stacked_dynamic_lstm.py 7.1 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import cPickle
import os
import random
import time

import numpy
import paddle.v2 as paddle
import paddle.v2.dataset.imdb as imdb
import paddle.fluid as fluid
from paddle.v2 import batch
import paddle.fluid.profiler as profiler


def parse_args():
    parser = argparse.ArgumentParser("Understand Sentiment by Dynamic RNN.")
    parser.add_argument(
        '--batch_size',
        type=int,
        default=32,
        help='The sequence number of a batch data. (default: %(default)d)')
    parser.add_argument(
        '--emb_dim',
        type=int,
        default=512,
        help='Dimension of embedding table. (default: %(default)d)')
    parser.add_argument(
        '--hidden_dim',
        type=int,
        default=512,
        help='Hidden size of lstm unit. (default: %(default)d)')
    parser.add_argument(
        '--pass_num',
        type=int,
        default=100,
        help='Epoch number to train. (default: %(default)d)')
    parser.add_argument(
        '--device',
        type=str,
        default='CPU',
        choices=['CPU', 'GPU'],
        help='The device type.')
    parser.add_argument(
        '--crop_size',
        type=int,
        default=int(os.environ.get('CROP_SIZE', '1500')),
        help='The max sentence length of input. Since this model use plain RNN,'
        ' Gradient could be explored if sentence is too long')
    args = parser.parse_args()
    return args


word_dict = imdb.word_dict()


def crop_sentence(reader, crop_size):
    unk_value = word_dict['<unk>']

    def __impl__():
        for item in reader():
            if len([x for x in item[0] if x != unk_value]) < crop_size:
                yield item

    return __impl__


def main():
    args = parse_args()
    lstm_size = args.hidden_dim

    data = fluid.layers.data(
        name="words", shape=[1], lod_level=1, dtype='int64')
    sentence = fluid.layers.embedding(
        input=data, size=[len(word_dict), args.emb_dim])

    sentence = fluid.layers.fc(input=sentence, size=lstm_size, act='tanh')

    rnn = fluid.layers.DynamicRNN()
    with rnn.block():
        word = rnn.step_input(sentence)
        prev_hidden = rnn.memory(value=0.0, shape=[lstm_size])
        prev_cell = rnn.memory(value=0.0, shape=[lstm_size])

        def gate_common(
                ipt,
                hidden,
                size, ):
            gate0 = fluid.layers.fc(input=ipt, size=size, bias_attr=True)
            gate1 = fluid.layers.fc(input=hidden, size=size, bias_attr=False)
            gate = fluid.layers.sums(input=[gate0, gate1])
            return gate

        forget_gate = fluid.layers.sigmoid(
            x=gate_common(word, prev_hidden, lstm_size))
        input_gate = fluid.layers.sigmoid(
            x=gate_common(word, prev_hidden, lstm_size))
        output_gate = fluid.layers.sigmoid(
            x=gate_common(word, prev_hidden, lstm_size))
        cell_gate = fluid.layers.tanh(
            x=gate_common(word, prev_hidden, lstm_size))

        cell = fluid.layers.sums(input=[
            fluid.layers.elementwise_mul(
                x=forget_gate, y=prev_cell), fluid.layers.elementwise_mul(
                    x=input_gate, y=cell_gate)
        ])

        hidden = fluid.layers.elementwise_mul(
            x=output_gate, y=fluid.layers.tanh(x=cell))

        rnn.update_memory(prev_cell, cell)
        rnn.update_memory(prev_hidden, hidden)
        rnn.output(hidden)

    last = fluid.layers.sequence_pool(rnn(), 'last')
    logit = fluid.layers.fc(input=last, size=2, act='softmax')
    loss = fluid.layers.cross_entropy(
        input=logit,
        label=fluid.layers.data(
            name='label', shape=[1], dtype='int64'))
    loss = fluid.layers.mean(x=loss)

    # add acc
    batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
    batch_acc = fluid.layers.accuracy(input=logit, label=fluid.layers.data(name='label', \
                shape=[1], dtype='int64'), total=batch_size_tensor)

    inference_program = fluid.default_main_program().clone()
    with fluid.program_guard(inference_program):
        inference_program = fluid.io.get_inference_program(
            target_vars=[batch_acc, batch_size_tensor])

    adam = fluid.optimizer.Adam()
    adam.minimize(loss)

    fluid.memory_optimize(fluid.default_main_program())

    place = fluid.CPUPlace() if args.device == 'CPU' else fluid.CUDAPlace(0)
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())

    def train_loop(pass_num, crop_size):
        with profiler.profiler(args.device, 'total') as prof:
            for pass_id in range(pass_num):
                train_reader = batch(
                    paddle.reader.shuffle(
                        crop_sentence(imdb.train(word_dict), crop_size),
                        buf_size=25000),
                    batch_size=args.batch_size)
                word_nums = 0
                pass_start_time = time.time()
                for batch_id, data in enumerate(train_reader()):
                    tensor_words = to_lodtensor([x[0] for x in data], place)
                    for x in data:
                        word_nums += len(x[0])
                    label = numpy.array([x[1] for x in data]).astype("int64")
                    label = label.reshape((-1, 1))
                    loss_np, acc, weight = exe.run(
                        fluid.default_main_program(),
                        feed={"words": tensor_words,
                              "label": label},
                        fetch_list=[loss, batch_acc, batch_size_tensor])
                    print("pass_id=%d, batch_id=%d, loss=%f, acc=%f" %
                          (pass_id, batch_id, loss_np, acc))

                pass_end_time = time.time()
                time_consumed = pass_end_time - pass_start_time
                words_per_sec = word_nums / time_consumed
                print("pass_id=%d, sec/pass: %f, words/s: %f" %
                      (pass_id, time_consumed, words_per_sec))

    train_loop(args.pass_num, args.crop_size)


def to_lodtensor(data, place):
    seq_lens = [len(seq) for seq in data]
    cur_len = 0
    lod = [cur_len]
    for l in seq_lens:
        cur_len += l
        lod.append(cur_len)
    flattened_data = numpy.concatenate(data, axis=0).astype("int64")
    flattened_data = flattened_data.reshape([len(flattened_data), 1])
    res = fluid.LoDTensor()
    res.set(flattened_data, place)
    res.set_lod([lod])
    return res


if __name__ == '__main__':
    main()