + "@" + \
T
tangwei12 已提交
529
                        str(var_rename_count[var_name])
F
fengjiayi 已提交
530
                    var_rename_count[var_name] += 1
F
fengjiayi 已提交
531 532 533
                    arg_names[arg_idx] = new_name
                    op_desc.set_output(param_name, arg_names)
                    renamed_vars[var_name].append(new_name)
W
WangXi 已提交
534
                    # record the latest device
535
                    var_device[var_name] = op_device
F
update  
fengjiayi 已提交
536

M
minqiyang 已提交
537
    for var_name, inputs in six.iteritems(renamed_vars):
538 539
        if len(renamed_vars[var_name]) > 1:
            if len(renamed_vars[var_name]) > _MAX_ADD_NUM_:
540 541 542
                _accumulate_gradients_by_sum_op_(
                    var_name, renamed_vars, pending_sum_ops,
                    len(op_descs), var_device[var_name])
543
            else:
544 545 546
                _accumulate_gradients_by_add_ops_(
                    var_name, renamed_vars, pending_sum_ops,
                    len(op_descs), var_device[var_name])
547

F
fengjiayi 已提交
548
    # sum_op descs are sorted according to their insert position
549 550 551 552 553 554 555 556 557 558
    for key, value in collections.OrderedDict(
            reversed(list(pending_sum_ops.items()))).items():

        # NOTE(zhiqiu): Since reversed, the idx of op_descs to be inserted will remains correct.
        # For example, [0, 1, 2], and we want to insert 'a' at idx 1, 'b' at idx 2, and the expected result is [0, 1, 'a', 2, 'b'].
        # If reversed, we first insert 'b' at idx 2, it becomes [0, 1, 2, 'b'], and then insert 'a' at idx 1, it becomes [0, 1, 'a', 2, 'b'].
        # If not reverse, we first insert 'a' at idx 1, it becomes [0, 1, 'a', 2], and then insert 'b' at idx 2, it becomes [0, 1, 'a', 'b', 2].
        idx = key
        for i, op in enumerate(value):
            op_descs.insert(idx + i, op)
F
fengjiayi 已提交
559 560 561 562 563

    return op_descs


def _remove_no_grad_branch_(op_descs, no_grad_set):
564 565 566 567
    """
    Remove unnecessary grad ops
    A grad op can be removed in two cases:
        1. all outputs of the grad op are in 'no_grad_set'
F
fengjiayi 已提交
568
        2. all grad inputs of the grad op are in 'no_grad_set'
569
    """
F
fengjiayi 已提交
570 571

    def _op_can_be_removed_(op_desc, no_grad_set):
F
fengjiayi 已提交
572 573
        out_arg_names = op_desc.output_arg_names()
        if len(out_arg_names) == 0 or _all_in_set_(out_arg_names, no_grad_set):
F
fengjiayi 已提交
574
            return True
575 576 577 578
        if _all_in_set_([
                name for name in op_desc.input_arg_names()
                if name.find(core.grad_var_suffix()) != -1
        ], no_grad_set):
F
fengjiayi 已提交
579
            no_grad_set.update(out_arg_names)
F
fengjiayi 已提交
580 581 582
            return True
        return False

F
fengjiayi 已提交
583
    # Remove ops whose outputs are all in no_grad_dict
584 585 586 587
    op_descs = [
        op_desc for op_desc in op_descs
        if not _op_can_be_removed_(op_desc, no_grad_set)
    ]
F
fengjiayi 已提交
588 589
    # Insert fill_zeros_like_op
    to_insert = []
F
fengjiayi 已提交
590
    for idx, op_desc in enumerate(op_descs):
F
fengjiayi 已提交
591
        for arg in op_desc.input_arg_names():
M
mapingshuo 已提交
592
            # arg is a gradient var name and arg should not have gradient
F
fengjiayi 已提交
593
            if core.grad_var_suffix() in arg and arg in no_grad_set:
594
                x_in = _strip_grad_suffix_(arg)
M
mapingshuo 已提交
595 596
                # the reason should be: arg can be input of another grad op
                # and the op is a not-to-remove op
597 598
                to_insert.append((_create_op_desc_(
                    "fill_zeros_like", {"X": [x_in]}, {"Out": [arg]}, {}), idx))
F
fengjiayi 已提交
599

600
    list([op_descs.insert(p[1], p[0]) for p in reversed(to_insert)])
F
fengjiayi 已提交
601 602 603 604

    return op_descs


C
chengduo 已提交
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
def _find_not_need_ops(grad_op_descs, forward_ops, input_grad_names_set):
    """
    Pruning Program with Structural Analysis Method of Computational Graph.
    The nodes of the computational graph composed of backward OPS should be
    interconnected. If there are unconnected sub-graphs in the computational graph,
    these sub-graphs should be cut off.

    Args:
        grad_op_descs(list[core.OpDesc]): The candidate backward OpDescs.
        forward_ops(list[Operator]): The forward ops.
        input_grad_names_set(set): this set is used to store the gradients' name
            which is generated by backward ops, and input_grad_names_set can help
            to prune the unnecessary backward ops.

    Return:
620
        (set[core.OpDesc]): A set of OpDescs which should be pruned.
C
chengduo 已提交
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
    """

    class Var(object):
        def __init__(self, var_name):
            self.var_name = var_name
            self.gen_op = None
            self.pendding_ops = []

        def set_gen_op(self, gen_op):
            assert isinstance(gen_op, Op)
            assert self.gen_op is None
            self.gen_op = gen_op

        def add_pending_op(self, op):
            assert isinstance(op, Op)
            self.pendding_ops.append(op)

    class Op(object):
        def __init__(self, op_desc):
            self.op_desc = op_desc
            self.inputs = []
            self.outputs = []

        def insert_input(self, var):
            assert isinstance(var, Var)
            self.inputs.append(var)

        def insert_output(self, var):
            assert isinstance(var, Var)
            self.outputs.append(var)

    var_versions = dict()

    def _create_node(name):
        if name not in var_versions.keys():
            var_versions[name] = [Var(name)]
        else:
            var_versions[name].append(Var(name))
        return var_versions[name][-1]

    def _create_or_get_last_version_node(name):
        if name not in var_versions.keys():
            var_versions[name] = [Var(name)]
        return var_versions[name][-1]

    def _create_op_node(op_desc):
        op_node = Op(op_desc)
        for input in op_desc.input_arg_names():
            var = _create_or_get_last_version_node(name=input)
            var.add_pending_op(op_node)
            op_node.insert_input(var)
        for output in op_desc.output_arg_names():
            var = _create_node(name=output)
            var.set_gen_op(op_node)
            op_node.insert_output(var)
        return op_node

    # Record the forward vars
    forward_vars_set = set() if input_grad_names_set is None else set(
        input_grad_names_set)
    for op in forward_ops:
        forward_vars_set.update(op.desc.input_arg_names())
        forward_vars_set.update(op.desc.output_arg_names())

    # Record the vars which are created during backward and is not generated by op.
    backward_vars_set = set()
    # special_op_nodes is the candidate sub-graph head node.
    special_op_nodes = set()
    for op_desc in grad_op_descs:
        input_set = set(op_desc.input_arg_names())
        # The new_vars are created during backward and is not generated by op.
        new_vars = input_set - forward_vars_set - backward_vars_set
        backward_vars_set.update(op_desc.output_arg_names())

        op_node = _create_op_node(op_desc)
        if len(new_vars) == len(input_set):
            special_op_nodes.add(op_node)

    not_need_op_descs = []
    # Start traversing all candidate sub-graph headers to check whether
    # they are connected to backward computational graphs, and if they are
    # not, list them in not_need_op_descs
    for special_op_node in special_op_nodes:
        op_list = [special_op_node]
        ready_vars = set(special_op_node.inputs)
        remove_ops = True
        candidate_ops = [special_op_node]
        while len(candidate_ops) > 0:
            op_node = candidate_ops.pop(0)
            if _all_in_set_(op_node.inputs, ready_vars):
                for out_var in op_node.outputs:
                    candidate_ops.extend(out_var.pendding_ops)
                    op_list.extend(out_var.pendding_ops)
                ready_vars.update(op_node.outputs)
            else:
                remove_ops = False
                break
        if remove_ops:
            not_need_op_descs.extend([node.op_desc for node in op_list])
720 721 722
    not_need_op_descs_set = set(not_need_op_descs)
    grad_op_descs_set = set(grad_op_descs)
    # If a backward computational graph is simply one sub-graph header, the
723
    # not_need_op_descs will be whole graph, this IF clause avoids it.
724 725 726
    if grad_op_descs_set == not_need_op_descs_set:
        return set()
    return not_need_op_descs_set
C
chengduo 已提交
727 728


Y
Yang Yang 已提交
729 730
def serialize_op_decs(op_desc):
    protostr = op_desc.serialize_to_string()
M
minqiyang 已提交
731
    proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang 已提交
732 733 734
    return proto.__str__()


M
mapingshuo 已提交
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
def _append_backward_ops_with_checkpoints_(
        block, ops, target_block, no_grad_dict, grad_to_var, checkpoints):
    """
    Create grad ops with forward ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
        ops(Op): the forward operators whose forward recomputation backward ops need to be added
        target_block(Block): the block which is going to hold new generated grad ops
        no_grad_dict(dict):
            key(int) block index
            val(str): corresponding forward variable name
        checkpoints: variables that a user defined as checkpoint for forward recomputation

    Algorithms:
M
mapingshuo 已提交
750
        0) deal with forward recomputing program descs
M
mapingshuo 已提交
751 752 753 754 755
        1) find ops between checkpoints, i.e. recompute_segments
        2) go through all forward ops and induct all variables that will be hold in memory
            a. variables that are used across segments will be held in memory
            b. output of dropout op will be held in memory
            c. input variables will be held in memory
M
mapingshuo 已提交
756 757 758
        3) go through each recompute_segments, add backward ops with forward recomputation
            a. add ops in current recompute_segment as forward recomputation ops
            b. rename all non-checkpoint variables in recomputation ops
M
mapingshuo 已提交
759 760
            c. add backward ops of current recomputation ops
            d. add sum op for repetitive_outputs
M
mapingshuo 已提交
761 762
        4) remove no grad branch as it is in _remove_no_grad_branch_
        5) Note1: all appended ops' OpRole are Backward
M
mapingshuo 已提交
763 764
        6) Note2: all variables with new name should be returned so that _append_backward_vars_ can be called
        7) Note3: current forward recomputation backpropagation does not handle programs with subblock
M
mapingshuo 已提交
765
    """
M
mapingshuo 已提交
766 767

    checkpoints_name = [x.name for x in checkpoints]
768
    checkpoints_name = list(set(checkpoints_name))
M
mapingshuo 已提交
769 770
    local_block = block.program._create_block()
    buffer_block = block.program._create_block()
771
    # 0) deal with forward recomputing program descs
M
mapingshuo 已提交
772
    program_stat = ProgramStats(block, ops)
M
mapingshuo 已提交
773
    program_stat.modify_forward_desc_for_recompute()
M
mapingshuo 已提交
774
    program_stat.build_stats()
M
mapingshuo 已提交
775 776

    # 1) find ops between checkpoints, i.e. recompute_segments
777
    checkpoints_name = program_stat.sort_checkpoints(checkpoints_name)
M
mapingshuo 已提交
778 779
    segments = []

780
    if len(checkpoints_name) == 1:
M
mapingshuo 已提交
781 782 783 784 785 786 787
        # only one checkpoint
        max_op_idx = -1
        var_group = [checkpoints_name[0]]
        for name in var_group:
            if name not in program_stat.var_op_deps:
                break
            op_idx = program_stat.var_op_deps[name]["var_as_output_ops"]
J
JZ-LIANG 已提交
788
            # only count the last generate op
M
mapingshuo 已提交
789 790 791 792 793 794
            for idx in op_idx:
                max_op_idx = max(max_op_idx, idx)
        if max_op_idx > 0:
            segments.append([0, max_op_idx + 1])
    else:
        start_idx = 0
J
JZ-LIANG 已提交
795
        pre_segment_end_idx = -1
M
mapingshuo 已提交
796 797 798
        while True:
            if start_idx >= len(checkpoints_name) - 1:
                break
J
JZ-LIANG 已提交
799 800
            # min_idx: checkpoint_1' s input op
            # max_idx: checkpoint_2' s output op
M
mapingshuo 已提交
801 802 803 804
            flag, min_idx, max_idx = program_stat.is_subgraph(
                [checkpoints_name[start_idx]],
                [checkpoints_name[start_idx + 1]])
            if flag:
J
JZ-LIANG 已提交
805 806 807
                # max_idx + 1 since the exact and used segment end idx is max_idx
                min_idx = program_stat._update_segment_start(
                    min_idx, pre_segment_end_idx)
M
mapingshuo 已提交
808
                segments.append([min_idx, max_idx + 1])
809 810 811
            else:
                _logger.info("Could not recompute op range [{}] - [{}] ".format(
                    min_idx, max_idx + 1))
J
JZ-LIANG 已提交
812

M
mapingshuo 已提交
813 814 815 816 817 818
            start_idx += 1

    if segments != [] and segments[0][0] != 0:
        recompute_segments = [[0, segments[0][0]]] + segments
    else:
        recompute_segments = segments
M
mapingshuo 已提交
819

J
JZ-LIANG 已提交
820
    for i, (idx1, idx2) in enumerate(recompute_segments):
821 822
        _logger.info("recompute segment[{}]".format(i))
        _logger.info("segment start op: [{}]: [{}]".format(ops[idx1].desc.type(
J
JZ-LIANG 已提交
823
        ), ops[idx1].desc.input_arg_names()))
824
        _logger.info("segment end op: [{}]: [{}]".format(ops[
J
JZ-LIANG 已提交
825
            idx2 - 1].desc.type(), ops[idx2 - 1].desc.input_arg_names()))
826 827
        _logger.info("recompute segment[{}]".format(i))
        _logger.info("segment start op: [{}]: [{}]".format(ops[idx1].desc.type(
J
JZ-LIANG 已提交
828
        ), ops[idx1].desc.input_arg_names()))
829
        _logger.info("segment end op: [{}]: [{}]".format(ops[
J
JZ-LIANG 已提交
830 831
            idx2 - 1].desc.type(), ops[idx2 - 1].desc.input_arg_names()))

M
mapingshuo 已提交
832
    # 2) go through all forward ops and induct all variables that will be hold in memory
M
mapingshuo 已提交
833
    vars_should_be_hold = []
834
    # a. variables that are used across segments will be held in memory
M
mapingshuo 已提交
835 836 837
    for segment in recompute_segments:
        vars_should_be_hold.extend(
            program_stat.get_out_of_subgraph_vars(segment[0], segment[1]))
J
JZ-LIANG 已提交
838 839

    cross_vars = set(vars_should_be_hold) - set(checkpoints_name)
840
    _logger.info("found [{}] vars which cross recompute segment: [{}], better checkpoints might be set to reduce those vars".format( \
J
JZ-LIANG 已提交
841 842
    len(cross_vars), cross_vars))

M
mapingshuo 已提交
843
    # b. output of seed op should be kept in memory
M
mapingshuo 已提交
844
    vars_should_be_hold.extend(program_stat.get_reserved_vars())
M
mapingshuo 已提交
845
    # c. input variables are checkpoints
M
mapingshuo 已提交
846 847 848
    vars_should_be_hold.extend(program_stat.get_input_nodes())
    vars_should_be_hold = list(set(vars_should_be_hold))

M
mapingshuo 已提交
849
    # 3) go through each recompute_segments, add backward ops with forward recomputation
M
mapingshuo 已提交
850 851 852 853 854 855
    grad_op_descs = []
    var_name_dict = {}

    vars_in_memory = vars_should_be_hold + checkpoints_name

    max_calculated_op_position = len(ops)
856
    device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
M
mapingshuo 已提交
857 858 859 860 861 862 863 864 865
    if recompute_segments == []:
        gap_ops = ops[0:max_calculated_op_position]
        for op in reversed(gap_ops):
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op.desc, cpt.to_text(no_grad_dict[block.idx]), [])
866 867 868 869 870
            # Set device for grad_op according to forward Op
            if op.desc.has_attr(device_attr_name):
                op_device = op.desc.attr(device_attr_name)
                for op_desc in grad_op_desc:
                    op_desc._set_attr(device_attr_name, op_device)
M
mapingshuo 已提交
871 872 873 874 875 876 877 878 879 880 881 882 883 884
            added_descs = _add_descs_to_block(grad_op_desc, local_block)
            grad_op_descs.extend(added_descs)
            grad_to_var.update(op_grad_to_var)

    for i, segment in enumerate(recompute_segments[::-1]):
        gap_ops = ops[segment[1]:max_calculated_op_position]
        max_calculated_op_position = segment[0]
        for op in reversed(gap_ops):
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op.desc, cpt.to_text(no_grad_dict[block.idx]), [])
885 886 887 888 889
            # Set device for grad_op according to forward Op
            if op.desc.has_attr(device_attr_name):
                op_device = op.desc.attr(device_attr_name)
                for op_desc in grad_op_desc:
                    op_desc._set_attr(device_attr_name, op_device)
M
mapingshuo 已提交
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
            added_descs = _add_descs_to_block(grad_op_desc, local_block)
            grad_op_descs.extend(added_descs)
            grad_to_var.update(op_grad_to_var)

        ff_ops = ops[segment[0]:segment[1]]
        var_suffix = ".subprog_%d" % i

        for op in ff_ops:
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            input_and_output_names = []
            input_and_output_names.extend(op.desc.input_arg_names())
            input_and_output_names.extend(op.desc.output_arg_names())
            for name in input_and_output_names:
                if block.var(name).persistable or name in checkpoints_name:
                    continue
                if name in vars_should_be_hold:
                    continue
                if name not in var_name_dict:
                    var_name_dict[name] = name + var_suffix
912 913 914 915 916 917 918 919 920 921 922

                    # we should create the rename var in subprog, otherwise its VarType will be BOOL
                    ref_var = block.program.global_block().var(name)
                    block.create_var(
                        name=var_name_dict[name],
                        shape=ref_var.shape,
                        dtype=ref_var.dtype,
                        type=ref_var.type,
                        persistable=ref_var.persistable,
                        stop_gradient=ref_var.stop_gradient)

M
mapingshuo 已提交
923
        # 3.a. add ops in current recompute_segment as forward recomputation ops
M
mapingshuo 已提交
924 925 926 927
        buffer_descs = _add_needed_descs_to_block(ff_ops, buffer_block, block,
                                                  vars_in_memory)
        added_descs = _add_descs_to_block(ff_ops, local_block)

M
mapingshuo 已提交
928
        # 3.b. rename all non-checkpoint variables in recomputation ops
M
mapingshuo 已提交
929 930 931 932 933 934
        for key in var_name_dict:
            _rename_arg_(buffer_descs, key, var_name_dict[key])

        # added_descs should be in grad_op_descs because it is backward op desc
        grad_op_descs.extend(buffer_descs)

J
JZ-LIANG 已提交
935
        # 3.c. add backward ops for all ops in current segment 
M
mapingshuo 已提交
936 937 938 939 940 941 942 943
        for op_desc in reversed(added_descs):
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op_desc, cpt.to_text(no_grad_dict[block.idx]), [])
            for key in var_name_dict:
                _rename_arg_(grad_op_desc, key, var_name_dict[key])
            grad_op_descs.extend(grad_op_desc)
            grad_to_var.update(op_grad_to_var)

M
mapingshuo 已提交
944
    # 3.d. add sum op for repetitive_outputs
945
    grad_op_descs = _addup_repetitive_outputs_(grad_op_descs, block.idx)
M
mapingshuo 已提交
946
    # 4) remove no grad branch as it is in _remove_no_grad_branch_
M
mapingshuo 已提交
947 948 949 950 951 952
    grad_op_descs = _remove_no_grad_branch_(grad_op_descs,
                                            no_grad_dict[block.idx])
    added_descs = _add_descs_to_block(grad_op_descs, target_block)
    return program_stat, checkpoints_name, vars_should_be_hold, recompute_segments


953 954 955 956 957
def _get_sub_block_path(sub_block,
                        sub_block_op_desc,
                        no_grad_set,
                        op_path_dict,
                        sub_block_target_names=None):
958 959
    """
    Get output vars in subblock which will be assigned to parent block.
960 961 962 963 964 965 966 967 968 969 970 971
    It is used to find the grad path in subblock.

    Args:
        sub_block(Block): The sub-block in which to get op path.
        sub_block_op_desc: The op desc of the sub-block op such as 'while', 'conditional_block' and 'recurrent'.
        no_grad_set(set): The set of no grad var name. no_grad_set will be changed.
        op_path_dict(dict): op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
        sub_block_target_names(set): Target var names of sub-block.
    Return:
        The forward op path of sub-block corresponding to backward op.
972
    """
973

974 975 976
    assert sub_block_op_desc.has_attr(
        "sub_block") and sub_block.idx == sub_block_op_desc._block_attr_id(
            "sub_block")
977 978 979 980 981 982 983 984 985 986 987 988
    assert isinstance(sub_block_target_names, (set, type(None)))

    if sub_block_target_names is None:
        sub_block_target_names = sub_block_op_desc.output_arg_names

    # TODO(huihuangzheng): add support for recurrent op.
    if sub_block_op_desc.type in ["conditional_block", "while"]:
        # Step1: get the output vars in sub-block
        sub_outputs = [
            sub_block._var_recursive(var) for var in sub_block_target_names
        ]
        for var in sub_block_target_names:
989
            for op_desc in sub_block.ops:
990
                if var in op_desc.output_arg_names:
991
                    for name in op_desc.input_arg_names:
992
                        sub_outputs.append(sub_block._var_recursive(name))
993

994 995
        # Step2: find op path of sub-block
        is_while = sub_block_op_desc.type in ["while"]
996
        sub_block_op_path = _find_op_path_(sub_block, sub_outputs, [],
997
                                           no_grad_set, op_path_dict, is_while)
998 999 1000 1001
        return sub_block_op_path
    return sub_block.ops


1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
def _is_grad_op_(op):
    op_maker = core.op_proto_and_checker_maker
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    if op_maker.kOpRoleVarAttrName() in op.attr_names and \
            int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(backward):
        return True
    return False


def _rename_grad_name_(name, grad_order):
    return 'grad/' * grad_order + name


1015 1016
def _append_backward_ops_(block,
                          ops,
F
fengjiayi 已提交
1017 1018 1019
                          target_block,
                          no_grad_dict,
                          grad_to_var,
1020
                          callbacks=None,
1021 1022
                          input_grad_names_set=None,
                          op_path_dict=None):
1023 1024 1025 1026 1027
    """
    Create all grad ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
1028
        ops(Op): the forward operators whose backward ops need to be added
1029
        target_block(Block): the block which is going to hold new generated grad ops
1030
        no_grad_dict(dict):
1031
            key(int)  block index
T
tianshuo78520a 已提交
1032
            val(set) a set of variable names. These variables have no gradient
1033 1034 1035
        grad_to_var(dict)(output argument):
            key(str): grad variable name
            val(str): corresponding forward variable name
C
chengduo 已提交
1036 1037 1038 1039
        callbacks(callable object): a callable object used to decorate new generated grad ops
        input_grad_names_set(set): this set is used to store the gradients' name which is
            generated by backward ops, and input_grad_names_set can help to prune the unnecessary
            backward ops.
1040 1041 1042
        op_path_dict(dict): op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
1043
    """
Y
Yang Yang 已提交
1044
    if callbacks is not None:
1045
        assert (isinstance(callbacks, (list, tuple)))
Y
Yang Yang 已提交
1046 1047 1048
        for cb in callbacks:
            if not hasattr(cb, '__call__'):
                raise ValueError("'callback' must be a callable object.")
F
fengjiayi 已提交
1049

F
fengjiayi 已提交
1050
    # grad_op_descs holds created grad_op, and will be appended to target_block
F
fengjiayi 已提交
1051 1052
    grad_op_descs = []
    program = block.program
1053

1054 1055
    rename_var_map = {}

1056
    # add grad_op_desc by reversed ops
1057
    for op in reversed(ops):
F
fengjiayi 已提交
1058 1059 1060
        grad_sub_block_list = []
        # If the op has its own sub-block, deal with the sub-block first
        if op.has_attr("sub_block"):
W
Wu Yi 已提交
1061
            sub_block = program.block(op._block_attr_id("sub_block"))
W
Wu Yi 已提交
1062
            grad_sub_block = program._create_block()
W
Wu Yi 已提交
1063
            grad_sub_block._set_forward_block_idx(sub_block.idx)
1064 1065 1066
            # see follwing comments for why set None here.
            pre_input_grad_names_set = copy.copy(input_grad_names_set)
            input_grad_names_set = None
1067
            sub_block_path = op_path_dict[op._block_attr_id("sub_block")]
1068
            _append_backward_ops_(sub_block, sub_block_path, grad_sub_block,
1069
                                  no_grad_dict, grad_to_var, callbacks,
1070
                                  input_grad_names_set, op_path_dict)
1071
            input_grad_names_set = pre_input_grad_names_set
Y
Yu Yang 已提交
1072

W
Wu Yi 已提交
1073
            program._rollback()
F
fengjiayi 已提交
1074 1075
            grad_sub_block_list.append(grad_sub_block.desc)

F
fengjiayi 已提交
1076
        # Getting op's corresponding grad_op
F
fengjiayi 已提交
1077
        grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
M
minqiyang 已提交
1078
            op.desc, cpt.to_text(no_grad_dict[block.idx]), grad_sub_block_list)
Y
Yang Yu 已提交
1079

1080 1081
        # Set device for grad_op according to forward Op
        device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
1082 1083 1084 1085
        if op.desc.has_attr(device_attr_name):
            op_device = op.desc.attr(device_attr_name)
            for op_desc in grad_op_desc:
                op_desc._set_attr(device_attr_name, op_device)
1086

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
        # Rename internal gradient variables in multiple backward
        # so that they have different names with previous backward.
        # For example:
        #  y = x * x, grad = fluid.gradients(fluid.gradients(y, x) + y * y, x)
        # In second-time backward, gradient variable names of partial
        # forward network (y * y) may be have same names with first-time
        # fluid.gradients(y, x).
        # So rename here before _addup_repetitive_outputs_.
        if program._appending_grad_times > 1:
            for op_desc in grad_op_desc:
                if not _is_grad_op_(op):
                    for name in op_desc.input_arg_names():
                        if name in rename_var_map:
                            op_desc._rename_input(name, rename_var_map[name])
                for name in op_desc.output_arg_names():
                    if "@GRAD" not in name:
                        continue
                    if block.desc.find_var(name.encode("ascii")):
                        new_name = _rename_grad_name_(
                            name, program._appending_grad_times)
                        op_desc._rename_output(name, new_name)
                        rename_var_map[name] = new_name

                        if name in op_grad_to_var:
                            op_grad_to_var[new_name] = op_grad_to_var[name]
                            op_grad_to_var.pop(name)

1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
        # If input_grad_names_set is not None, extend grad_op_descs only when
        # any input grad in outputs of previous grad ops.
        # But this strategy is not suited for while op for some control flow,
        # for example, for while op, the grads maybe generated in next loop.
        if input_grad_names_set is not None:
            is_append_grad = False
            for op_desc in grad_op_desc:
                input_grad_names = [
                    name for name in op_desc.input_arg_names()
                    if name.find(core.grad_var_suffix()) != -1
                ]
                # some code of gradient ops, like increment, are not very
                # standard, there is no @GRAD in these ops' inputs.
                if len(input_grad_names) == 0:
                    is_append_grad = True
                    break

                if _some_in_set_(input_grad_names, input_grad_names_set):
                    grad_op_descs.append(op_desc)
                    is_append_grad = True
                    for name in op_desc.output_arg_names():
                        input_grad_names_set.add(name)
            if is_append_grad:
                grad_to_var.update(op_grad_to_var)
        else:
            grad_op_descs.extend(grad_op_desc)
            grad_to_var.update(op_grad_to_var)
F
fengjiayi 已提交
1141

M
mapingshuo 已提交
1142
    # sum parameter's gradients' var given multiple var gradient
1143
    grad_op_descs = _addup_repetitive_outputs_(grad_op_descs, block.idx)
F
fengjiayi 已提交
1144

M
mapingshuo 已提交
1145 1146
    # if all outputs of the grad op are in no_grad_set, then just remove and fill zero
    # if all inputs of the grad op are in no_grad_set, just remove this op
F
fengjiayi 已提交
1147 1148
    grad_op_descs = _remove_no_grad_branch_(grad_op_descs,
                                            no_grad_dict[block.idx])
F
fengjiayi 已提交
1149

M
mapingshuo 已提交
1150
    # remove some backward ops
C
chengduo 已提交
1151
    not_need_ops = _find_not_need_ops(grad_op_descs, ops, input_grad_names_set)
M
mapingshuo 已提交
1152

C
chengduo 已提交
1153 1154 1155
    grad_op_descs = [
        op_desc for op_desc in grad_op_descs if op_desc not in not_need_ops
    ]
1156

F
fengjiayi 已提交
1157
    # append op_desc in grad_op_descs to target_block
Y
yuyang18 已提交
1158 1159
    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
F
update  
fengjiayi 已提交
1160
    for op_desc in grad_op_descs:
F
fengjiayi 已提交
1161 1162
        new_op_desc = target_block.desc.append_op()
        new_op_desc.copy_from(op_desc)
W
Wu Yi 已提交
1163
        new_op_desc._set_attr(op_role_attr_name, backward)
Y
Yang Yang 已提交
1164
        grad_to_var["__current_op_desc__"] = new_op_desc
Y
Yang Yang 已提交
1165
        if callbacks is not None:
1166
            assert (isinstance(callbacks, (list, tuple)))
Y
Yang Yang 已提交
1167 1168
            for cb in callbacks:
                cb(block=target_block, context=grad_to_var)
F
update  
fengjiayi 已提交
1169

F
fengjiayi 已提交
1170

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
def _is_grad_var_(var_name):
    return core.grad_var_suffix() in var_name


# Find the op who holds the sub_block as its "sub_block" attr
def _find_parent_op_(sub_block):
    sub_block_id = sub_block.idx

    if sub_block_id == 0:
        return None

    program = sub_block.program
    for block_id in six.moves.range(program.num_blocks):
        block_desc = program.block(block_id).desc
        for op_idx in six.moves.range(block_desc.op_size()):
            op = block_desc.op(op_idx)
            if op.has_attr("sub_block") and op._block_attr_id(
                    "sub_block") == sub_block_id:
                return op

1191
    # NOTE(paddle-dev): When optimizer is added in conditional block,
1192 1193 1194 1195
    # sub_block may not be found.
    return None


F
fengjiayi 已提交
1196
def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map):
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
    """
    Create new variables required by backward pass.

    Args:
        block(Block): the block where new variables will be created
        start_op_idx(int): Only variables required by ops in block.ops[start_op_idx : ] will be created
        grad_to_var(dict):
            key(str): grad variable name
            val(str): corresponding forward variable name
            In most cases, this dict is generated by _append_backward_ops_()
        grad_info_map(dict)(output argument):
            key(str): forward variable name
1209
            val(tuple): a tuple of (str, Block), str is the corresponding grad name, Block is the block containing grad variable
1210
    """
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
    ops_to_remove = []
    '''
    NOTE(paddle-dev): while_grad op may hold some inputs which are not found 
    in the parent/forward block, and they are also the outputs of while_grad 
    op. These kinds of inputs are the recursive outputs inside while_grad op. 
    They should be considered as "already created" when scanning the inner 
    ops of while_grad ops.  
    '''
    parent_op = _find_parent_op_(block)
    parent_op_vars = []
    if parent_op is not None:
        input_args = parent_op.input_arg_names()
        output_args = parent_op.output_arg_names()
        for in_arg in input_args:
            if in_arg in output_args:
                parent_op_vars.append(in_arg)

F
fengjiayi 已提交
1228 1229 1230
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        if op_desc.has_attr("sub_block"):
W
Wu Yi 已提交
1231
            sub_block = block.program.block(op_desc._block_attr_id("sub_block"))
F
fengjiayi 已提交
1232
            _append_backward_vars_(sub_block, 0, grad_to_var, grad_info_map)
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249

        grad_var_ins = [
            var for var in op_desc.input_arg_names() if _is_grad_var_(var)
        ]
        grad_var_outs = [
            var for var in op_desc.output_arg_names() if _is_grad_var_(var)
        ]

        inputs = [
            var for var in op_desc.input_arg_names()
            if var != core.empty_var_name()
        ]
        outputs = [
            var for var in op_desc.output_arg_names()
            if var != core.empty_var_name()
        ]

1250
        # If the outputs of grad op is empty, just remove it
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
        if not outputs:
            ops_to_remove.append(op_idx)
            continue
        else:
            '''
            If the output is not empty and there is any grad input, find 
            whether there is any existing input. If not, just remove it.
            '''
            if grad_var_ins:
                existing_grad_var_ins = [
                    var for var in grad_var_ins
                    if block.desc.has_var_recursive(cpt.to_bytes(var)) or var in
                    parent_op_vars
                ]
                if not existing_grad_var_ins:
                    '''
                    FIXME(paddle-dev, zengjinle): rnn_memory_helper_grad is used
                    in recurrent op. The input of this op does not even exist in 
                    the program! Therefore, any dependency analysis would not 
                    work to this op! If I do not add the following code, this op
                    would be pruned, and the calculation result would be wrong. 
                    Maybe we should re-design this op later...  
                    '''
                    if op_desc.type() not in ['rnn_memory_helper_grad']:
                        ops_to_remove.append(op_idx)
1276
                        continue
1277

F
fengjiayi 已提交
1278 1279 1280
        new_vars = set()
        # create new gradient variables
        for grad_var_name in op_desc.output_arg_names():
M
minqiyang 已提交
1281 1282
            if block.desc.has_var_recursive(cpt.to_bytes(
                    grad_var_name)) or grad_var_name == core.empty_var_name():
F
fengjiayi 已提交
1283
                continue
M
minqiyang 已提交
1284
            block.desc.var(cpt.to_bytes(grad_var_name))
F
fengjiayi 已提交
1285
            new_vars.add(grad_var_name)
1286
            if grad_var_name not in grad_to_var:
F
fengjiayi 已提交
1287 1288 1289 1290 1291
                continue
            grad_info_map[grad_to_var[grad_var_name]] = (grad_var_name, block)
        # infer_shape and infer_type
        op_desc.infer_var_type(block.desc)
        op_desc.infer_shape(block.desc)
1292

F
fengjiayi 已提交
1293 1294
        for arg in op_desc.output_arg_names():
            if arg in new_vars:
1295
                _infer_var_data_type_shape_(arg, block)
F
update  
fengjiayi 已提交
1296

1297 1298 1299
    for op_idx in reversed(ops_to_remove):
        block.desc._remove_op(op_idx, op_idx + 1)

F
update  
fengjiayi 已提交
1300

1301 1302 1303 1304 1305 1306
def _rename_grad_(block, start_op_idx, grad_to_var, target_grad_map):
    var_map = copy.copy(target_grad_map)
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        for name in op_desc.input_arg_names():
            if name in var_map:
W
Wu Yi 已提交
1307
                op_desc._rename_input(name, var_map[name])
1308 1309

        for name in op_desc.output_arg_names():
M
mapingshuo 已提交
1310 1311
            if "@GRAD" not in name:
                continue
1312
            if block.desc.find_var(name.encode("ascii")):
Y
Yu Yang 已提交
1313
                new_name = unique_name.generate(name)
W
Wu Yi 已提交
1314
                op_desc._rename_output(name, new_name)
1315 1316
                var_map[name] = new_name

M
minqiyang 已提交
1317
    for g, ng in six.iteritems(var_map):
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
        if g in grad_to_var:
            grad_to_var[ng] = grad_to_var[g]
            grad_to_var.pop(g)


def _get_stop_gradients_(program):
    no_grad_dict = dict()
    assert isinstance(program, framework.Program)
    for block in program.blocks:
        assert isinstance(block, framework.Block)
        block_no_grad_set = set()
1329
        for var in list(block.vars.values()):
1330 1331 1332 1333 1334 1335 1336
            assert isinstance(var, framework.Variable)
            if var.stop_gradient:
                block_no_grad_set.add(_append_grad_suffix_(var.name))
        no_grad_dict[block.idx] = block_no_grad_set
    return no_grad_dict


1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
def _get_son_parent_block_idx_dict(program, current_block_idx):

    son_parent_block_idx_dict = collections.OrderedDict()
    while current_block_idx >= 0:
        parent_block_idx = program.block(current_block_idx).parent_idx
        son_parent_block_idx_dict[current_block_idx] = parent_block_idx
        current_block_idx = parent_block_idx

    return son_parent_block_idx_dict


1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
def _get_no_grad_set_name(no_grad_set):
    no_grad_set_name = set()
    if no_grad_set is not None:
        if isinstance(no_grad_set, (set, list, tuple)):
            for i, no_grad_var in enumerate(no_grad_set):
                if isinstance(no_grad_var, framework.Variable):
                    no_grad_set_name.add(no_grad_var.name)
                elif isinstance(no_grad_var, six.string_types):
                    no_grad_set_name.add(no_grad_var)
                else:
                    raise TypeError(
                        "The type of no_grad_set's member must be paddle.fluid.Variable or str, but received %s."
                        % (type(no_grad_var)))
        else:
            raise TypeError(
                "The type of no_grad_set should be set or list or tuple, but received {}".
                format(type(no_grad_set)))
    return no_grad_set_name


1368
@framework.static_only
M
mapingshuo 已提交
1369 1370 1371 1372 1373
def append_backward(loss,
                    parameter_list=None,
                    no_grad_set=None,
                    callbacks=None,
                    checkpoints=None):
1374
    """
1375 1376
    :api_attr: Static Graph

1377
    This function appends backward part to main_program.
F
fengjiayi 已提交
1378

1379 1380
    A complete neural network training is made up of forward and backward
    propagation. However, when we configure a network, we only need to
1381 1382
    specify its forward part. This function uses the chain rule to automatically
    generate the backward part according to the forward part.
F
fengjiayi 已提交
1383

1384 1385
    In most cases, users do not need to invoke this function manually.
    It will be automatically invoked by the optimizer's `minimize` function.
F
fengjiayi 已提交
1386

1387
    Parameters:
1388
        loss(Tensor): The loss Tensor of the network.
1389
        parameter_list(list[Tensor|str]|tuple[Tensor|str], optional): List/Tuple of Parameters or Parameter.names
1390
                                           that need to be updated by optimizers.
1391
                                           If it is None, all parameters
F
fengjiayi 已提交
1392
                                           will be updated.
1393
                                           Default: None.
1394 1395
        no_grad_set(set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
                               should be ignored. All Tensors with
1396
                               `stop_gradient=True` from all blocks will
F
fengjiayi 已提交
1397
                               be automatically added into this set.
1398
                               If this parameter is not None, the Tensors or Tensor.names in this set will be added to the default set.
1399
                               Default: None.
1400
        callbacks(list[callable object]|tuple[callable object], optional): List/Tuple of callback functions.
1401
                                               The callbacks are used for
1402 1403 1404 1405 1406 1407
                                               doing some custom jobs during
                                               backward part building. All
                                               callable objects in it will
                                               be invoked once each time a
                                               new gradient operator is added
                                               into the program. The callable
Z
zhangchunle 已提交
1408
                                               object must have two input
1409 1410
                                               parameters: ``block`` and ``context`` .
                                               The ``block`` is the :ref:`api_guide_Block_en` which
1411
                                               the new gradient operator will
1412
                                               be added to. The ``context`` is a
1413
                                               map, whose keys are gradient
1414 1415 1416
                                               Tensor names and values are
                                               corresponding original :ref:`api_guide_tensor_en` .
                                               In addition to this, the ``context``
1417
                                               has another special key-value pair:
1418
                                               the key is string ``__current_op_desc__``
1419 1420 1421
                                               and the value is the op_desc of the
                                               gradient operator who has just
                                               triggered the callable object.
1422
                                               Default: None.
F
fengjiayi 已提交
1423 1424

    Returns:
1425 1426
        list of tuple ( :ref:`api_guide_tensor_en` , :ref:`api_guide_tensor_en` ): Pairs of parameter and its corresponding gradients.
        The key is the parameter and the value is gradient Tensor.
F
fengjiayi 已提交
1427 1428

    Raises:
1429
        AssertionError: If ``loss`` is not an instance of Tensor.
F
fengjiayi 已提交
1430 1431 1432 1433

    Examples:
        .. code-block:: python

1434 1435
            import paddle
            import paddle.nn.functional as F
L
lujun 已提交
1436

1437 1438 1439 1440 1441
            paddle.enable_static()

            x = paddle.static.data(name='x', shape=[None, 13], dtype='int64')
            y = paddle.static.data(name='y', shape=[None, 1], dtype='float32')
            x_emb = paddle.static.nn.embedding(x, size=[100, 256])
1442
            y_predict = paddle.static.nn.fc(x=x_emb, size=1, activation=None, name='my_fc')
1443 1444
            loss = F.square_error_cost(input=y_predict, label=y)
            avg_loss = paddle.mean(loss)
1445 1446

            # Get all weights in main_program, not include bias.
1447
            all_weights = [param for param in paddle.static.default_main_program().block(0).all_parameters() if 'w_' in param.name]
1448 1449 1450
            all_weights_name = [w.name for w in all_weights]

            # return all param_grads needed to be updated if parameter_list set default None.
1451
            p_g_list1 = paddle.static.append_backward(loss=avg_loss)
1452 1453
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD), (my_fc.b_0, my_fc.b_0@GRAD)]

1454 1455
            # return the param_grads corresponding to parameter_list that can be list of param (Tensor).
            p_g_list2 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights)
1456 1457 1458
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

            # parameter_list can be list of param.name (str).
1459
            p_g_list3 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights_name)
1460 1461
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

1462 1463
            # no_grad_set can be set of Tensors that means grad will be cut off from these Tensors.
            p_g_list4 = paddle.static.append_backward(loss=avg_loss, no_grad_set=set([x_emb]))
1464 1465
            # output: [(my_fc.w_0, my_fc.w_0@GRAD), (my_fc.b_0, my_fc.b_0@GRAD)]

1466 1467
            # no_grad_set can be set of Tensor.name when the Tensor is created inside layers and can't be specified explicitly.
            p_g_list5 = paddle.static.append_backward(loss=avg_loss, no_grad_set=set(['my_fc.b_0']))
1468 1469 1470
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

            # return [] because all param_grads are filtered by no_grad_set.
1471
            p_g_list6 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights, no_grad_set=set(all_weights))
1472

1473
    """
1474
    check_type(loss, 'loss', framework.Variable,
1475
               'paddle.static.append_backward')
Y
yuyang18 已提交
1476

Y
Fix bug  
yuyang18 已提交
1477 1478
    if loss.op is None:
        # the loss is from a cloned program. Find loss op manually.
M
mapingshuo 已提交
1479
        _find_loss_op_(loss)
Y
Fix bug  
yuyang18 已提交
1480

W
Wu Yi 已提交
1481 1482 1483
    loss.op._set_attr(core.op_proto_and_checker_maker.kOpRoleAttrName(),
                      int(core.op_proto_and_checker_maker.OpRole.Forward) |
                      int(core.op_proto_and_checker_maker.OpRole.Loss))
Y
yuyang18 已提交
1484

Y
Yang Yang 已提交
1485
    if callbacks is not None:
1486
        check_type(callbacks, 'callbacks', (list, tuple),
1487
                   'paddle.static.append_backward')
Y
Yu Yang 已提交
1488

F
fengjiayi 已提交
1489
    program = loss.block.program
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
    root_block = program.block(0)
    current_block_idx = program.current_block_idx
    current_block = program.block(current_block_idx)

    is_in_control_flow = current_block_idx != 0

    # Double grad is not supported in sub-block (control flow)
    if not is_in_control_flow:
        # _appending_grad_times used for double grad
        program._appending_grad_times += 1
1500

F
fengjiayi 已提交
1501
    if no_grad_set is None:
1502
        no_grad_set = set()
1503 1504
    else:
        no_grad_set = _get_no_grad_set_name(copy.copy(no_grad_set))
1505
    no_grad_dict = _get_stop_gradients_(program)
1506 1507
    # no_grad_set only contains vars in block 0
    # Todo(liym27): support vars in sub block
1508
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
Y
Yu Yang 已提交
1509

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
    # Currently it is only to support the optimizer.minimize
    # in a switch branch, which can append_backward in a sub_block.
    # Note: while_loop is in control flow, but it makes no sense to call optimizer in while.
    # Todo: report error when it is in while_loop
    if is_in_control_flow:
        # create grad block if in switch control flow.
        target_grad_block = program._create_block(
            parent_idx=current_block.parent_idx)
        target_grad_block._set_forward_block_idx(current_block_idx)
        # after _create_block, program.current_block changes
    else:
        target_grad_block = root_block

    son_parent_block_idx_dict = _get_son_parent_block_idx_dict(
        program, current_block_idx)

    block_fwd_op_num_dict = {}  # block_id: fwd_op_num
    for idx in son_parent_block_idx_dict:
        block_fwd_op_num_dict[idx] = program.block(idx).desc.op_size()
F
fengjiayi 已提交
1529

F
fengjiayi 已提交
1530 1531
    grad_to_var = dict()

M
mapingshuo 已提交
1532
    op_desc = _create_loss_op_desc_(loss)
1533 1534 1535 1536 1537 1538 1539
    target_grad_block.desc.append_op().copy_from(op_desc)

    for block_idx in son_parent_block_idx_dict:
        block = program.block(block_idx)

        block_no_grad_set = set(
            map(_strip_grad_suffix_, no_grad_dict[block_idx]))
1540 1541 1542 1543

        op_path_dict = dict()
        op_path = _find_op_path_(block, [loss], [], block_no_grad_set,
                                 op_path_dict)
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555

        no_grad_vars = _find_no_grad_vars(block, op_path, [loss],
                                          block_no_grad_set)

        block_no_grad_set.update(no_grad_vars)
        no_grad_dict[block_idx].update(
            list(map(_append_grad_suffix_, block_no_grad_set)))

        input_grad_names_set = None
        # For double backward, input_grad_names is used for filtering
        # some non-used gradients op(s).

1556
        # TODO(liym27): need a better design.
1557 1558 1559 1560 1561
        # not support double grad in control flow sub-block now.
        if not is_in_control_flow:
            if program._appending_grad_times > 1:
                input_grad_names_set = set([_append_grad_suffix_(loss.name)])

1562
        # TODO: support _append_backward_ops_with_checkpoints_ in
1563
        #  sub-block (control flow)
J
JZ-LIANG 已提交
1564
        is_recompute = False
1565 1566 1567
        if checkpoints != None and \
                isinstance(checkpoints, list) and \
                len(checkpoints) > 0:
J
JZ-LIANG 已提交
1568
            is_recompute = True
1569
            program_stat, checkpoint_names, \
T
tangwei12 已提交
1570 1571
                vars_should_be_hold, \
                recompute_segments = \
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
                _append_backward_ops_with_checkpoints_(
                    root_block,
                    op_path,
                    root_block,
                    no_grad_dict,
                    grad_to_var,
                    checkpoints)
        else:
            _append_backward_ops_(
                block,  # the block where forward ops are in
                op_path,
                target_grad_block,
                no_grad_dict,
                grad_to_var,
                callbacks,
1587 1588
                input_grad_names_set=input_grad_names_set,
                op_path_dict=op_path_dict)
1589 1590 1591 1592 1593 1594 1595 1596 1597

    grad_info_map = dict()

    # if in control flow, target_grad_block is a created new block which only contains grad ops,
    # so fwd_op_num is set to 0.
    fwd_op_num = block_fwd_op_num_dict[
        current_block_idx] if not is_in_control_flow else 0

    # Because append_backward may be called multiple times,
1598 1599
    # we need rename the internal gradient variables so that they have
    # different names.
1600
    _rename_grad_(target_grad_block, fwd_op_num, grad_to_var, {})
1601

1602 1603
    _append_backward_vars_(target_grad_block, fwd_op_num, grad_to_var,
                           grad_info_map)
F
fengjiayi 已提交
1604

F
fengjiayi 已提交
1605
    program.current_block_idx = current_block_idx
W
Wu Yi 已提交
1606
    program._sync_with_cpp()
F
fengjiayi 已提交
1607

1608
    if parameter_list is not None:
1609 1610
        check_type(parameter_list, 'parameter_list', (list, tuple, set),
                   'fluid.backward.append_backward')
1611 1612
        parameters = []
        for i, param in enumerate(parameter_list):
1613 1614 1615
            check_type(param, 'parameter_list[%s]' % i, (framework.Variable,
                                                         six.string_types),
                       'fluid.backward.append_backward')
1616 1617 1618 1619
            if isinstance(param, framework.Variable):
                parameters.append(param.name)
            elif isinstance(param, six.string_types):
                parameters.append(param)
1620
    else:
F
fengjiayi 已提交
1621
        params = program.global_block().all_parameters()
C
chengduo 已提交
1622
        parameters = [param.name for param in params if param.trainable]
1623

1624
    params_and_grads = []
1625
    op_role_var_attr_name = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
1626
    for param in parameters:
M
minqiyang 已提交
1627
        if cpt.to_text(param) not in grad_info_map:
F
fengjiayi 已提交
1628
            continue
F
update  
fengjiayi 已提交
1629
        grad_info = grad_info_map[param]
F
fengjiayi 已提交
1630
        grad_block = grad_info[1]
1631 1632 1633 1634
        if not grad_block.has_var(grad_info[0]):
            raise ValueError("grad block[{0}] did not have grad var {1}".format(
                grad_info[1], grad_info[0]))
        # Get the param var from the global block
F
fengjiayi 已提交
1635
        param_var = program.global_block().var(param)
1636
        grad_var = grad_block.var(grad_info[0])
1637 1638 1639 1640 1641
        if not is_in_control_flow:
            if loss.block.has_var(grad_info[0]):
                params_and_grads.append((param_var, grad_var))
            else:
                params_and_grads.append((param_var, None))
1642
        else:
1643
            params_and_grads.append((param_var, grad_var))
Y
yuyang18 已提交
1644 1645 1646 1647

    for p, g in params_and_grads:
        if g is None:
            continue
1648 1649 1650
        ops = grad_block.ops if is_in_control_flow else program.global_block(
        ).ops
        for op in reversed(ops):
Y
yuyang18 已提交
1651 1652 1653 1654 1655 1656 1657
            assert isinstance(op, framework.Operator)
            if g.name in op.output_arg_names:
                g.op = op
                break

        if g.op is None:
            raise ValueError("Unexpected branch")
Y
yuyang18 已提交
1658
        attr_val = [p.name, g.name]
Y
yuyang18 已提交
1659 1660
        if g.op.has_attr(op_role_var_attr_name):
            attr_val.extend(g.op.attr(op_role_var_attr_name))
W
Wu Yi 已提交
1661
        g.op._set_attr(op_role_var_attr_name, attr_val)
Y
yuyang18 已提交
1662

J
JZ-LIANG 已提交
1663 1664 1665 1666
    if is_recompute:
        return params_and_grads, checkpoint_names
    else:
        return params_and_grads
1667 1668 1669 1670 1671 1672 1673 1674


def _as_list(x):
    if x is None:
        return []
    return list(x) if isinstance(x, collections.Sequence) else [x]


1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
def _is_ancestor_block(ancestor_block, block):
    prog = block.program
    ancestor_idx = ancestor_block.idx
    parent_idx = block.parent_idx

    while parent_idx != -1:
        if parent_idx == ancestor_idx:
            return True
        parent_idx = prog.block(parent_idx).parent_idx

    return False


def _get_output_names(cur_block, targets):
    """
    In `cur_block`, get output names those linked to targets.
    NOTE:
    1. `targets` can be in `cur_block`;
    Usually, `targets` is in `cur_block`. However, considering control flow,
    2. `targets` may be in sub-block but `cur_block` is an ancestor of `targets[0].block`;
    3. `targets` may be in the block which is ancestor of `cur_block`.
    """

    block = targets[0].block if targets else cur_block
    current_output_names = set([out.name for out in targets])

1701 1702 1703 1704 1705 1706
    # 1. If `targets` in cur_block or the ancestral block of `cur_block`
    if block.idx == cur_block.idx or _is_ancestor_block(block, cur_block):
        return current_output_names

    # 2. If `cur_block` is an ancestor of `targets[0].block`, run while loop
    prog = cur_block.program
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
    while block.idx != cur_block.idx:
        assert block.parent_idx != -1
        parent_block = prog.block(block.parent_idx)

        parent_block_output_names = set()
        for op in reversed(block.ops):
            if _some_in_set_(op.desc.output_arg_names(), current_output_names):
                for name in op.desc.input_arg_names():
                    current_output_names.add(name)
                    if not block.desc.find_var(cpt.to_bytes(name)) \
                            and parent_block.desc.find_var(cpt.to_bytes(name)):
                        parent_block_output_names.add(name)

        block = parent_block
        current_output_names = parent_block_output_names

    return current_output_names


1726 1727 1728
def _find_no_grad_vars(block, op_path, targets, no_grad_set):
    """
    Find the vars which is not used in the program, and
1729
    those vars belong to no_grad_var.
1730
    """
1731
    output_names = _get_output_names(block, targets)
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
    no_grad_var = []
    for i, op in reversed(list(enumerate(op_path))):
        # If the op has sub_block, it is too complicated to find the correct no_grad_var.
        if not op.has_attr("sub_block"):
            for out_var in op.desc.output_arg_names():
                if out_var not in output_names and out_var not in op.desc.input_arg_names(
                ) and not block.vars[out_var].stop_gradient:
                    no_grad_var.append(out_var)
        for name in op.desc.input_arg_names():
            if name not in no_grad_set:
                output_names.add(name)
    return set(no_grad_var)


1746 1747 1748 1749 1750 1751
def _find_op_path_(block,
                   targets,
                   inputs,
                   no_grad_set,
                   op_path_dict=None,
                   is_while=False):
1752
    """
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
    It is used to find the grad path in `block`.

    Args:
        block(Block): The block in which to get op path.
        targets(list[Variable]): The target variables.
        inputs(list[Variable]): The input variables.
        no_grad_set(set): The set of no grad var name. no_grad_set will be changed.
        op_path_dict(dict): op_path_dict will be changed. op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
        is_while(bool): Whether or not `block` is while block
    Return:
        The forward op path of block corresponding to backward op.
1766
    """
1767

1768
    input_names = set([inp.name for inp in inputs])
1769 1770 1771
    output_names = _get_output_names(block, targets)
    if op_path_dict is None:
        op_path_dict = dict()
1772 1773 1774 1775 1776 1777

    relevant_op_flags = [True] * len(block.ops)

    # All the inputs of the block are used if inputs is empty,
    if inputs:
        for i, op in enumerate(block.ops):
1778 1779 1780
            if _some_in_set_(
                    op.desc.input_arg_names(),
                    input_names) and core.has_non_empty_grad_op_maker(op.type):
1781 1782 1783 1784 1785 1786 1787
                for name in op.desc.output_arg_names():
                    if name not in no_grad_set:
                        input_names.add(name)
            else:
                relevant_op_flags[i] = False

    for i, op in reversed(list(enumerate(block.ops))):
1788 1789 1790 1791 1792 1793 1794 1795 1796
        if op.has_attr("sub_block"):
            sub_block_id = op._block_attr_id("sub_block")
            sub_block = block.program.block(sub_block_id)
            sub_block_target_names = output_names & set(op.output_arg_names)
            sub_block_path = _get_sub_block_path(sub_block, op,
                                                 set(), op_path_dict,
                                                 sub_block_target_names)
            op_path_dict[sub_block_id] = sub_block_path

1797 1798 1799
        if _some_in_set_(
                op.desc.output_arg_names(),
                output_names) and core.has_non_empty_grad_op_maker(op.type):
1800 1801 1802 1803 1804 1805
            for name in op.desc.input_arg_names():
                if name not in no_grad_set:
                    output_names.add(name)
        else:
            relevant_op_flags[i] = False

1806 1807 1808 1809 1810
    if is_while:
        # If block is while block, dealing with op specifically again.
        # TODO(liym27): Consider special types of ops.
        for i, op in reversed(list(enumerate(block.ops))):
            if relevant_op_flags[i] == False \
T
tangwei12 已提交
1811
                    and _some_in_set_(op.desc.output_arg_names(), output_names):
1812 1813
                relevant_op_flags[i] = True

1814 1815 1816 1817 1818 1819 1820
    op_path = [
        block.ops[i] for i in range(len(block.ops)) if relevant_op_flags[i]
    ]

    if inputs:
        for op in op_path:
            for name in op.desc.input_arg_names():
1821
                if name not in input_names and block.vars[name].stop_gradient:
1822 1823 1824 1825 1826 1827 1828
                    no_grad_set.add(name)

    return op_path


def calc_gradient(targets, inputs, target_gradients=None, no_grad_set=None):
    """
1829
    Backpropagate the gradients of targets to inputs.
1830 1831

    Args:
1832 1833 1834
        targets(Tensor|list[Tensor]|tuple[Tensor]): The target Tensors
        inputs(Tensor|list[Tensor]|tuple[Tensor]): The input Tensors
        target_gradients (Tensor|list[Tensor]|tuple[Tensor], optional): The gradient Tensors
1835 1836
            of targets which has the same shape with targets, If None, ones will
            be created for them.
1837 1838
        no_grad_set(set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
                               should be ignored. All Tensors with
1839 1840
                               `stop_gradient=True` from all blocks will
                               be automatically added into this set.
1841
                               If this parameter is not None, the Tensors or Tensor.names in this set will be added to the default set.
1842
                               Default: None.
1843 1844

    Return:
1845 1846
        (list[Tensor]): A list of gradients for inputs
        If an input does not affect targets, the corresponding gradient Tensor
1847 1848 1849 1850 1851 1852 1853 1854
        will be None
    """
    targets = _as_list(targets)
    inputs = _as_list(inputs)
    target_gradients = _as_list(target_gradients)

    block = targets[0].block
    prog = block.program
1855 1856
    # increase appending gradients times
    prog._appending_grad_times += 1
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
    block_idx = block.idx

    if not target_gradients:
        target_gradients = [None] * len(targets)

    if len(targets) != len(target_gradients):
        raise ValueError(
            "Should have the same number of target_gradients as targets")

    if no_grad_set is None:
        no_grad_set = set()
1868 1869
    else:
        no_grad_set = _get_no_grad_set_name(copy.copy(no_grad_set))
1870
    no_grad_dict = _get_stop_gradients_(prog)
1871
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
1872 1873 1874

    fwd_op_num = block.desc.op_size()

1875 1876
    input_grad_names_set = set()

1877 1878 1879 1880 1881
    target_grad_map = {}
    for i, grad in enumerate(target_gradients):
        target = targets[i]
        if grad is None:
            grad_name = _append_grad_suffix_(target.name)
L
lvmengsi 已提交
1882 1883 1884 1885 1886
            target_shape = target.name + '_shape'
            block.desc.append_op().copy_from(
                _create_op_desc_("shape", {'Input': [target.name]},
                                 {"Out": [target_shape]}, {}))
            input_grad_names_set.add(target_shape)
L
liym27 已提交
1887
            op_desc = _create_op_desc_("fill_constant",
L
lvmengsi 已提交
1888
                                       {"ShapeTensor": [target_shape]},
1889
                                       {"Out": [grad_name]}, {
1890
                                           "shape": target.shape,
1891 1892 1893
                                           "value": 1.0,
                                           "dtype": target.dtype,
                                       })
L
liym27 已提交
1894

1895
            block.desc.append_op().copy_from(op_desc)
1896
            input_grad_names_set.add(grad_name)
1897 1898 1899 1900 1901 1902 1903 1904
        else:
            if target.block.idx != block_idx or target.block.program != prog:
                raise ValueError("all targets must be in the same block")
            if target.shape != grad.shape:
                raise ValueError(
                    "The shapes of target and grad are different: %s %s" % (
                        target.name, grad.name))
            target_grad_map[_append_grad_suffix_(target.name)] = grad.name
1905 1906 1907 1908 1909 1910
            input_grad_names_set.add(grad.name)

    # For double backward, input_grad_names is used for filter
    # some non-used gradients op.
    if prog._appending_grad_times == 1:
        input_grad_names_set = None
1911 1912 1913 1914 1915 1916

    for input in inputs:
        if input.block.program != prog:
            raise "input must be in the same program as targets"

    block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0]))
1917 1918 1919 1920

    op_path_dict = dict()
    op_path = _find_op_path_(block, targets, inputs, block_no_grad_set,
                             op_path_dict)
1921 1922 1923 1924 1925 1926

    # find no grad var by op_path
    no_grad_vars = _find_no_grad_vars(block, op_path, targets,
                                      block_no_grad_set)
    block_no_grad_set.update(no_grad_vars)

1927
    no_grad_dict[0].update(list(map(_append_grad_suffix_, block_no_grad_set)))
1928 1929
    grad_to_var = dict()
    grad_info_map = dict()
1930 1931 1932 1933 1934 1935
    _append_backward_ops_(
        block,
        op_path,
        block,
        no_grad_dict,
        grad_to_var,
1936 1937
        input_grad_names_set=input_grad_names_set,
        op_path_dict=op_path_dict)
1938 1939 1940 1941 1942 1943 1944

    # Because calc_gradient may be called multiple times,
    # we need rename the internal gradient variables so that they have
    # different names.
    _rename_grad_(block, fwd_op_num, grad_to_var, target_grad_map)

    _append_backward_vars_(block, fwd_op_num, grad_to_var, grad_info_map)
W
Wu Yi 已提交
1945
    prog._sync_with_cpp()
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960

    grad_vars = []
    for input_var in inputs:
        if input_var.name not in grad_info_map:
            grad_vars.append(None)
        else:
            grad_info = grad_info_map[input_var.name]
            grad_block = grad_info[1]
            grad_var = grad_block.var(grad_info[0])
            grad_vars.append(grad_var)

    if len(grad_vars) == 1:
        return grad_vars[0]
    else:
        return grad_vars
1961 1962


1963
@framework.static_only
1964 1965
def gradients(targets, inputs, target_gradients=None, no_grad_set=None):
    """
1966
    :api_attr: Static Graph
T
tangwei12 已提交
1967

1968 1969 1970
    Backpropagate the gradients of targets to inputs.

    Args:
1971 1972 1973
        targets (Tensor|list[Tensor]|tuple[Tensor]): The target Tensors.
        inputs (Tensor|list[Tensor]|tuple[Tensor]): The input Tensors.
        target_gradients (Tensor|list[Tensor]|tuple[Tensor], optional): The gradient Tensor
1974 1975
            of targets which has the same shape with targets, If None, ones will
            be created for them.
1976 1977 1978
        no_grad_set (set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
            should be ignored. All Tensors with ``stop_gradient=True`` from all blocks will
            be automatically added into this set. If this parameter is not None, the Tensors or Tensor.names
1979
            in this set will be added to the default set. Default: None.
1980 1981

    Return:
1982 1983
        (list[Tensor]): A list of gradients for inputs
        If an input does not affect targets, the corresponding gradient Tensor
1984 1985 1986 1987 1988
        will be None.

    Examples:
        .. code-block:: python

1989 1990 1991 1992
            import paddle
            import paddle.nn.functional as F

            paddle.enable_static()
1993

1994
            x = paddle.static.data(name='x', shape=[None, 2, 8, 8], dtype='float32')
1995
            x.stop_gradient=False
1996 1997 1998 1999
            y = paddle.static.nn.conv2d(x, 4, 1, bias_attr=False)
            y = F.relu(y)
            z = paddle.static.gradients([y], x)
            print(z) # [var x@GRAD : fluid.VarType.LOD_TENSOR.shape(-1L, 2L, 8L, 8L).astype(VarType.FP32)]
2000
    """
2001
    check_type(targets, 'targets', (framework.Variable, list, tuple),
2002
               'paddle.static.gradients')
2003
    check_type(inputs, 'inputs', (framework.Variable, list, tuple),
2004
               'paddle.static.gradients')
2005
    check_type(target_gradients, 'target_gradients', (
2006
        framework.Variable, list, tuple, type(None)), 'paddle.static.gradients')
2007

2008 2009
    outs = calc_gradient(targets, inputs, target_gradients, no_grad_set)
    return _as_list(outs)