test_log_loss_op.py 2.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

K
kavyasrinet 已提交
17 18
import unittest
import numpy as np
19
from op_test import OpTest
20
import paddle.fluid as fluid
P
phlrain 已提交
21
import paddle
K
kavyasrinet 已提交
22 23


24 25 26 27
def sigmoid_array(x):
    return 1 / (1 + np.exp(-x))


K
kavyasrinet 已提交
28 29 30
class TestLogLossOp(OpTest):
    def setUp(self):
        self.op_type = 'log_loss'
P
phlrain 已提交
31
        self.python_api = paddle.nn.functional.log_loss
32
        samples_num = 100
K
kavyasrinet 已提交
33

34 35
        x = np.random.random((samples_num, 1)).astype("float32")
        predicted = sigmoid_array(x)
K
kavyasrinet 已提交
36
        labels = np.random.randint(0, 2, (samples_num, 1)).astype("float32")
37
        epsilon = 1e-7
K
kavyasrinet 已提交
38 39 40 41 42 43 44 45 46 47 48
        self.inputs = {
            'Predicted': predicted,
            'Labels': labels,
        }

        self.attrs = {'epsilon': epsilon}
        loss = -labels * np.log(predicted + epsilon) - (
            1 - labels) * np.log(1 - predicted + epsilon)
        self.outputs = {'Loss': loss}

    def test_check_output(self):
P
phlrain 已提交
49
        self.check_output(check_eager=True)
K
kavyasrinet 已提交
50 51

    def test_check_grad(self):
P
phlrain 已提交
52 53
        self.check_grad(
            ['Predicted'], 'Loss', max_relative_error=0.03, check_eager=True)
K
kavyasrinet 已提交
54 55


56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
class TestLogLossOpError(unittest.TestCase):
    def test_errors(self):
        with fluid.program_guard(fluid.Program()):

            def test_x_type():
                input_data = np.random.random(100, 1).astype("float32")
                fluid.layers.log_loss(input_data)

            self.assertRaises(TypeError, test_x_type)

            def test_x_dtype():
                x2 = fluid.layers.data(name='x2', shape=[100, 1], dtype='int32')
                fluid.layers.log_loss(x2)

            self.assertRaises(TypeError, test_x_dtype)

            def test_label_type():
                input_data = np.random.random(100, 1).astype("float32")
                fluid.layers.log_loss(input_data)

            self.assertRaises(TypeError, test_label_type)

            def test_label_dtype():
                x2 = fluid.layers.data(name='x2', shape=[100, 1], dtype='int32')
                fluid.layers.log_loss(x2)

            self.assertRaises(TypeError, test_label_dtype)


K
kavyasrinet 已提交
85
if __name__ == '__main__':
P
phlrain 已提交
86
    paddle.enable_static()
K
kavyasrinet 已提交
87
    unittest.main()