test_serde.cc 5.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <unistd.h>
#include <string>
#include <thread>

#include "gtest/gtest.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/operators/detail/sendrecvop_utils.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/string/printf.h"

namespace framework = paddle::framework;
namespace platform = paddle::platform;
namespace operators = paddle::operators;
namespace math = paddle::operators::math;
namespace memory = paddle::memory;

void RunSerdeTestTensor(platform::Place place) {
  // serialize var to ByteBuffer
  framework::Variable var;
  auto* tensor = var.GetMutable<framework::LoDTensor>();
  tensor->Resize(framework::make_ddim({4, 8, 4, 2}));
  framework::LoD lod;
  lod.push_back(framework::Vector<size_t>({1, 3, 8}));
  tensor->set_lod(lod);
  int tensor_numel = 4 * 8 * 4 * 2;
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto& ctx = *pool.Get(place);
45
  tensor->mutable_data<float>(place);
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
  math::set_constant(ctx, tensor, 31.9);

  ::grpc::ByteBuffer msg;
  operators::detail::SerializeToByteBuffer("myvar", &var, ctx, &msg);
  EXPECT_GT(msg.Length(), 0);

  // deserialize
  std::vector<::grpc::Slice> slices;
  (void)msg.Dump(&slices);
  std::string tmp;
  for (const auto& s : slices) {
    tmp.append(reinterpret_cast<const char*>(s.begin()), s.size());
  }
  sendrecv::VariableMessage varmsg;
  EXPECT_TRUE(varmsg.ParseFromString(tmp));
  EXPECT_EQ(varmsg.varname(), "myvar");
  EXPECT_EQ(varmsg.type(), 0);
  EXPECT_EQ(varmsg.dims()[0], 4);
  EXPECT_EQ(varmsg.dims()[1], 8);
  EXPECT_EQ(varmsg.dims()[2], 4);
  EXPECT_EQ(varmsg.dims()[3], 2);
  EXPECT_EQ(varmsg.lod_level(), 1);
  EXPECT_EQ(varmsg.lod(0).lod_data(0), 1);
  EXPECT_EQ(varmsg.lod(0).lod_data(1), 3);
  EXPECT_EQ(varmsg.lod(0).lod_data(2), 8);

  const float* tensor_data =
      reinterpret_cast<const float*>(varmsg.serialized().data());
  for (int i = 0; i < tensor_numel; ++i) {
75
    EXPECT_FLOAT_EQ(tensor_data[i], 31.9);
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
  }

  // deserialize zero-copy
  framework::Variable var2;
  operators::detail::DeserializeFromByteBuffer(msg, ctx, &var2);
  auto tensor2 = var2.Get<framework::LoDTensor>();
  float* tensor_data2 = nullptr;
  framework::Tensor tmp_tensor;

  if (platform::is_gpu_place(ctx.GetPlace())) {
    platform::CPUPlace cpu;
    framework::TensorCopy(tensor2, cpu, &tmp_tensor);
    tensor_data2 = tmp_tensor.data<float>();
  } else {
    tensor_data2 = const_cast<float*>(tensor2.data<float>());
  }

  EXPECT_EQ(varmsg.lod_level(), 1);
  EXPECT_EQ(varmsg.lod(0).lod_data(0), 1);
  EXPECT_EQ(varmsg.lod(0).lod_data(1), 3);
  EXPECT_EQ(varmsg.lod(0).lod_data(2), 8);
97
  for (int i = 0; i < tensor_numel; ++i) EXPECT_FLOAT_EQ(tensor_data2[i], 31.9);
98 99 100 101 102 103 104 105 106 107 108 109
}

void RunSerdeTestSelectedRows(platform::Place place) {
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto& ctx = *pool.Get(place);

  // serialize var to ByteBuffer
  framework::Variable var;
  auto* slr = var.GetMutable<framework::SelectedRows>();
  auto* tensor = slr->mutable_value();
  auto* rows = slr->mutable_rows();
  tensor->Resize(framework::make_ddim({2, 10}));
110
  tensor->mutable_data<float>(place);
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
  int tensor_numel = 2 * 10;
  math::set_constant(ctx, tensor, 32.7);
  rows->push_back(3);
  rows->push_back(10);

  ::grpc::ByteBuffer msg;
  operators::detail::SerializeToByteBuffer("myvar", &var, ctx, &msg);
  EXPECT_GT(msg.Length(), 0);

  // deserialize
  std::vector<::grpc::Slice> slices;
  (void)msg.Dump(&slices);
  std::string tmp;
  for (const auto& s : slices) {
    tmp.append(reinterpret_cast<const char*>(s.begin()), s.size());
  }
  sendrecv::VariableMessage varmsg;
  EXPECT_TRUE(varmsg.ParseFromString(tmp));

  EXPECT_EQ(varmsg.varname(), "myvar");
  EXPECT_EQ(varmsg.type(), 1);

  const float* tensor_data =
      reinterpret_cast<const float*>(varmsg.serialized().data());
  const int64_t* rows_data =
      reinterpret_cast<const int64_t*>(varmsg.rows().data());
  for (int i = 0; i < tensor_numel; ++i) {
138
    EXPECT_FLOAT_EQ(tensor_data[i], 32.7);
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
  }
  EXPECT_EQ(rows_data[0], 3);
  EXPECT_EQ(rows_data[1], 10);
  // deserialize zero-copy
  framework::Variable var2;
  operators::detail::DeserializeFromByteBuffer(msg, ctx, &var2);

  auto* slr2 = var2.GetMutable<framework::SelectedRows>();
  auto* tensor2 = slr2->mutable_value();
  auto* rows2 = slr2->mutable_rows();
  float* tensor_data2 = nullptr;
  framework::Tensor tmp_tensor;

  if (platform::is_gpu_place(ctx.GetPlace())) {
    platform::CPUPlace cpu;
    framework::TensorCopy(*tensor2, cpu, &tmp_tensor);
    tensor_data2 = tmp_tensor.data<float>();
  } else {
    tensor_data2 = const_cast<float*>(tensor2->data<float>());
  }
  const int64_t* rows_data2 = rows2->data();

  for (int i = 0; i < tensor_numel; ++i) {
162
    EXPECT_FLOAT_EQ(tensor_data2[i], 32.7);
163 164 165 166 167
  }
  EXPECT_EQ(rows_data2[0], 3);
  EXPECT_EQ(rows_data2[1], 10);
}

168 169 170 171
TEST(SelectedRows, CPU) {
  platform::CPUPlace place;
  RunSerdeTestSelectedRows(place);
}
172

173 174 175 176
TEST(SelectedRows, GPU) {
  platform::CUDAPlace place;
  RunSerdeTestSelectedRows(place);
}
177 178 179 180 181 182 183 184 185 186

TEST(Tensor, CPU) {
  platform::CPUPlace place;
  RunSerdeTestTensor(place);
}

TEST(Tensor, GPU) {
  platform::CUDAPlace place;
  RunSerdeTestTensor(place);
}