svd_op.cc 6.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/svd_op.h"
16

17 18 19 20
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
21

22
#include "paddle/phi/core/ddim.h"
23 24 25 26 27 28 29 30 31 32 33 34
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

namespace paddle {
namespace operators {

using DDim = framework::DDim;
static DDim UDDim(const DDim& x_dim, int k) {
  // get x_dim and return the ddim of U
  auto x_vec = vectorize(x_dim);
  x_vec[x_vec.size() - 1] = k;
35
  return phi::make_ddim(x_vec);
36 37 38 39 40
}
static DDim VHDDim(const DDim& x_dim, int k) {
  // get x_dim and return the ddim of U
  auto x_vec = vectorize(x_dim);
  x_vec[x_vec.size() - 2] = k;
41
  return phi::make_ddim(x_vec);
42 43 44 45 46 47
}
static DDim SDDim(const DDim& x_dim, int k) {
  // get x_dim and return the ddim of U
  auto x_vec = vectorize(x_dim);
  x_vec[x_vec.size() - 2] = k;
  x_vec.erase(x_vec.end() - 1);  // rank - 1
48
  return phi::make_ddim(x_vec);
49 50 51 52 53 54 55 56 57 58 59 60 61 62
}

class SvdOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "svd");
    OP_INOUT_CHECK(ctx->HasOutput("U"), "Output", "U", "svd");
    OP_INOUT_CHECK(ctx->HasOutput("VH"), "Output", "VH", "svd");
    OP_INOUT_CHECK(ctx->HasOutput("S"), "Output", "S", "svd");

    auto in_dims = ctx->GetInputDim("X");
    int x_rank = in_dims.size();
63 64
    PADDLE_ENFORCE_GE(in_dims.size(),
                      2,
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
                      platform::errors::InvalidArgument(
                          "the rank of input must greater than 2"));
    int m = in_dims[x_rank - 2];
    int n = in_dims[x_rank - 1];
    int k = std::min(m, n);
    const bool full_uv = ctx->Attrs().Get<bool>("full_matrices");
    ctx->SetOutputDim("U", !full_uv ? UDDim(in_dims, k) : UDDim(in_dims, m));
    ctx->SetOutputDim("VH", !full_uv ? VHDDim(in_dims, k) : VHDDim(in_dims, n));
    ctx->SetOutputDim("S", SDDim(in_dims, k));

    ctx->ShareLoD("X", /*->*/ "U");
    ctx->ShareLoD("X", /*->*/ "VH");
    ctx->ShareLoD("X", /*->*/ "S");
  }
};

class SvdOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor), The input tensor of svd op.");
    AddOutput("U", "(Tensor), The output U tensor of svd op.");
    AddOutput("S", "(Tensor), The output S tensor of svd op.");
    AddOutput("VH", "(Tensor), The output VH tensor of svd op.");
    AddAttr<bool>("full_matrices",
                  "(bool, default false) Only Compute the thin U and V"
                  "when set as True, the gradient have some random "
                  "attribute.")
        .SetDefault(false);
    AddComment(R"DOC(
Svd Operator.

This operator is used to perform SVD operation for batched matrics $X$.
$$U, S, VH = svd(X)$$

)DOC");
  }
};

class SvdGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
107 108 109 110 111 112 113 114 115 116 117 118
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("U")),
                   "Input",
                   "U@Grad",
                   "SvdGrad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("VH")),
                   "Input",
                   "VH@Grad",
                   "SvdGrad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("S")),
                   "Input",
                   "S@Grad",
                   "SvdGrad");
119 120 121
    OP_INOUT_CHECK(ctx->HasInput("U"), "Input", "U", "SvdGrad");
    OP_INOUT_CHECK(ctx->HasInput("S"), "Input", "S", "SvdGrad");
    OP_INOUT_CHECK(ctx->HasInput("VH"), "Input", "VH", "SvdGrad");
122 123 124 125
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")),
                   "Output",
                   "X@Grad",
                   "SvdGrad");
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162

    auto d_x = ctx->GetInputDim(("X"));
    ctx->SetOutputDim(framework::GradVarName("X"), d_x);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto dtype = OperatorWithKernel::IndicateVarDataType(ctx, "X");
    return framework::OpKernelType(dtype, ctx.GetPlace());
  }
};

template <typename T>
class SvdGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

  void Apply(GradOpPtr<T> retv) const override {
    retv->SetType("svd_grad");
    retv->SetInput(framework::GradVarName("U"), this->OutputGrad("U"));
    retv->SetInput(framework::GradVarName("VH"), this->OutputGrad("VH"));
    retv->SetInput(framework::GradVarName("S"), this->OutputGrad("S"));
    retv->SetInput("U", this->Output("U"));
    retv->SetInput("VH", this->Output("VH"));
    retv->SetInput("S", this->Output("S"));
    retv->SetInput("X", this->Input("X"));
    retv->SetAttrMap(this->Attrs());
    retv->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

163 164 165
REGISTER_OPERATOR(svd,
                  ops::SvdOp,
                  ops::SvdOpMaker,
166 167 168 169 170
                  ops::SvdGradMaker<paddle::framework::OpDesc>,
                  ops::SvdGradMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(svd_grad, ops::SvdGradOp);

171 172
REGISTER_OP_CPU_KERNEL(svd,
                       ops::SvdCPUKernel<float>,
173 174
                       ops::SvdCPUKernel<double>);

L
Leo Chen 已提交
175 176 177
REGISTER_OP_CPU_KERNEL(svd_grad,
                       ops::SvdGradKernel<phi::CPUContext, float>,
                       ops::SvdGradKernel<phi::CPUContext, double>);