optimizer.py 305.7 KB
Newer Older
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15
import numpy as np
16
import os
17
import logging
18
from collections import defaultdict
19

20
import paddle
21

22

23 24 25 26 27 28 29 30 31
from paddle.fluid.framework import (
    Program,
    Variable,
    Parameter,
    name_scope,
    default_main_program,
    default_startup_program,
    device_guard,
)
32

33 34
from . import framework
from . import layers
35
from . import unique_name
36 37 38 39 40 41
from .backward import (
    append_backward,
    _some_in_set_,
    _append_grad_suffix_,
    _get_no_grad_set_name,
)
42 43
from .framework import program_guard
from .layer_helper import LayerHelper
44
from .dygraph import base as imperative_base
45
from .dygraph import no_grad
46 47 48 49
from .dygraph.learning_rate_scheduler import (
    LearningRateDecay,
    _LearningRateEpochDecay,
)
50 51 52
from paddle.fluid import core
from paddle.fluid.layers import tensor
from functools import reduce
53
from functools import cmp_to_key
54
from .wrapped_decorator import signature_safe_contextmanager
55
import warnings
56
from paddle import _C_ops, _legacy_C_ops
57 58 59 60
from ..fluid.framework import (
    in_dygraph_mode,
    _current_expected_place,
)
61

62
__all__ = [
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    'SGD',
    'Momentum',
    'Adagrad',
    'Adam',
    'Adamax',
    'Dpsgd',
    'DecayedAdagrad',
    'Ftrl',
    'SGDOptimizer',
    'MomentumOptimizer',
    'AdagradOptimizer',
    'AdamOptimizer',
    'AdamaxOptimizer',
    'DpsgdOptimizer',
    'DecayedAdagradOptimizer',
    'RMSPropOptimizer',
    'FtrlOptimizer',
    'Adadelta',
    'AdadeltaOptimizer',
    'ModelAverage',
    'LarsMomentum',
    'LarsMomentumOptimizer',
    'LambOptimizer',
    'ExponentialMovingAverage',
    'PipelineOptimizer',
    'LookaheadOptimizer',
    'RecomputeOptimizer',
90
]
Q
Qiao Longfei 已提交
91 92


93
class Optimizer:
Q
Qiao Longfei 已提交
94 95 96
    """Optimizer Base class.

    Define the common interface of an optimizer.
97 98
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
99 100
    """

101
    @imperative_base.no_grad
102 103 104 105 106 107 108 109 110 111
    def __init__(
        self,
        learning_rate,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        flatten_param_grads=False,
        align_size=-1,
        name=None,
    ):
112 113
        """
        Args:
114 115
            flatten_param_grads (bool, optional): Whether to flatten all the parameters and grads.
                If true, the parameters and gradients will be coalesce to contiguous mempry,
116 117
                and the grad_clip ops / optimizer ops will be fuse to one operator.
        """
118
        # Because of the loop import, so place it in the function body
119
        from paddle.optimizer.lr import LRScheduler
120 121 122 123

        self._parameter_list = (
            list(parameter_list) if parameter_list is not None else None
        )
124
        self._name = name
姜永久 已提交
125
        if in_dygraph_mode():
126 127 128
            if not isinstance(
                learning_rate, (float, LearningRateDecay, LRScheduler)
            ):
M
minqiyang 已提交
129
                raise TypeError(
130
                    "learning rate should be float or LRScheduler, got %s here"
131 132
                    % type(learning_rate)
                )
133
            if self._parameter_list is None:
134 135 136
                raise AttributeError(
                    "parameter_list argument given to the Optimizer should not be None in dygraph mode."
                )
137 138 139 140 141 142
            if regularization is not None:
                for param in self._parameter_list:
                    if param.regularizer is not None:
                        logging.info(
                            "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                            "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
143 144
                            % regularization.__str__()
                        )
145
                        break
M
minqiyang 已提交
146
        else:
147 148 149
            if not isinstance(
                learning_rate, (float, framework.Variable, LRScheduler)
            ):
M
minqiyang 已提交
150
                raise TypeError(
151
                    "learning rate should be float or LRScheduler, got %s here"
152 153
                    % type(learning_rate)
                )
M
minqiyang 已提交
154

155
        if grad_clip is not None:
156
            if not isinstance(grad_clip, paddle.nn.clip.GradientClipBase):
157 158 159
                raise TypeError(
                    "'grad_clip' should be an instance of GradientClipBase's derived class"
                )
D
dzhwinter 已提交
160
        self.regularization = regularization
161
        self._grad_clip = grad_clip
162
        self._learning_rate = learning_rate
163 164
        self._flatten_param_grads = flatten_param_grads
        self._align_size = align_size
L
Leo Chen 已提交
165

D
dzhwinter 已提交
166
        self._dtype = None
L
Leo Chen 已提交
167 168 169 170
        # Infer the dtype form parameter
        if self._parameter_list:
            self._dtype = self._parameter_list[0].dtype

171
        # each program should have a independent learning rate
172
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
173
        self._learning_rate_map = dict()
174
        if isinstance(self._learning_rate, framework.Variable):
175
            self._learning_rate_map[
176 177
                framework.default_main_program()
            ] = self._learning_rate
178 179 180 181 182
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
183 184
        # global_accumulator dict, {accum_name : acc_variable, ...}
        self._global_accumulators = {}
185
        self.helper = LayerHelper(self.__class__.__name__)
186
        self._opti_name_list = []
H
hong 已提交
187
        self._accumulators_holder = {}
188
        self._param_device_map = dict()
189 190
        # NOTE(zhiqiu): sometimes we want to add some variables(Tenosr) to the optimizer for a specific optimization,
        # for example, we want to pass 'found_inf' to adam optimizer so it can skip update when found_inf is True.
191
        # And these variables should not be the parameters of Optimizer's construnctor (because not commonly used).
192 193
        # Use _auxiliary_vars together with _set_auxiliary_var/_get_auxiliary_var to achieve that.
        self._auxiliary_vars = dict()
H
hong 已提交
194 195 196 197

    @framework.dygraph_only
    def state_dict(self):
        '''
T
tianshuo78520a 已提交
198 199
        Get state dict information from optimizer. It contain all the variable used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be include in state dict.
        If the optimizer never be called(minimize function), the state_dict is empty.
H
hong 已提交
200 201 202

        Args: None
        Return:
T
tianshuo78520a 已提交
203
            state_dict(dict) : dict contains all the variable used by optimizer
204

H
hong 已提交
205 206 207 208
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
209
                import paddle
210 211

                with fluid.dygraph.guard():
212
                    emb = paddle.nn.Embedding(10, 10)
213 214 215

                    adam = fluid.optimizer.Adam(0.001, parameter_list=emb.parameters())
                    state_dict = adam.state_dict()
H
hong 已提交
216 217

        '''
218
        from paddle.optimizer.lr import LRScheduler
219

H
hong 已提交
220 221 222 223
        state_dict = {}
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                state_dict[var_tmp.name] = var_tmp
224 225
        for k, v in self._global_accumulators.items():
            state_dict[v.name] = v
H
hong 已提交
226
        # global step if use lr decay
227
        if isinstance(self._learning_rate, LRScheduler):
228 229
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()
            return state_dict
H
hong 已提交
230
        if isinstance(self._learning_rate, LearningRateDecay):
231 232 233 234
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()

            if not isinstance(self._learning_rate, _LearningRateEpochDecay):
                var_tmp = None
235 236 237
                var_temp = framework._varbase_creator(
                    None, name='global_step', dtype='int32'
                )
238

239
                paddle.tensor.fill_constant(
240 241
                    [1], "int32", self._learning_rate.step_num, out=var_temp
                )
H
hong 已提交
242

243
                state_dict['global_step'] = var_temp
H
hong 已提交
244 245 246
        return state_dict

    @framework.dygraph_only
247
    def set_state_dict(self, state_dict):
H
hong 已提交
248
        '''
T
tianshuo78520a 已提交
249
        Load optimizer state dict. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be changed.
H
hong 已提交
250

251
        Args:
H
hong 已提交
252 253 254
            state_dict(dict) : Dict contains all the Variable needed by optimizer
        Return:
            None
255

H
hong 已提交
256 257
        Examples:
            .. code-block:: python
258

259
                import paddle
260 261 262

                paddle.disable_static()

263
                emb = paddle.nn.Embedding(10, 10)
264

265
                state_dict = emb.state_dict()
266
                paddle.save(state_dict, "paddle_dy.pdparams")
267

268
                scheduler = paddle.optimizer.lr.NoamDecay(
269 270 271 272
                    d_model=0.01, warmup_steps=100, verbose=True)
                adam = paddle.optimizer.Adam(
                    learning_rate=scheduler,
                    parameters=emb.parameters())
273
                state_dict = adam.state_dict()
274
                paddle.save(state_dict, "paddle_dy.pdopt")
275

276 277
                para_state_dict = paddle.load("paddle_dy.pdparams")
                opti_state_dict = paddle.load("paddle_dy.pdopt")
H
hong 已提交
278
        '''
279
        from paddle.optimizer.lr import LRScheduler
280

281
        if isinstance(self._learning_rate, LRScheduler):
282
            self._learning_rate.set_dict(state_dict["LR_Scheduler"])
H
hong 已提交
283 284

        if isinstance(self._learning_rate, LearningRateDecay):
285 286 287
            self._learning_rate.set_dict(state_dict["LR_Scheduler"])

            if not isinstance(self._learning_rate, _LearningRateEpochDecay):
288 289 290
                assert (
                    'global_step' in state_dict
                ), 'Global step not in state dict, Dygraph use LearningRateDecay, global_step must in state_dict'
291 292 293 294 295
                global_step = state_dict['global_step']

                if isinstance(global_step, Variable):
                    step_np = global_step
                    step_np = np.array(step_np.value().get_tensor())
296 297 298 299 300
                    assert step_np.shape == (
                        1,
                    ), "global step shape is (1,), the shape is {}".format(
                        step_np.shape
                    )
301 302 303

                    self._learning_rate.step_num = int(step_np[0])
                elif isinstance(global_step, np.ndarray):
304 305 306 307 308
                    assert global_step.shape == (
                        1,
                    ), "global step shape is (1,), the shape is {}".format(
                        global_step.shape
                    )
309 310 311 312
                    self._learning_rate.step_num = global_step[0]
                else:
                    raise RuntimeError(
                        "Type not supprt, value in state dict must be [VarBase, Variable, numpy], the type is ",
313 314
                        type(global_step),
                    )
H
hong 已提交
315

316 317 318 319 320 321 322 323 324 325 326 327
        def _load_state_para(state_dict, param):
            var = param.value()
            tensor = var.get_tensor()
            model_np = np.array(tensor)
            load_para = state_dict[param.name]
            if isinstance(load_para, Variable):
                load_para_np = load_para.numpy()
            elif isinstance(load_para, core.VarBase):
                load_para_np = load_para.numpy()
            elif isinstance(load_para, np.ndarray):
                load_para_np = load_para
            else:
328 329 330
                raise RuntimeError(
                    "State dict type {} not supprt".format(str(type(load_para)))
                )
331

332 333 334 335 336
            assert (
                model_np.shape == load_para_np.shape
            ), "Parameter shape not match, Dygraph Parameter [ {} ] need tensor with shape {} but load tensor with shape {}".format(
                param.name, model_np.shape, load_para_np.shape
            )
337

338 339 340 341 342
            assert (
                model_np.dtype == load_para_np.dtype
            ), "Parameter dtype not match, Dygraph Parameter [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
                param.name, model_np.dtype, load_para_np.dtype
            )
343 344 345

            tensor.set(load_para_np, framework._current_expected_place())

H
hong 已提交
346 347 348
        self._accumulators_holder = state_dict
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
349 350 351
                assert (
                    var_tmp.name in state_dict
                ), "optimizer variable {} not found".format(var_tmp.name)
352
                _load_state_para(state_dict, var_tmp)
H
hong 已提交
353

354
        for k, v in self._global_accumulators.items():
355 356 357
            assert (
                v.name in state_dict
            ), "optimizer variable {} not found".format(v.name)
358
            _load_state_para(state_dict, v)
359

360 361 362
    # [aliases] Compatible with old method names
    set_dict = set_state_dict

363 364
    def get_opti_var_name_list(self):
        return self._opti_name_list
Q
Qiao Longfei 已提交
365

366 367 368 369 370 371 372 373 374
    def _set_auxiliary_var(self, key, val):
        self._auxiliary_vars[key] = val

    def _get_auxiliary_var(self, key):
        if key in self._auxiliary_vars:
            return self._auxiliary_vars[key]
        else:
            return None

Q
Qiao Longfei 已提交
375
    def _create_global_learning_rate(self):
376
        from paddle.optimizer.lr import LRScheduler
377

378
        if isinstance(self._learning_rate, LRScheduler):
379 380 381 382 383 384 385 386 387 388
            lr_var = self._global_learning_rate()
            # only create global lr_var once
            if not isinstance(lr_var, framework.Variable):
                lr_name = unique_name.generate('learning_rate')
                self._learning_rate._var_name = lr_name
                lr_var = self.helper.create_global_variable(
                    name=lr_name,
                    shape=[1],
                    persistable=True,
                    stop_gradient=True,
389 390
                    dtype='float32' if self._dtype is None else self._dtype,
                )
391 392 393
                main_prog = framework.default_main_program()
                main_prog.lr_sheduler = self._learning_rate
                main_prog.lr_var = lr_var
394
                self._learning_rate_map[
395 396
                    framework.default_main_program()
                ] = lr_var
397 398 399

            lr_value = float(self._learning_rate())
            self.helper.set_variable_initializer(
400 401
                lr_var,
                initializer=paddle.nn.initializer.Constant(value=lr_value),
402
            )
403 404
            return

405 406 407
        if imperative_base.enabled():
            # create learning rate Variable
            if isinstance(self._learning_rate, float):
M
minqiyang 已提交
408 409 410 411 412
                lr = self._global_learning_rate()

                if isinstance(lr, framework.Variable):
                    return
                else:
413 414
                    self._learning_rate_map[
                        framework.default_main_program()
415
                    ] = paddle.static.create_global_var(
M
minqiyang 已提交
416 417 418 419
                        name=unique_name.generate("learning_rate"),
                        shape=[1],
                        value=float(self._learning_rate),
                        dtype='float32' if self._dtype is None else self._dtype,
420 421
                        persistable=True,
                    )
422
            # get learning rate Variable from LearningRateDecay
M
minqiyang 已提交
423
            elif isinstance(self._learning_rate, LearningRateDecay):
424
                self._learning_rate_map[
425 426
                    framework.default_main_program()
                ] = self._learning_rate()
427
            else:
Q
qiaolongfei 已提交
428
                raise TypeError(
429 430
                    "optimizer's learning rate must be float or LearningRateDecay"
                )
431
        else:
432 433 434 435
            lr = self._global_learning_rate()

            if isinstance(lr, framework.Variable):
                return
M
minqiyang 已提交
436 437 438 439 440 441
            else:
                if not isinstance(self._learning_rate, float):
                    raise TypeError(
                        "learning rate variable is create outside optimizer,"
                        "can not create new learning rate variable for new program"
                    )
Q
Qiao Longfei 已提交
442

443
            # create learning rate in the current main program
444
            self._learning_rate_map[
445
                framework.default_main_program()
446
            ] = paddle.static.create_global_var(
447 448 449 450 451 452
                name=unique_name.generate("learning_rate"),
                shape=[1],
                value=float(self._learning_rate),
                dtype='float32' if self._dtype is None else self._dtype,
                persistable=True,
            )
453

454 455 456 457
    @framework.dygraph_only
    def set_lr(self, value):
        """
        :api_attr: imperative
458

459 460 461 462 463 464 465 466
        Set the value of the learning rate manually in the optimizer. If the optimizer use LearningRateDecay,
        this API cannot be invoked, because it will lead to conflict.

        Args:
            value (float|Variable): the value of learning rate

        Returns:
            None
467

468 469 470
        Examples:
            .. code-block:: python

471
                import paddle
472
                import paddle.fluid as fluid
473
                import paddle
474

475
                with fluid.dygraph.guard():
476
                    linear = paddle.nn.Linear(10, 10)
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494

                    adam = fluid.optimizer.Adam(0.1, parameter_list=linear.parameters())

                    # set learning rate manually by python float value
                    lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                    for i in range(5):
                        adam.set_lr(lr_list[i])
                        lr = adam.current_step_lr()
                        print("current lr is {}".format(lr))
                    # Print:
                    #    current lr is 0.2
                    #    current lr is 0.3
                    #    current lr is 0.4
                    #    current lr is 0.5
                    #    current lr is 0.6


                    # set learning rate manually by framework Variable
495
                    lr_var = paddle.static.create_global_var(
496 497 498 499 500 501 502 503 504 505 506 507 508
                        shape=[1], value=0.7, dtype='float32')
                    adam.set_lr(lr_var)
                    lr = adam.current_step_lr()
                    print("current lr is {}".format(lr))
                    # Print:
                    #    current lr is 0.7



        """
        if not isinstance(value, (framework.Variable, float)):
            raise TypeError(
                "The type of 'value' in optimizer.set_lr must be (float, Variable), but received %s."
509 510
                % (type(value))
            )
511 512 513 514 515 516 517 518
        if isinstance(self._learning_rate, LearningRateDecay):
            raise RuntimeError(
                "optimizer's learning rate can't be LearningRateDecay when invoke this API, because this will lead to conflict."
            )
        if isinstance(value, float):
            self._learning_rate = value
            current_lr = self._global_learning_rate()
            if current_lr is not None:
519 520
                if in_dygraph_mode():
                    place = _current_expected_place()
521 522 523 524 525 526 527
                    _C_ops.full_(
                        current_lr,
                        list(current_lr.shape),
                        float(value),
                        current_lr.dtype,
                        place,
                    )
528
                else:
529 530 531 532 533 534 535 536 537 538 539 540 541
                    global_block = (
                        framework.default_main_program().global_block()
                    )
                    global_block.append_op(
                        type='fill_constant',
                        outputs={'Out': [current_lr]},
                        attrs={
                            'dtype': current_lr.dtype,
                            'shape': list(current_lr.shape),
                            'value': float(value),
                        },
                        stop_gradient=True,
                    )
542
        else:
543 544 545
            assert (
                len(value.shape) == 1 and value.shape[0] == 1
            ), "optimizer's learning rate must be 1-D Tensor with shape[1]"
546 547
            self._learning_rate_map[framework.default_main_program()] = value

548 549 550
    @framework.dygraph_only
    def current_step_lr(self):
        """
551
        :api_attr: imperative
552

553 554 555 556 557 558 559 560 561 562 563
        Get current step learning rate. The return value is all the same When LearningRateDecay is not used,
        otherwise return the step learning rate.

        Returns:
            float: The learning rate of the current step.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np
564
                import paddle
565 566 567

                # example1: LearningRateDecay is not used, return value is all the same
                with fluid.dygraph.guard():
568
                    emb = paddle.nn.Embedding(10, 10)
569 570 571 572 573 574 575
                    adam = fluid.optimizer.Adam(0.001, parameter_list = emb.parameters())
                    lr = adam.current_step_lr()
                    print(lr) # 0.001

                # example2: PiecewiseDecay is used, return the step learning rate
                with fluid.dygraph.guard():
                    inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
576
                    linear = paddle.nn.Linear(10, 10)
577 578
                    inp = fluid.dygraph.to_variable(inp)
                    out = linear(inp)
579
                    loss = paddle.mean(out)
580

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
                    bd = [2, 4, 6, 8]
                    value = [0.2, 0.4, 0.6, 0.8, 1.0]
                    adam = fluid.optimizer.Adam(fluid.dygraph.PiecewiseDecay(bd, value, 0),
                                           parameter_list=linear.parameters())

                    # first step: learning rate is 0.2
                    np.allclose(adam.current_step_lr(), 0.2, rtol=1e-06, atol=0.0) # True

                    # learning rate for different steps
                    ret = [0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0]
                    for i in range(12):
                        adam.minimize(loss)
                        lr = adam.current_step_lr()
                        np.allclose(lr, ret[i], rtol=1e-06, atol=0.0) # True

        """
        current_lr = self._global_learning_rate()
598
        if isinstance(current_lr, framework.Variable):
599
            return float(current_lr)
600 601 602

        if isinstance(self._learning_rate, float):
            return self._learning_rate
603 604
        elif isinstance(self._learning_rate, _LearningRateEpochDecay):
            step_lr = self._learning_rate()
605
            return float(step_lr)
606 607 608 609 610
        else:
            step_lr = self._learning_rate.step()
            if isinstance(step_lr, (float, int)):
                return step_lr
            else:
611
                return float(step_lr)
612

Y
yuyang18 已提交
613
    def _global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
614 615 616 617
        """
        get global decayed learning rate
        :return:
        """
618 619
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
620
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
621

Q
Qiao Longfei 已提交
622
    def _append_optimize_op(self, block, param_and_grad):
623
        """append optimize operator to block and return all the added optimize_op"""
Q
Qiao Longfei 已提交
624 625
        raise NotImplementedError()

626 627 628 629
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
W
Wu Yi 已提交
630 631
        if type(param_lr) == Variable:
            return param_lr
Q
qiaolongfei 已提交
632
        else:
W
Wu Yi 已提交
633
            if param_lr == 1.0:
Y
yuyang18 已提交
634
                return self._global_learning_rate()
W
Wu Yi 已提交
635
            else:
X
Xin Pan 已提交
636
                with default_main_program()._lr_schedule_guard(
637 638
                    is_with_opt=True
                ), framework.name_scope('scale_with_param_lr'):
639
                    return self._global_learning_rate() * param_lr
640

641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
    def _is_dtype_fp16_or_bf16(self, dtype):
        """
        check the dtype is fp16 or the dtype is bf16
        :param dtype: instance of core.VarDesc.VarType
        :return: True if dtype is one of fp16 or bf16, False otherwise
        """
        assert isinstance(
            dtype, core.VarDesc.VarType
        ), "The dtype should be an instance of core.VarDesc.VarType."
        return (
            dtype == core.VarDesc.VarType.FP16
            or dtype == core.VarDesc.VarType.BF16
        )

    def _create_master_weight(self, param):
        if param.name in self._master_weights:
            var = self._master_weights[param.name]
        else:
            assert isinstance(self.helper, LayerHelper)

            var_name = param.name + "_fp32_master"
            var_name = unique_name.generate(var_name)
            var = paddle.static.create_global_var(
                name=var_name,
                shape=param.shape,
                value=0,
                dtype='float32',
                persistable=True,
            )
            block = self.helper.startup_program.global_block()
            block.append_op(
                type="cast",
                inputs={"X": [param]},
                outputs={"Out": [var]},
                attrs={
                    "in_dtype": param.dtype,
                    "out_dtype": core.VarDesc.VarType.FP32,
                },
            )
            self._master_weights[param.name] = var
        return var

683 684 685 686 687 688
    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
689
        """
690 691
        pass

692
    def _finish_update(self, block, parameters_and_grads):
693 694 695 696 697 698 699 700
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
Q
qiaolongfei 已提交
701
            None
702 703 704
        """
        pass

705 706 707 708 709 710 711 712 713 714
    def _add_accumulator(
        self,
        name,
        param,
        dtype=None,
        fill_value=0.0,
        shape=None,
        type=None,
        device=None,
    ):
715 716 717 718 719 720 721 722 723
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
W
whs 已提交
724 725
        if self._name is not None:
            name = self._name + "_" + name
726 727 728 729
        if (
            name in self._accumulators
            and param.name in self._accumulators[name]
        ):
姜永久 已提交
730
            if in_dygraph_mode():
X
polish  
Xin Pan 已提交
731
                return self._accumulators[name][param.name]
732 733
            raise Exception(
                "Accumulator {} already exists for parameter {}".format(
734 735 736
                    name, param.name
                )
            )
737
        if shape is None:
738
            shape = param.shape
Q
Qiao Longfei 已提交
739
        assert isinstance(self.helper, LayerHelper)
740 741 742 743 744

        var_name = param.name + "_" + name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

Q
Qiao Longfei 已提交
745
        var = self.helper.create_global_variable(
746
            name=var_name,
Q
Qiao Longfei 已提交
747
            persistable=True,
F
fengjiayi 已提交
748
            dtype=dtype or param.dtype,
749
            type=core.VarDesc.VarType.LOD_TENSOR
姜永久 已提交
750
            if in_dygraph_mode()
751
            else (param.type if type is None else type),
H
hong 已提交
752
            shape=shape,
753 754
            belong_to_optimizer=True,
        )
755 756 757 758
        if device is None:
            device = self._get_device_for_param(param.name)
        with device_guard(device):
            self.helper.set_variable_initializer(
759 760 761 762
                var,
                initializer=paddle.nn.initializer.Constant(
                    value=float(fill_value)
                ),
763
            )
H
hong 已提交
764

姜永久 已提交
765
        if in_dygraph_mode():
H
hong 已提交
766
            if len(self._accumulators_holder) > 0:
767 768 769 770 771
                assert (
                    var_name in self._accumulators_holder
                ), "Optimizer set error, {} should in state dict".format(
                    var_name
                )
H
hong 已提交
772 773
                var.set_value(self._accumulators_holder[var_name])

Q
Qiao Longfei 已提交
774
        self._accumulators[name][param.name] = var
775
        return var
776

777 778 779 780 781 782 783 784 785
    def _add_global_accumulator(
        self,
        name,
        dtype=None,
        fill_value=0.0,
        shape=None,
        type=None,
        device=None,
    ):
786 787 788 789 790 791 792 793 794 795 796 797 798
        """Utility function to add a global accumulator for all parameters in the model

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
            shape: the shape of the accumulator
            type: the variable type of the accumulator
            device: the target place of the accumulator
        """
        if self._name is not None:
            name = self._name + "_" + name
799
        if name in self._global_accumulators:
姜永久 已提交
800
            if in_dygraph_mode():
801 802
                return self._global_accumulators[name]
            raise Exception("Global accumulator {} already exists".format(name))
803
        if shape is None:
804 805 806 807 808 809 810 811 812 813 814 815 816
            shape = [1]  # most case, global accumulator is of shape [1]
        assert isinstance(self.helper, LayerHelper)

        var_name = name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

        var = self.helper.create_global_variable(
            name=var_name,
            persistable=True,
            dtype=dtype if dtype else self._dtype,
            type=type,
            shape=shape,
817 818
            belong_to_optimizer=True,
        )
819 820 821 822
        if device is None:
            device = 'cpu'
        with device_guard(device):
            self.helper.set_variable_initializer(
823 824 825 826
                var,
                initializer=paddle.nn.initializer.Constant(
                    value=float(fill_value)
                ),
827
            )
828

姜永久 已提交
829
        if in_dygraph_mode():
830
            if len(self._accumulators_holder) > 0:
831 832 833 834 835
                assert (
                    var_name in self._accumulators_holder
                ), "Optimizer set error, {} should in state dict".format(
                    var_name
                )
836 837 838 839 840
                var.set_value(self._accumulators_holder[var_name])

        self._global_accumulators[name] = var
        return var

841 842 843 844 845 846 847 848
    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
849
            accumulator variable
850
        """
W
whs 已提交
851 852
        if self._name is not None:
            name = self._name + "_" + name
853 854 855 856
        if (
            name not in self._accumulators
            or param.name not in self._accumulators[name]
        ):
857 858
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
859 860 861
                    name, param.name
                )
            )
862 863
        return self._accumulators[name][param.name]

864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
    def _get_accumulator_master(self, name, param):
        """Utility function to fetch an accumulator for a parameter
        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched
        Returns:
            accumulator variable for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
        find_master = self._multi_precision and self._is_dtype_fp16_or_bf16(
            param.dtype
        )
        target_param = (
            self._master_weights[param.name] if find_master else param
        )
        target_name = target_param.name
        if (
            name not in self._accumulators
            or target_name not in self._accumulators[name]
        ):
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
                    name, target_name
                )
            )
        return self._accumulators[name][target_name]

892 893 894 895 896 897 898 899 900 901 902
    def _get_global_accumulator(self, name):
        """Utility function to fetch a global accumulator

        Args:
            name: name of the accumulator

        Returns:
            accumulator variable
        """
        if self._name is not None:
            name = self._name + "_" + name
903
        if name not in self._global_accumulators:
904 905 906
            raise Exception("Global accumulator {} does not exist".format(name))
        return self._global_accumulators[name]

907 908 909 910 911
    def _update_param_device_map(self, parameters_and_grads, target_block):
        for param_and_grad in parameters_and_grads:
            if param_and_grad[0].trainable is True:
                param_name = param_and_grad[0].name
                ops = target_block.ops
912 913
                device_attr_name = (
                    core.op_proto_and_checker_maker.kOpDeviceAttrName()
914 915 916 917 918
                )
                for op in ops:
                    input_arg_names = op.input_arg_names
                    if param_name in input_arg_names:
                        self._param_device_map[param_name] = op.attr(
919 920
                            device_attr_name
                        )
921
                        break
922 923 924 925 926 927 928

    def _get_device_for_param(self, param_name):
        device = None
        if param_name in self._param_device_map:
            device = self._param_device_map[param_name]
        return device

929
    def _create_optimization_pass(self, parameters_and_grads):
Q
Qiao Longfei 已提交
930 931 932
        """Add optimization operators to update gradients to variables.

        Args:
Q
qiaolongfei 已提交
933
          parameters_and_grads(list(tuple(Variable, Variable))):
934
            a list of (variable, gradient) pair to update.
Q
Qiao Longfei 已提交
935 936

        Returns:
937
          return_op_list: a list of operators that will complete one step of
938 939 940
            optimization. This will include parameter update ops, global step
            update ops and any other custom ops required by subclasses to manage
            their internal state.
Q
Qiao Longfei 已提交
941
        """
942 943 944 945 946
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
947
        # for parameters and extend _finish_update method to add custom ops.
948

949
        # Allways called under program_guard use global block as loss block
950 951 952
        # But if current block is in control flow, append optimize op in the
        # grad block of current block

953
        global_block = framework.default_main_program().global_block()
954 955 956
        target_block = global_block
        current_block = framework.default_main_program().current_block()
        if current_block.idx != global_block.idx:
957 958 959
            assert (
                current_block.backward_block_idx != -1
            ), "current block is not global_block, but it doesn't have backward block."
960
            target_block = framework.default_main_program().blocks[
961 962
                current_block.backward_block_idx
            ]
963 964

        start = len(target_block.ops)
965

966
        self._update_param_device_map(parameters_and_grads, target_block)
C
chengduo 已提交
967
        self._create_accumulators(
968 969
            target_block, [p[0] for p in parameters_and_grads if p[0].trainable]
        )
970 971
        self._create_global_learning_rate()

姜永久 已提交
972
        if in_dygraph_mode():
W
wanghuancoder 已提交
973 974 975 976 977 978 979 980 981 982 983 984
            found_inf = self._get_auxiliary_var('found_inf')
            if found_inf:
                if isinstance(found_inf, core.eager.Tensor):
                    self._set_auxiliary_var('found_inf', True)
            else:
                if isinstance(found_inf, core.eager.Tensor):
                    self._set_auxiliary_var('found_inf', False)
                for param_and_grad in parameters_and_grads:
                    if param_and_grad[1] is None:
                        continue
                    if param_and_grad[0].trainable is True:
                        self._append_optimize_op(target_block, param_and_grad)
985 986 987 988 989
        else:
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
                with param_and_grad[0].block.program._optimized_guard(
990 991
                    param_and_grad
                ), name_scope("optimizer"):
992
                    if param_and_grad[0].trainable is True:
993
                        device = self._get_device_for_param(
994 995
                            param_and_grad[0].name
                        )
996 997
                        with device_guard(device):
                            optimize_op = self._append_optimize_op(
998 999
                                target_block, param_and_grad
                            )
1000 1001 1002

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
1003
        self._finish_update(target_block, parameters_and_grads)
1004

1005 1006
        end = len(target_block.ops)
        return target_block._slice_ops(start, end)
1007 1008

    def _process_distribute_lookuptable(self, param_grads):
Q
Qiao Longfei 已提交
1009 1010 1011 1012 1013 1014 1015 1016 1017
        """
        Because distribute lookup table only support SGD optimizer for now, not support
        other optimizer and regularization, so we should find the table parameter out,
        and avoid to add regularization and other op for it, and add sgd optimize op
        for it independently.
        :param param_grads(list((Var, Var))): list of (param, grad) pair.
        :param loss: the loss variable.
        :param startup_program: the startup program
        """
1018 1019 1020 1021
        from paddle.distributed.distribute_lookup_table import (
            find_distributed_lookup_table,
        )

1022 1023
        program = framework.default_main_program()
        global_block = framework.default_main_program().global_block()
Q
Qiao Longfei 已提交
1024 1025 1026 1027 1028 1029 1030 1031
        table_name = find_distributed_lookup_table(program)
        table_param = None
        table_grad = None
        new_param_grads = []
        for p, g in param_grads:
            if p.name == table_name:
                if table_param is not None:
                    raise RuntimeError(
1032 1033
                        "multi dist table var found, only support one now!"
                    )
Q
Qiao Longfei 已提交
1034 1035 1036 1037 1038 1039
                table_param = p
                table_grad = g
            else:
                new_param_grads.append((p, g))
        sgd_op = None
        if table_param is not None:
1040
            param_and_grad = [table_param, table_grad]
1041 1042 1043
            with table_param.block.program._optimized_guard(
                param_and_grad
            ), framework.name_scope("optimizer"):
1044 1045 1046 1047 1048 1049 1050
                self._create_global_learning_rate()
                # create the optimize op
                sgd_op = global_block.append_op(
                    type='sgd',
                    inputs={
                        "Param": table_param,
                        "Grad": table_grad,
1051
                        "LearningRate": self._create_param_lr(param_and_grad),
1052
                    },
1053 1054
                    outputs={"ParamOut": param_and_grad[0]},
                )
Q
Qiao Longfei 已提交
1055 1056
        return new_param_grads, (table_param, table_grad), sgd_op

1057 1058 1059 1060 1061 1062 1063 1064
    def backward(
        self,
        loss,
        startup_program=None,
        parameter_list=None,
        no_grad_set=None,
        callbacks=None,
    ):
1065
        """
1066
        The first part of ``minimize``, do auto-diff to append backward operations for
1067 1068 1069
        the current program.

        Args:
1070 1071 1072 1073
            loss (Variable): ``loss`` variable to run optimizations.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
H
hong 已提交
1074
            parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
1075 1076
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
1077
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
1078 1079 1080
                to be updated. The default value is None.
            callbacks (list, optional): list of callable objects to run when appending backward
                operator for one parameter. The default value is None.
M
minqiyang 已提交
1081

1082
        Return:
1083 1084
            list: list of (param, grad) variable pairs, param is ``Parameter``,
                grad is the gradient value corresponding to the parameter.
M
minqiyang 已提交
1085

1086
        Examples:
1087
            See examples in ``apply_gradients``.
1088
        """
1089
        act_no_grad_set = None
姜永久 已提交
1090
        if in_dygraph_mode():
1091
            pass
L
Leo Chen 已提交
1092 1093
        else:
            act_no_grad_set = self._get_no_grad_set(loss, no_grad_set)
G
gongweibao 已提交
1094

L
Leo Chen 已提交
1095 1096 1097 1098
        # Infer dtype by loss if None
        if self._dtype is None:
            self._dtype = loss.dtype

姜永久 已提交
1099
        if in_dygraph_mode():
1100 1101 1102
            parameter_list = (
                parameter_list if parameter_list else self._parameter_list
            )
1103

C
chengduo 已提交
1104
            params_grads = []
1105
            for param in parameter_list:
C
chengduo 已提交
1106 1107
                if not param.trainable:
                    continue
1108
                if param._grad_ivar() is not None:
C
chengduo 已提交
1109
                    # create gradient variable
1110
                    grad_var = param._grad_ivar()
C
chengduo 已提交
1111
                    params_grads.append((param, grad_var))
1112
        else:
C
chengduo 已提交
1113
            if callbacks is None:
1114
                callbacks = [paddle.nn.clip.error_clip_callback]
C
chengduo 已提交
1115
            else:
1116
                assert isinstance(callbacks, list)
C
chengduo 已提交
1117
            program = loss.block.program
zhouweiwei2014's avatar
zhouweiwei2014 已提交
1118 1119
            assert np.prod(loss.shape) == 1, (
                "The number of elements of loss should be 1, but the current loss.shape is {}, whose number of elements is not 1. "
1120
                "Maybe that you should call paddle.mean to process the current loss.".format(
1121 1122 1123 1124 1125 1126
                    loss.shape
                )
            )
            parameter_list = (
                parameter_list if parameter_list else self._parameter_list
            )
C
chengduo 已提交
1127
            with program_guard(program, startup_program):
1128 1129 1130
                params_grads = append_backward(
                    loss, parameter_list, act_no_grad_set, callbacks
                )
C
chengduo 已提交
1131
        return params_grads
1132

1133
    def _create_regularization_of_grad(self, param, grad, regularization=None):
1134
        """Create and add backward regularization Operators
1135

1136 1137 1138
        Function helper of append_regularization_ops.
        """
        # If no gradient or no regularization is specified,  then we don't need to do anything
1139
        if grad is None or (
1140 1141 1142 1143 1144 1145
            (
                not hasattr(param, 'regularizer')
                or (hasattr(param, 'regularizer') and param.regularizer is None)
            )
            and regularization is None
        ):
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
            return grad
        regularization_term = None
        if hasattr(param, 'regularizer') and param.regularizer is not None:
            # Add variable for regularization term in grad block
            regularization_term = param.regularizer(param, grad, grad.block)
        elif regularization is not None:
            regularization_term = regularization(param, grad, grad.block)

        assert regularization_term is not None

姜永久 已提交
1156
        if in_dygraph_mode():
1157
            return _legacy_C_ops.sum([grad, regularization_term])
1158

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
        new_grad = grad
        if grad.type == core.VarDesc.VarType.SELECTED_ROWS:
            # FIXME(zcd): If the grad is SELECTED_ROWS, after regularization,
            # the grad's type and name will be changed. But the gradient's name
            # is used in ParallelExecutor Reduce mode, so I add a flag for
            # the new_grad here.
            new_grad = grad.block.create_var(
                name=grad.name + core.kNewGradSuffix(),
                dtype=param.dtype,
                shape=param.shape,
                lod_level=param.lod_level,
1170 1171
                type=core.VarDesc.VarType.LOD_TENSOR,
            )
1172 1173 1174

        inputs = {"X": [grad, regularization_term]}
        outputs = {"Out": [new_grad]}
1175
        grad.block.append_op(type='sum', inputs=inputs, outputs=outputs)
1176 1177 1178

        return new_grad

1179 1180 1181
    def append_regularization_ops(
        self, parameters_and_grads, regularization=None
    ):
1182
        r"""Create and add backward regularization Operators
1183

1184 1185 1186 1187
        Creates and adds backward regularization operators in the BlockDesc.
        This will add gradients of the regularizer function to the gradients
        of the parameters and return these modified gradients. This is the
        same as implementing weight decay in optimizers for regularization.
1188

1189 1190 1191 1192 1193
        Args:
            parameters_and_grads: A list of (parameters, gradients) pairs
                                  that need to be regularized.
            regularization: A global regularizer. If the parameter is not
                            set. It will be applied with regularizer.
1194

1195 1196 1197
        Returns:
            list[(Variable, Variable)]: list of (parameters, gradients) \
            pair with the regularized gradient
1198

1199 1200 1201 1202
        Raises:
            Exception: Unknown regularization type
        """
        params_and_grads = []
姜永久 已提交
1203
        if in_dygraph_mode():
1204
            for param, grad in parameters_and_grads:
1205
                new_grad = self._create_regularization_of_grad(
1206 1207
                    param, grad, regularization
                )
1208 1209 1210 1211 1212
                params_and_grads.append((param, new_grad))
        else:
            repeate_regularizer = False
            with framework.name_scope('regularization'):
                for param, grad in parameters_and_grads:
1213 1214 1215 1216 1217
                    if (
                        not repeate_regularizer
                        and getattr(param, 'regularizer', None) is not None
                        and regularization is not None
                    ):
1218 1219 1220 1221
                        repeate_regularizer = True
                        logging.info(
                            "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                            "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
1222 1223
                            % regularization.__str__()
                        )
1224 1225
                    with param.block.program._optimized_guard([param, grad]):
                        new_grad = self._create_regularization_of_grad(
1226 1227
                            param, grad, regularization
                        )
1228 1229 1230
                        params_and_grads.append((param, new_grad))
        return params_and_grads

1231 1232 1233 1234 1235 1236 1237
    def flatten_param_grads(self, params_grads):
        need_flatten_params = []
        need_flatten_grads = []
        for p, g in params_grads:
            if g is None:
                continue
            g.persistable = True
1238 1239 1240 1241
            if (
                getattr(p, 'need_clip', True) is False
                or getattr(p, 'regularizer', None) is not None
            ):
1242 1243
                warnings.warn(
                    "flatten_param_grads=True will be discarded since paramter '{}''s need_clip is False or "
1244 1245
                    "the regularizer is set".format(p.name)
                )
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
                self._flatten_param_grads = False
                return params_grads

            need_flatten_params.append(p)
            need_flatten_grads.append(g)

        shape = [np.prod(p.shape) for p in need_flatten_params]
        block = need_flatten_params[0].block

        flatten_param = self.helper.create_global_variable(
            name='flatten_param',
            persistable=True,
            dtype=need_flatten_params[0].dtype,
            shape=[np.sum(shape)],
1260 1261
            belong_to_optimizer=True,
        )
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271

        flatten_param.trainable = True
        flatten_param.optimize_attr = need_flatten_params[0].optimize_attr
        flatten_param.regularizer = need_flatten_params[0].regularizer

        flatten_grad = self.helper.create_global_variable(
            name='flatten_grad',
            persistable=True,
            dtype=need_flatten_grads[0].dtype,
            shape=[np.sum(shape)],
1272 1273
            belong_to_optimizer=True,
        )
1274 1275

        with program_guard(default_main_program()):
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
            block.append_op(
                type="coalesce_tensor",
                inputs={"Input": need_flatten_params},
                outputs={
                    "Output": need_flatten_params,
                    "FusedOutput": flatten_param,
                },
                attrs={
                    "copy_data": True,
                    "use_align": True,
                    "align_size": self._align_size,
                    "dtype": need_flatten_params[0].dtype,
                },
            )

            block.append_op(
                type="coalesce_tensor",
                inputs={"Input": need_flatten_grads},
                outputs={
                    "Output": need_flatten_grads,
                    "FusedOutput": flatten_grad,
                },
                attrs={
                    "copy_data": True,
                    "use_align": True,
                    "align_size": self._align_size,
                    "dtype": need_flatten_grads[0].dtype,
                },
            )
1305

1306
        # NOTE(zhiqiu): the initializer should be set after coalesce_tensor op,
1307
        # so the shape of flatten_param and flatten_grad will be inferred.
1308
        self.helper.set_variable_initializer(
1309 1310
            flatten_param,
            initializer=paddle.nn.initializer.Constant(0.0),
1311 1312
        )
        self.helper.set_variable_initializer(
1313 1314
            flatten_grad,
            initializer=paddle.nn.initializer.Constant(0.0),
1315
        )
1316 1317 1318

        return [(flatten_param, flatten_grad)]

1319 1320 1321 1322 1323 1324 1325
    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.
M
minqiyang 已提交
1326

1327 1328
        Returns:
            list: A list of operators appended to the current program.
M
minqiyang 已提交
1329

1330 1331 1332
        Examples:
            .. code-block:: python

1333
                import paddle.fluid as fluid
1334 1335 1336 1337 1338 1339 1340 1341 1342
                loss = network()
                optimizer = fluid.optimizer.SGD(learning_rate=0.1)
                params_grads = optimizer.backward(loss)
                # you may append operations for params_grads here
                # ...
                optimizer.apply_gradients(params_grads)
        """
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

1343 1344
        # NOTE(zhiqiu): currently, only support ClipGradByGlobalNorm and without regularization.
        if self._flatten_param_grads and self.regularization is None:
1345
            if self._grad_clip is None or isinstance(
1346
                self._grad_clip, paddle.nn.ClipGradByGlobalNorm
1347
            ):
1348 1349
                params_grads = self.flatten_param_grads(params_grads)

1350
        # 'optimizer(grad_clip)' or 'set_gradient_clip'
1351 1352 1353
        if self._grad_clip is not None:
            params_grads = self._grad_clip(params_grads)
        else:
1354
            params_grads = paddle.nn.clip.append_gradient_clip_ops(params_grads)
1355 1356

        # Add regularization if any
1357 1358 1359
        params_grads = self.append_regularization_ops(
            params_grads, self.regularization
        )
1360 1361 1362 1363

        optimize_ops = self._create_optimization_pass(params_grads)
        return optimize_ops

C
chengduo 已提交
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
    def apply_optimize(self, loss, startup_program, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Returns:
            list: A list of operators appended to the current program.
        """
姜永久 已提交
1376
        if in_dygraph_mode():
1377 1378 1379 1380
            with program_guard(
                framework.default_main_program(),
                framework.default_startup_program(),
            ):
1381 1382
                if self._grad_clip is not None:
                    params_grads = self._grad_clip(params_grads)
1383
                params_grads = self.append_regularization_ops(
1384 1385
                    params_grads, self.regularization
                )
C
chengduo 已提交
1386 1387 1388 1389 1390 1391 1392
                optimize_ops = self._create_optimization_pass(params_grads)
        else:
            program = loss.block.program
            with program_guard(program, startup_program):
                optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

G
gongweibao 已提交
1393
    def _get_no_grad_set(self, loss, no_grad_set=None):
1394
        no_grad_set = _get_no_grad_set_name(no_grad_set)
G
gongweibao 已提交
1395 1396
        parameters = loss.block.program.global_block().all_parameters()
        param_no_trainable = set(
1397 1398
            [param.name for param in parameters if param.trainable is False]
        )
G
gongweibao 已提交
1399 1400 1401 1402 1403
        # If the parameter is no trainable, it should not have a gradient.
        no_grad_set.update(param_no_trainable)

        return no_grad_set

1404 1405 1406 1407
    @framework.dygraph_only
    def clear_gradients(self):
        """
        Clear the gradients of all optimized parameters for model.
1408 1409

        If not, new gradient will accumulat on previous gradient.
1410

1411 1412
        Returns:
            None
1413

1414 1415 1416 1417
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1418
                import paddle
1419 1420 1421 1422 1423
                import numpy as np

                with fluid.dygraph.guard():
                    value = np.arange(26).reshape(2, 13).astype("float32")
                    a = fluid.dygraph.to_variable(value)
1424
                    linear = paddle.nn.Linear(13, 5)
1425
                    # This can be any optimizer supported by dygraph.
1426
                    adam = fluid.optimizer.Adam(learning_rate = 0.01,
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
                                                parameter_list = linear.parameters())
                    out = linear(a)
                    out.backward()
                    adam.minimize(out)
                    adam.clear_gradients()

        """
        for p in self._parameter_list:
            if p.trainable:
                p.clear_gradient()

1438
    @imperative_base.no_grad
1439 1440 1441
    def minimize(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
1442
        """
1443
        Add operations to minimize ``loss`` by updating ``parameter_list``.
M
minqiyang 已提交
1444

1445
        Args:
1446 1447 1448 1449
            loss (Variable): A ``Variable`` containing the value to minimize.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
H
hong 已提交
1450
            parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
1451 1452
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
1453
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
1454
                to be updated. The default value is None.
Q
Qiao Longfei 已提交
1455

1456
        Returns:
1457 1458 1459
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by minimize and a list of (param, grad) variable pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1460 1461
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
1462
            ``fetch_list`` before run, see details in ``Executor``.
1463 1464 1465

        Examples:
            Please refer to the example of current Optimizer.
Q
Qiao Longfei 已提交
1466
        """
C
chengduo 已提交
1467
        assert isinstance(loss, Variable), "The loss should be an Variable."
1468

1469 1470 1471
        parameter_list = (
            parameter_list if parameter_list else self._parameter_list
        )
1472

1473 1474 1475 1476 1477 1478
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set,
        )
1479

1480 1481 1482
        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads
        )
M
minqiyang 已提交
1483

Q
Qiao Longfei 已提交
1484
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
1485 1486 1487


class SGDOptimizer(Optimizer):
1488
    r"""
Q
qiaolongfei 已提交
1489 1490 1491 1492 1493 1494
    Optimizer of the stochastic gradient descent algorithm.

    .. math::

        param\_out = param - learning\_rate * grad

1495 1496 1497
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
H
hong 已提交
1498
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1499
            This parameter is required in dygraph mode. \
1500
            The default value is None in static graph mode, at this time all parameters will be updated.
1501 1502 1503 1504 1505
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1506 1507 1508
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
1509
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1510 1511
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
1512 1513 1514 1515

    Examples:
        .. code-block:: python

1516 1517 1518 1519
            import paddle
            import paddle.fluid as fluid
            import numpy as np

1520
            paddle.enable_static()
1521 1522 1523
            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
G
GGBond8488 已提交
1524 1525
                x = paddle.static.data(name='x', shape=[-1, 13], dtype='float32')
                y = paddle.static.data(name='y', shape=[-1, 1], dtype='float32')
C
Charles-hit 已提交
1526
                y_predict = paddle.static.nn.fc(x, size=1, activation=None)
1527
                cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
2
201716010711 已提交
1528
                avg_cost = paddle.mean(cost)
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541

                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
                sgd_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
Qiao Longfei 已提交
1542 1543
    """

1544 1545 1546 1547 1548 1549 1550 1551 1552
    def __init__(
        self,
        learning_rate,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        multi_precision=False,
        name=None,
    ):
Q
Qiao Longfei 已提交
1553
        assert learning_rate is not None
1554
        super().__init__(
1555 1556 1557 1558 1559 1560
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
Q
Qiao Longfei 已提交
1561
        self.type = "sgd"
1562
        self._use_mkldnn = False
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
        self._multi_precision = multi_precision
        self._master_weights = {}

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)
        if isinstance(parameters, dict):
            parameters = self._update_param_group(parameters)

        # Create accumulator tensors for first and second moments
        for p in parameters:
1573
            if self._multi_precision and self._is_dtype_fp16_or_bf16(p.dtype):
1574 1575
                master_p = self._create_master_weight(p)
                continue
1576
            if (
1577
                self._is_dtype_fp16_or_bf16(p.dtype)
1578 1579
                and not self._multi_precision
            ):
1580
                warnings.warn(
1581
                    "Accumulating with FP16/BF16 in optimizer can lead to poor accuracy or slow convergence."
1582 1583
                    "Consider using multi_precision=True option of the Adam optimizer."
                )
Q
Qiao Longfei 已提交
1584

1585
    @no_grad
1586
    def _append_optimize_op(self, block, param_and_grad):
1587

1588 1589
        find_master = self._multi_precision and self._is_dtype_fp16_or_bf16(
            param_and_grad[0].dtype
1590 1591 1592 1593 1594 1595
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )
1596

1597
        lr = self._create_param_lr(param_and_grad)
Z
zyfncg 已提交
1598
        if in_dygraph_mode():
1599 1600 1601 1602 1603 1604 1605
            _C_ops.sgd_(
                param_and_grad[0],
                lr,
                param_and_grad[1],
                master_weight,
                find_master,
            )
Z
zyfncg 已提交
1606
            return None
姜永久 已提交
1607 1608 1609 1610 1611 1612 1613 1614
        else:
            assert isinstance(block, framework.Block)
            # create the optimize op
            inputs = {
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": lr,
            }
1615

姜永久 已提交
1616
            outputs = {"ParamOut": param_and_grad[0]}
1617

姜永久 已提交
1618
            attrs = {"multi_precision": find_master}
1619

姜永久 已提交
1620 1621 1622
            if find_master:
                inputs["MasterParam"] = master_weight
                outputs["MasterParamOut"] = master_weight
1623

姜永久 已提交
1624 1625 1626 1627 1628 1629 1630
            sgd_op = block.append_op(
                type=self.type,
                inputs=inputs,
                outputs=outputs,
                attrs=attrs,
                stop_gradient=True,
            )
Q
Qiao Longfei 已提交
1631

姜永久 已提交
1632
            return sgd_op
1633 1634 1635


class MomentumOptimizer(Optimizer):
1636
    r"""
Q
qiaolongfei 已提交
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

1650
        &\quad   param = param - (gradient + mu * velocity) * learning\_rate
Q
qiaolongfei 已提交
1651 1652 1653

        & else:

Q
qiaolongfei 已提交
1654
        &\quad   param = param - learning\_rate * velocity
Q
qiaolongfei 已提交
1655

1656 1657 1658 1659
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
        momentum (float): Momentum factor
H
hong 已提交
1660
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1661
            This parameter is required in dygraph mode. \
1662
            The default value is None in static graph mode, at this time all parameters will be updated.
1663
        use_nesterov (bool, optional): Enables Nesterov momentum, default is false.
1664 1665 1666 1667 1668
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1669 1670 1671
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
1672
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1673 1674
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
1675 1676 1677 1678

    Examples:
        .. code-block:: python

1679 1680 1681 1682
            import paddle
            import paddle.fluid as fluid
            import numpy as np

1683
            paddle.enable_static()
1684 1685 1686
            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
G
GGBond8488 已提交
1687 1688
                x = paddle.static.data(name='x', shape=[-1, 13], dtype='float32')
                y = paddle.static.data(name='y', shape=[-1, 1], dtype='float32')
C
Charles-hit 已提交
1689
                y_predict = paddle.static.nn.fc(x, size=1, activation=None)
1690
                cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
2
201716010711 已提交
1691
                avg_cost = paddle.mean(cost)
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704

                moment_optimizer = fluid.optimizer.MomentumOptimizer(learning_rate=0.001, momentum=0.9)
                moment_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

1705 1706 1707
    """
    _velocity_acc_str = "velocity"

1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
    def __init__(
        self,
        learning_rate,
        momentum,
        parameter_list=None,
        use_nesterov=False,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
1718 1719
        assert learning_rate is not None
        assert momentum is not None
1720
        super().__init__(
1721 1722 1723 1724 1725 1726
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
1727 1728
        self.type = "momentum"
        self._momentum = momentum
1729
        self._use_nesterov = bool(use_nesterov)
1730 1731 1732 1733 1734

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
1735
            self._add_accumulator(self._velocity_acc_str, p)
1736 1737 1738 1739

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

1740 1741 1742
        velocity_acc = self._get_accumulator(
            self._velocity_acc_str, param_and_grad[0]
        )
1743
        lr = self._create_param_lr(param_and_grad)
1744
        master_weight = None
姜永久 已提交
1745
        if in_dygraph_mode():
1746
            _, _, _ = _legacy_C_ops.momentum(
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
                param_and_grad[0],
                param_and_grad[1],
                velocity_acc,
                lr,
                master_weight,
                param_and_grad[0],
                velocity_acc,
                master_weight,
                'mu',
                self._momentum,
                'use_nesterov',
                self._use_nesterov,
            )
1760
            return None
姜永久 已提交
1761 1762 1763 1764 1765 1766 1767 1768
        else:
            attrs = {"mu": self._momentum, "use_nesterov": self._use_nesterov}
            inputs = {
                "Param": [param_and_grad[0]],
                "Grad": [param_and_grad[1]],
                "Velocity": [velocity_acc],
                "LearningRate": [lr],
            }
1769

姜永久 已提交
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
            outputs = {
                "ParamOut": [param_and_grad[0]],
                "VelocityOut": [velocity_acc],
            }
            # create the momentum optimize op
            momentum_op = block.append_op(
                type=self.type,
                inputs=inputs,
                outputs=outputs,
                attrs=attrs,
                stop_gradient=True,
            )
1782

姜永久 已提交
1783
            return momentum_op
1784 1785


1786
class LarsMomentumOptimizer(Optimizer):
1787
    r"""
1788 1789 1790 1791 1792 1793 1794 1795 1796
    Momentum optimizer with LARS support

    The update equations are as follows:

    .. math::

        & local\_learning\_rate = learning\_rate * lars\_coeff * \\
          \\frac{||param||}{||gradient|| + lars\_weight\_decay * ||param||}

1797
        & velocity = mu * velocity + local\_learning\_rate * (gradient + lars\_weight\_decay * param + epsilon)
1798 1799 1800

        & param = param - velocity

1801 1802 1803 1804 1805 1806
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element. \
            momentum (float): momentum factor
        lars_coeff (float): Defines how much we trust the layer to change its weights.
        lars_weight_decay (float): Weight decay coefficient for decaying using LARS.
H
hong 已提交
1807
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1808
            This parameter is required in dygraph mode. \
1809
            The default value is None in static graph mode, at this time all parameters will be updated.
1810 1811 1812 1813 1814
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1815 1816 1817
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
1818
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1819 1820
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
1821 1822
        exclude_from_weight_decay (list[str], optional): Name string of layers which will be exclude from lars weight decay. Default is None.
        epsilon (float, optional): Epsilon to avoid Division by Zero when calculate local lr. Default is 0.
1823 1824 1825
        multi_precision (bool, optional): Whether to use multi-precision during weight updating.
        rescale_grad (float, optional): Multiply the gradient with `rescale_grad` \
            before updating. Often choose to be `1.0/batch_size`.
1826

1827 1828 1829
    Examples:
        .. code-block:: python

1830
            import paddle
1831 1832 1833
            import paddle.fluid as fluid
            import numpy as np

1834
            paddle.enable_static()
1835
            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
G
GGBond8488 已提交
1836 1837
            inp = paddle.static.data(
                name="inp", shape=[2, 2], dtype='float32')
C
Charles-hit 已提交
1838
            out = paddle.static.nn.fc(inp, size=3)
1839
            out = paddle.sum(out)
1840 1841 1842 1843 1844 1845 1846 1847
            optimizer = fluid.optimizer.LarsMomentumOptimizer(learning_rate=0.001, momentum=0.9)
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
1848 1849 1850
    """
    _velocity_acc_str = "velocity"

1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
    def __init__(
        self,
        learning_rate,
        momentum,
        lars_coeff=0.001,
        lars_weight_decay=0.0005,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
        exclude_from_weight_decay=None,
        epsilon=0,
        multi_precision=False,
        rescale_grad=1.0,
    ):
1866 1867
        assert learning_rate is not None
        assert momentum is not None
1868
        super().__init__(
1869 1870 1871 1872 1873 1874
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
1875 1876 1877 1878
        self.type = "lars_momentum"
        self._momentum = momentum
        self._lars_coeff = float(lars_coeff)
        self._lars_weight_decay = float(lars_weight_decay)
1879 1880 1881 1882 1883
        self._epsilon = float(epsilon)
        if exclude_from_weight_decay is None:
            self._exclude_from_weight_decay = []
        else:
            self._exclude_from_weight_decay = exclude_from_weight_decay
1884 1885 1886 1887
        self._multi_precision = multi_precision
        self._rescale_grad = float(rescale_grad)
        self._master_weights = {}

1888 1889 1890 1891
    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
1892
            if self._multi_precision and self._is_dtype_fp16_or_bf16(p.dtype):
1893 1894 1895
                master_p = self._create_master_weight(p)
                self._add_accumulator(self._velocity_acc_str, master_p)
                continue
1896
            if (
1897
                self._is_dtype_fp16_or_bf16(p.dtype)
1898 1899
                and not self._multi_precision
            ):
1900
                warnings.warn(
1901
                    "Accumulating with FP16/BF16 in optimizer can lead to poor accuracy or slow convergence."
1902 1903
                    "Consider using multi_precision=True option of the Lars optimizer."
                )
1904 1905 1906 1907
            self._add_accumulator(self._velocity_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
1908 1909 1910 1911 1912 1913 1914 1915
        _lars_weight_decay = self._lars_weight_decay
        param_name = param_and_grad[0].name
        if len(self._exclude_from_weight_decay) > 0:
            for name in self._exclude_from_weight_decay:
                if name in param_name:
                    _lars_weight_decay = 0.0
                    break

1916
        velocity_acc = self._get_accumulator_master(
1917 1918
            self._velocity_acc_str, param_and_grad[0]
        )
1919 1920
        lr = self._create_param_lr(param_and_grad)

1921 1922
        find_master = self._multi_precision and self._is_dtype_fp16_or_bf16(
            param_and_grad[0].dtype
1923 1924 1925 1926 1927 1928
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )
1929 1930 1931

        attrs = {
            "mu": self._momentum,
1932
            "lars_coeff": self._lars_coeff,
L
limingshu 已提交
1933
            "lars_weight_decay": [_lars_weight_decay],
1934
            "multi_precision": find_master,
L
limingshu 已提交
1935
            "epsilon": self._epsilon,
1936
            "rescale_grad": self._rescale_grad,
1937 1938 1939 1940 1941 1942
        }

        inputs = {
            "Param": param_and_grad[0],
            "Grad": param_and_grad[1],
            "Velocity": velocity_acc,
1943
            "LearningRate": lr,
1944 1945 1946 1947 1948 1949 1950 1951
        }

        outputs = {"ParamOut": param_and_grad[0], "VelocityOut": velocity_acc}

        if find_master:
            inputs["MasterParam"] = master_weight
            outputs["MasterParamOut"] = master_weight

姜永久 已提交
1952
        if in_dygraph_mode():
1953
            tmp, tmp2 = _legacy_C_ops.lars_momentum(
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
                [param_and_grad[0]],
                [param_and_grad[1]],
                [velocity_acc],
                [lr],
                [param_and_grad[0]],
                [velocity_acc],
                "mu",
                self._momentum,
                "lars_coeff",
                self._lars_coeff,
                "lars_weight_decay",
                [_lars_weight_decay],
                "multi_precision",
                find_master,
                "epsilon",
                self._epsilon,
                "rescale_grad",
                self._rescale_grad,
            )
1973 1974
        else:
            # create the momentum optimize op
1975 1976 1977 1978 1979 1980 1981
            momentum_op = block.append_op(
                type=self.type,
                inputs=inputs,
                outputs=outputs,
                attrs=attrs,
                stop_gradient=True,
            )
1982

1983
            return momentum_op
1984 1985


1986
class AdagradOptimizer(Optimizer):
1987
    r"""
1988 1989
    The Adaptive Gradient optimizer (Adagrad for short) can adaptively assign
    different learning rates to individual parameters.
Q
qiaolongfei 已提交
1990

1991
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
1992 1993 1994 1995 1996 1997 1998

    .. math::

        moment\_out &= moment + grad * grad

        param\_out &= param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

1999 2000 2001 2002 2003 2004
    Related paper: `Adaptive Subgradient Methods for Online Learning and
    Stochastic Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have the ``epsilon`` attribute. It is added here
    in our implementation as also proposed `Per-parameter adaptive learning rate
    methods <http://cs231n.github.io/neural-networks-3/#ada>`_
Q
qiaolongfei 已提交
2005 2006 2007
    for numerical stability to avoid the division by zero error.

    Args:
2008 2009 2010 2011
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
H
hong 已提交
2012
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2013
            This parameter is required in dygraph mode. \
2014
            The default value is None in static graph mode, at this time all parameters will be updated.
2015 2016 2017 2018 2019
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2020 2021 2022
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
2023
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2024 2025 2026 2027 2028
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        initial_accumulator_value (float, optional): Initial value for moment accumulator.
            The default value is 0.0.
Q
qiaolongfei 已提交
2029 2030 2031 2032

    Examples:
        .. code-block:: python

2033
            import paddle
2034
            import numpy as np
2035
            import paddle.fluid as fluid
2036

2037
            paddle.enable_static()
2038
            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
2039
            inp = paddle.static.data(name="inp", shape=[2, 2], dtype="float32")
C
Charles-hit 已提交
2040
            out = paddle.static.nn.fc(inp, size=3)
2041
            out = paddle.sum(out)
2042
            optimizer = fluid.optimizer.AdagradOptimizer(learning_rate=0.2)
2043 2044 2045 2046 2047 2048 2049
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
2050 2051 2052
    """
    _moment_acc_str = "moment"

2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
    def __init__(
        self,
        learning_rate,
        epsilon=1.0e-6,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
        initial_accumulator_value=0.0,
    ):
2063 2064
        assert learning_rate is not None
        assert epsilon is not None
2065
        super().__init__(
2066 2067 2068 2069 2070 2071
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
2072
        self.type = "adagrad"
2073
        self._multi_precision = False
2074
        self._epsilon = epsilon
2075
        self.initial_accumulator_value = initial_accumulator_value
2076 2077
        self._master_weights = {}

2078 2079 2080 2081
    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
2082
            if self._multi_precision and self._is_dtype_fp16_or_bf16(p.dtype):
2083 2084 2085 2086
                master_p = self._create_master_weight(p)
                self._add_accumulator(self._moment_acc_str, master_p)
                continue
            if (
2087
                self._is_dtype_fp16_or_bf16(p.dtype)
2088 2089 2090
                and not self._multi_precision
            ):
                warnings.warn(
2091
                    "Accumulating with FP16/BF16 in optimizer can lead to poor accuracy or slow convergence."
2092 2093
                    "Consider using multi_precision=True option of the Lars optimizer."
                )
2094 2095 2096 2097 2098
            self._add_accumulator(
                self._moment_acc_str,
                p,
                fill_value=self.initial_accumulator_value,
            )
2099 2100 2101 2102

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

2103
        moment_acc = self._get_accumulator_master(
2104 2105
            self._moment_acc_str, param_and_grad[0]
        )
2106

2107 2108
        find_master = self._multi_precision and self._is_dtype_fp16_or_bf16(
            param_and_grad[0].dtype
2109 2110 2111 2112 2113 2114 2115
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )

C
caozhou 已提交
2116
        if in_dygraph_mode():
2117 2118 2119 2120 2121
            _C_ops.adagrad_(
                param_and_grad[0],
                param_and_grad[1],
                moment_acc,
                self._create_param_lr(param_and_grad),
2122
                master_weight,
2123
                self._epsilon,
2124
                find_master,
2125
            )
C
caozhou 已提交
2126
            return None
2127 2128
        else:
            # Create the adagrad optimizer op
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
            inputs = {
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            }
            outputs = {
                "ParamOut": param_and_grad[0],
                "MomentOut": moment_acc,
            }

            attrs = {"epsilon": self._epsilon, "multi_precision": find_master}

            if find_master:
                inputs["MasterParam"] = master_weight
                outputs["MasterParamOut"] = master_weight

2146 2147
            adagrad_op = block.append_op(
                type=self.type,
2148 2149 2150
                inputs=inputs,
                outputs=outputs,
                attrs=attrs,
2151 2152
                stop_gradient=True,
            )
2153

2154
            return adagrad_op
2155 2156 2157


class AdamOptimizer(Optimizer):
2158
    r"""
T
tianshuo78520a 已提交
2159
    The Adam optimizer uses an optimization described at the end
2160 2161 2162
    of section 2 of `Adam paper <https://arxiv.org/abs/1412.6980>`_ ,
    it can dynamically adjusts the learning rate of each parameter using
    the 1st moment estimates and the 2nd moment estimates of the gradient.
2163

2164
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178

    .. math::

        t & = t + 1

        moment\_1\_out & = {\\beta}_1 * moment\_1 + (1 - {\\beta}_1) * grad

        moment\_2\_out & = {\\beta}_2 * moment\_2 + (1 - {\\beta}_2) * grad * grad

        learning\_rate & = learning\_rate * \\
                          \\frac{\sqrt{1 - {\\beta}_2^t}}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_1}{\sqrt{moment\_2} + \epsilon}

2179 2180
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_

Q
qiaolongfei 已提交
2181
    Args:
2182 2183
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
2184 2185
        beta1 (float|Variable, optional): The exponential decay rate for the 1st moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
2186
            The default value is 0.9.
2187 2188
        beta2 (float|Variable, optional): The exponential decay rate for the 2nd moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
2189
            The default value is 0.999.
2190 2191
        epsilon (float|Tensor, optional): A small float value for numerical stability.
            It should be a float number or a Variable with shape [1] and data type as float32.
2192
            The default value is 1e-08.
H
hong 已提交
2193
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2194
            This parameter is required in dygraph mode. \
2195
            The default value is None in static graph mode, at this time all parameters will be updated.
2196 2197 2198 2199 2200
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2201 2202 2203
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
2204
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        lazy_mode (bool, optional): The official Adam algorithm has two moving-average accumulators.
            The accumulators are updated at every step. Every element of the two moving-average
            is updated in both dense mode and sparse mode. If the size of parameter is very large,
            then the update may be very slow. The lazy mode only update the element that has
            gradient in current mini-batch, so it will be much more faster. But this mode has
            different semantics with the original Adam algorithm and may lead to different result.
            The default value is False.
2215
        use_global_beta_pow (bool, optional): Whether to use global beta_pow. If true, Adam will use global beta_pow
2216
            for whole model instead of creating beta_pow for each parameter. Default is false.
2217 2218
        flatten_param_grads (bool, optional): Whether to flatten all parameters and gradients. Default is false.
        align_size (int, optional): The alignment size when flatten parameters and gradients. Default is -1, which means
2219
            use same align_size as allocator.
Q
qiaolongfei 已提交
2220 2221 2222 2223

    Examples:
        .. code-block:: python

2224 2225 2226
            import paddle
            import paddle.fluid as fluid

2227
            paddle.enable_static()
2228 2229 2230
            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
2231 2232
                x = paddle.static.data(name='x', shape=[None, 13], dtype='float32')
                y = paddle.static.data(name='y', shape=[None, 1], dtype='float32')
C
Charles-hit 已提交
2233
                y_predict = paddle.static.nn.fc(x, size=1, activation=None)
2234
                cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
2
201716010711 已提交
2235
                avg_cost = paddle.mean(cost)
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247

                adam_optimizer = fluid.optimizer.AdamOptimizer(0.01)
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
Q
qiaolongfei 已提交
2248

2249 2250 2251 2252 2253 2254 2255
        .. code-block:: python

            # Adam with beta1/beta2 as Variable
            import paddle
            import paddle.fluid as fluid
            import paddle.fluid.layers.learning_rate_scheduler as lr_scheduler

2256
            paddle.enable_static()
2257 2258 2259
            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
2260 2261
                x = paddle.static.data(name='x', shape=[None, 13], dtype='float32')
                y = paddle.static.data(name='y', shape=[None, 1], dtype='float32')
C
Charles-hit 已提交
2262
                y_predict = paddle.static.nn.fc(x, size=1, activation=None)
2263
                cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
2
201716010711 已提交
2264
                avg_cost = paddle.mean(cost)
2265 2266

                # define beta decay variable
2267
                def get_decayed_betas(beta1_init, beta2_init, decay_steps, decay_rate, epsilon_init):
2268 2269
                    global_step = lr_scheduler._decay_step_counter()

2270
                    beta1 = paddle.static.create_global_var(
2271 2272 2273 2274 2275 2276
                        shape=[1],
                        value=float(beta1_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta1")
2277
                    beta2 = paddle.static.create_global_var(
2278 2279 2280 2281 2282 2283
                        shape=[1],
                        value=float(beta2_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta2")
2284
                    epsilon = paddle.static.create_global_var(
2285 2286 2287 2288 2289 2290
                        shape=[1],
                        value=float(epsilon_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="epsilon")
2291 2292 2293 2294

                    div_res = global_step / decay_steps
                    decayed_beta1 = beta1_init * (decay_rate**div_res)
                    decayed_beta2 = beta2_init * (decay_rate**div_res)
2295 2296
                    paddle.assign(decayed_beta1, beta1)
                    paddle.assign(decayed_beta2, beta2)
2297

2298
                    return beta1, beta2, epsilon
2299

2300
                beta1, beta2, epsilon = get_decayed_betas(0.9, 0.99, 1e5, 0.9, 1e-8)
2301 2302
                adam_optimizer = fluid.optimizer.AdamOptimizer(
                                                    learning_rate=0.01,
2303
                                                    beta1=beta1,
2304 2305
                                                    beta2=beta2,
                                                    epsilon=epsilon)
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
2316 2317 2318
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Q
qiaolongfei 已提交
2319 2320
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"
2321

2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
    def __init__(
        self,
        learning_rate=0.001,
        beta1=0.9,
        beta2=0.999,
        epsilon=1e-8,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
        lazy_mode=False,
        use_global_beta_pow=False,
        flatten_param_grads=False,
        align_size=-1,
    ):
2337 2338 2339 2340
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
2341
        super().__init__(
2342 2343 2344 2345 2346 2347 2348 2349
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            flatten_param_grads=flatten_param_grads,
            align_size=align_size,
            name=name,
        )
2350 2351 2352 2353
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
Q
Qiao Longfei 已提交
2354
        self._lazy_mode = lazy_mode
2355
        self._use_global_beta_pow = use_global_beta_pow
2356 2357 2358 2359 2360 2361

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
2362 2363
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
2364 2365 2366 2367
            if not self._use_global_beta_pow:
                self._add_accumulator(
                    name=self._beta1_pow_acc_str,
                    param=p,
2368 2369 2370
                    fill_value=0.9
                    if isinstance(self._beta1, Variable)
                    else self._beta1,
2371
                    shape=[1],
2372 2373 2374
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    device='cpu',
                )
2375 2376 2377
                self._add_accumulator(
                    name=self._beta2_pow_acc_str,
                    param=p,
2378 2379 2380
                    fill_value=0.999
                    if isinstance(self._beta2, Variable)
                    else self._beta2,
2381
                    shape=[1],
2382 2383 2384
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    device='cpu',
                )
2385 2386
        if self._use_global_beta_pow:
            self._add_global_accumulator(
Q
qiaolongfei 已提交
2387
                name=self._beta1_pow_acc_str,
2388 2389 2390
                fill_value=0.9
                if isinstance(self._beta1, Variable)
                else self._beta1,
2391
                shape=[1],
2392 2393 2394
                type=core.VarDesc.VarType.LOD_TENSOR,
                device='cpu',
            )
2395
            self._add_global_accumulator(
Q
qiaolongfei 已提交
2396
                name=self._beta2_pow_acc_str,
2397 2398 2399
                fill_value=0.999
                if isinstance(self._beta2, Variable)
                else self._beta2,
2400
                shape=[1],
2401 2402 2403
                type=core.VarDesc.VarType.LOD_TENSOR,
                device='cpu',
            )
2404 2405 2406 2407

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

2408 2409 2410 2411 2412 2413
        moment1 = self._get_accumulator(
            self._moment1_acc_str, param_and_grad[0]
        )
        moment2 = self._get_accumulator(
            self._moment2_acc_str, param_and_grad[0]
        )
2414 2415
        if self._use_global_beta_pow:
            beta1_pow_acc = self._get_global_accumulator(
2416 2417
                self._beta1_pow_acc_str
            )
2418
            beta2_pow_acc = self._get_global_accumulator(
2419 2420
                self._beta2_pow_acc_str
            )
2421
        else:
2422 2423 2424 2425 2426 2427
            beta1_pow_acc = self._get_accumulator(
                self._beta1_pow_acc_str, param_and_grad[0]
            )
            beta2_pow_acc = self._get_accumulator(
                self._beta2_pow_acc_str, param_and_grad[0]
            )
2428
        lr = self._create_param_lr(param_and_grad)
2429
        # create the adam optimize op
2430

姜永久 已提交
2431
        if in_dygraph_mode():
2432 2433 2434
            _beta1 = (
                self._beta1
                if not isinstance(self._beta1, Variable)
2435
                else self._beta1.item(0)
2436 2437 2438 2439
            )
            _beta2 = (
                self._beta2
                if not isinstance(self._beta2, Variable)
2440
                else self._beta2.item(0)
2441
            )
2442
            master_weight = None
2443
            _, _, _, _, _, _ = _legacy_C_ops.adam(
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
                param_and_grad[0],
                param_and_grad[1],
                lr,
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
                param_and_grad[0],
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
                'epsilon',
                self._epsilon,
                'lazy_mode',
                self._lazy_mode,
                'min_row_size_to_use_multithread',
                1000,
                'beta1',
                _beta1,
                'beta2',
                _beta2,
                'use_global_beta_pow',
                self._use_global_beta_pow,
            )
2471 2472 2473

            return None

2474
        inputs = {
2475 2476
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
2477
            "LearningRate": [lr],
2478 2479 2480
            "Moment1": [moment1],
            "Moment2": [moment2],
            "Beta1Pow": [beta1_pow_acc],
2481
            "Beta2Pow": [beta2_pow_acc],
2482
        }
2483 2484 2485 2486 2487 2488 2489

        # Pass found_inf to adam, to skip update for not only param, but also momentum and beta_pow
        found_inf = self._get_auxiliary_var('found_inf')

        if found_inf:
            inputs['SkipUpdate'] = found_inf

2490
        outputs = {
2491 2492 2493 2494 2495
            "ParamOut": [param_and_grad[0]],
            "Moment1Out": [moment1],
            "Moment2Out": [moment2],
            "Beta1PowOut": [beta1_pow_acc],
            "Beta2PowOut": [beta2_pow_acc],
2496 2497 2498
        }
        attrs = {
            "lazy_mode": self._lazy_mode,
2499
            "min_row_size_to_use_multithread": 1000,
2500
            'use_global_beta_pow': self._use_global_beta_pow,
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
        }

        if isinstance(self._beta1, Variable):
            inputs['Beta1Tensor'] = self._beta1
        else:
            attrs['beta1'] = self._beta1
        if isinstance(self._beta2, Variable):
            inputs['Beta2Tensor'] = self._beta2
        else:
            attrs['beta2'] = self._beta2
2511 2512 2513 2514
        if isinstance(self._epsilon, Variable):
            inputs['EpsilonTensor'] = self._epsilon
        else:
            attrs['epsilon'] = self._epsilon
2515

2516 2517 2518 2519 2520 2521 2522
        adam_op = block.append_op(
            type=self.type,
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
            stop_gradient=True,
        )
2523 2524 2525

        return adam_op

2526
    def _finish_update(self, block, parameters_and_grads):
2527
        r"""Update beta1_pow and beta2_pow accumulator"""
2528 2529 2530
        assert isinstance(block, framework.Block)
        if self._use_global_beta_pow:
            beta1_pow_acc = self._get_global_accumulator(
2531 2532
                self._beta1_pow_acc_str
            )
2533
            beta2_pow_acc = self._get_global_accumulator(
2534 2535
                self._beta2_pow_acc_str
            )
2536 2537 2538

            with block.program._optimized_guard([]):
                inputs = {"X": beta1_pow_acc}
2539
                outputs = {"Out": beta1_pow_acc}
2540 2541
                attrs = {}
                if isinstance(self._beta1, Variable):
2542 2543
                    inputs["Y"] = self._beta1
                    # use elementwise_mul for better performance
2544 2545 2546 2547 2548 2549 2550
                    block.append_op(
                        type="elementwise_mul",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True,
                    )
2551 2552
                else:
                    attrs['scale'] = self._beta1
2553 2554 2555 2556 2557 2558 2559
                    block.append_op(
                        type="scale",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True,
                    )
2560 2561

                inputs = {"X": beta2_pow_acc}
2562
                outputs = {"Out": beta2_pow_acc}
2563 2564
                attrs = {}
                if isinstance(self._beta2, Variable):
2565 2566
                    inputs["Y"] = self._beta2
                    # use elementwise_mul for better performance
2567 2568 2569 2570 2571 2572 2573
                    block.append_op(
                        type="elementwise_mul",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True,
                    )
2574 2575
                else:
                    attrs['scale'] = self._beta2
2576 2577 2578 2579 2580 2581 2582
                    block.append_op(
                        type="scale",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True,
                    )
2583

2584 2585

class AdamaxOptimizer(Optimizer):
2586
    r"""
2587
    The Adamax optimizer is implemented based on the Adamax Optimization
2588 2589 2590
    in Section 7 of `Adam paper <https://arxiv.org/abs/1412.6980>`_.
    The Adamax algorithm is a variant of the Adam algorithm based on the infinite norm,
    which makes the learning rate update algorithm more stable and simple.
Q
qiaolongfei 已提交
2591

2592
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605

    .. math::

        t & = t + 1

        moment\_out & = {\\beta}_1 * moment + (1 - {\\beta}_1) * grad

        inf\_norm\_out & = max({\\beta}_2 * inf\_norm + \epsilon, |grad|)

        learning\_rate & = \\frac{learning\_rate}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_out}{inf\_norm\_out}

2606
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_
Q
qiaolongfei 已提交
2607

2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
    The original paper does not have an ``epsilon`` attribute,
    it is added here for numerical stability to prevent the division by 0 error.

    Args:
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            The default value is 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            The default value is 0.999.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-08.
H
hong 已提交
2620
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2621
            This parameter is required in dygraph mode. \
2622
            The default value is None in static graph mode, at this time all parameters will be updated.
2623 2624 2625 2626 2627
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2628 2629 2630
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
2631
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2632 2633 2634 2635 2636 2637
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, AdamaxOptimizer doesn't support sparse parameter optimization.**
Q
qiaolongfei 已提交
2638

2639 2640 2641 2642 2643
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy
2
201716010711 已提交
2644 2645
          import paddle
          paddle.enable_static()
2646 2647 2648 2649 2650 2651 2652 2653

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
2654
              data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
C
Charles-hit 已提交
2655
              hidden = paddle.static.nn.fc(x=data, size=10)
2
201716010711 已提交
2656
              loss = paddle.mean(hidden)
2657
              adam = fluid.optimizer.AdamaxOptimizer(learning_rate=0.2)
2658 2659 2660 2661 2662 2663 2664 2665 2666
              adam.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])
2667 2668 2669
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"
Q
qiaolongfei 已提交
2670
    _beta1_pow_acc_str = "beta1_pow_acc"
2671

2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
    def __init__(
        self,
        learning_rate=0.001,
        beta1=0.9,
        beta2=0.999,
        epsilon=1e-8,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
2683 2684 2685 2686
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
2687
        super().__init__(
2688 2689 2690 2691 2692 2693
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
2694 2695 2696 2697
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
2698 2699 2700
        self._multi_precision = False
        self._master_weights = {}

2701 2702 2703
    def _create_accumulators(self, block, parameters):
        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
2704
            if self._multi_precision and self._is_dtype_fp16_or_bf16(p.dtype):
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
                master_p = self._create_master_weight(p)
                self._add_accumulator(self._moment_acc_str, master_p)
                self._add_accumulator(self._inf_norm_acc_str, master_p)
                self._add_accumulator(
                    name=self._beta1_pow_acc_str,
                    param=master_p,
                    fill_value=self._beta1,
                    shape=[1],
                )
                continue
            if (
2716
                self._is_dtype_fp16_or_bf16(p.dtype)
2717 2718 2719
                and not self._multi_precision
            ):
                warnings.warn(
2720
                    "Accumulating with FP16/BF16 in optimizer can lead to poor accuracy or slow convergence."
2721 2722
                    "Consider using multi_precision=True option of the Lars optimizer."
                )
Q
Qiao Longfei 已提交
2723 2724
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
2725 2726 2727 2728 2729 2730
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                fill_value=self._beta1,
                shape=[1],
            )
2731 2732 2733 2734

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

2735 2736 2737 2738
        moment = self._get_accumulator_master(
            self._moment_acc_str, param_and_grad[0]
        )
        inf_norm = self._get_accumulator_master(
2739 2740
            self._inf_norm_acc_str, param_and_grad[0]
        )
2741
        beta1_pow_acc = self._get_accumulator_master(
2742 2743
            self._beta1_pow_acc_str, param_and_grad[0]
        )
2744

2745 2746
        find_master = self._multi_precision and self._is_dtype_fp16_or_bf16(
            param_and_grad[0].dtype
2747 2748 2749 2750 2751 2752
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )
姜永久 已提交
2753
        if in_dygraph_mode():
2754 2755 2756 2757 2758 2759 2760
            _C_ops.adamax_(
                param_and_grad[0],
                param_and_grad[1],
                self._create_param_lr(param_and_grad),
                moment,
                inf_norm,
                beta1_pow_acc,
2761
                master_weight,
2762 2763 2764
                self._beta1,
                self._beta2,
                self._epsilon,
2765
                find_master,
2766
            )
2767 2768
        else:
            # create the adamax optimize op
2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792
            inputs = {
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": self._create_param_lr(param_and_grad),
                "Moment": moment,
                "InfNorm": inf_norm,
                "Beta1Pow": beta1_pow_acc,
            }
            outputs = {
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm,
            }
            if find_master:
                inputs["MasterParam"] = master_weight
                outputs["MasterParamOut"] = master_weight

            attrs = {
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon,
                "multi_precision": find_master,
            }

2793 2794
            adamax_op = block.append_op(
                type=self.type,
2795 2796 2797
                inputs=inputs,
                outputs=outputs,
                attrs=attrs,
2798 2799
                stop_gradient=True,
            )
2800

2801
            return adamax_op
2802

2803
    def _finish_update(self, block, parameters_and_grads):
2804
        """Update Beta1 Power accumulator"""
2805
        assert isinstance(block, framework.Block)
2806
        for param, grad in parameters_and_grads:
C
chengduo 已提交
2807
            if grad is None or param.trainable is False:
2808
                continue
2809 2810 2811
            with param.block.program._optimized_guard(
                [param, grad]
            ), name_scope('adamx'):
2812
                beta1_pow_acc = self._get_accumulator_master(
2813 2814
                    self._beta1_pow_acc_str, param
                )
姜永久 已提交
2815 2816
                if in_dygraph_mode():
                    tmp = _C_ops.scale(beta1_pow_acc, self._beta1, 0.0, True)
2817 2818
                    beta1_pow_acc.copy_(tmp, False)
                else:
2819 2820 2821 2822 2823 2824 2825
                    block.append_op(
                        type="scale",
                        inputs={"X": beta1_pow_acc},
                        outputs={"Out": beta1_pow_acc},
                        attrs={"scale": self._beta1},
                        stop_gradient=True,
                    )
2826 2827


2828
class DpsgdOptimizer(Optimizer):
2829
    r"""
2830 2831 2832 2833 2834 2835 2836 2837
    We implement the Dpsgd optimizer according to CCS16 paper -
    Deep Learning with Differential Privacy.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy
2
201716010711 已提交
2838 2839
          import paddle
          paddle.enable_static()
2840 2841 2842 2843 2844 2845 2846 2847

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
G
GGBond8488 已提交
2848
              data = paddle.static.data(name='X', shape=[-1,1], dtype='float32')
C
Charles-hit 已提交
2849
              hidden = paddle.static.nn.fc(x=data, size=10)
2
201716010711 已提交
2850
              loss = paddle.mean(hidden)
2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
              optimizer = fluid.optimizer.Dpsgd(learning_rate=0.01, clip=10.0, batch_size=16.0, sigma=1.0)
              optimizer.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        clip (float): clipping threshold
        batch_size (float): batch size.
        sigma (float): for gaussian noise.
H
hong 已提交
2868
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2869
            This parameter is required in dygraph mode. \
2870
            The default value is None in static graph mode, at this time all parameters will be updated.
2871 2872 2873 2874
    Notes:
       Currently, DpsgdOptimizer doesn't support sparse parameter optimization.
    """

2875 2876 2877 2878 2879 2880 2881 2882
    def __init__(
        self,
        learning_rate=0.001,
        clip=0.9,
        batch_size=0.999,
        sigma=1e-8,
        parameter_list=None,
    ):
2883 2884 2885 2886
        assert learning_rate is not None
        assert clip is not None
        assert batch_size is not None
        assert sigma is not None
2887
        super().__init__(
2888 2889
            learning_rate=learning_rate, parameter_list=parameter_list
        )
2890 2891 2892 2893
        self.type = "dpsgd"
        self._clip = clip
        self._batch_size = batch_size
        self._sigma = sigma
Z
zhongpu 已提交
2894 2895 2896 2897 2898 2899 2900
        '''
        Note(wangzhongpu):
        This property is only used for debugging, do not need to set it!
        Dpsgd operator use time(NULL) as random seed to generate random number.
        However, during debugging, we need determinated result, so we will set self._seed to a fixed number.
        '''
        self._seed = None
2901 2902 2903 2904 2905

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        # create the dpsgd optimize op
2906
        if self._seed is None:
Z
zhongpu 已提交
2907 2908
            self._seed = 0

姜永久 已提交
2909
        if in_dygraph_mode():
2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
            _legacy_C_ops.dpsgd(
                param_and_grad[0],
                param_and_grad[1],
                self._create_param_lr(param_and_grad),
                param_and_grad[0],
                "clip",
                self._clip,
                "batch_size",
                self._batch_size,
                "sigma",
                self._sigma,
                "seed",
                self._seed,
            )
2924
        else:
2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
            dpsgd_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "LearningRate": self._create_param_lr(param_and_grad),
                },
                outputs={"ParamOut": param_and_grad[0]},
                attrs={
                    "clip": self._clip,
                    "batch_size": self._batch_size,
                    "sigma": self._sigma,
                    "seed": self._seed,
                },
                stop_gradient=True,
            )
2941

2942
            return dpsgd_op
2943 2944


2945
class DecayedAdagradOptimizer(Optimizer):
2946
    r"""
2947 2948 2949
    The Decayed Adagrad optimizer can be seen as an Adagrad algorithm that introduces
    the decay rate to solve the problem of a sharp drop in the learning rate
    during model training when using the AdagradOptimizer.
2950

2951
    The parameter ``param_out`` update rule with gradient ``grad``:
2952 2953 2954 2955 2956 2957 2958

    .. math::

        moment\_out & = decay * moment + (1 - decay) * grad * grad

        param\_out & = param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

2959 2960 2961 2962
    Related paper: `Adaptive Subgradient Methods for Online Learning and Stochastic
    Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have an ``epsilon`` attribute. It is added here for numerical
2963 2964 2965
    stability to avoid the division by zero error.

    Args:
2966 2967 2968 2969 2970
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        decay (float, optional): The decay rate. The default value is 0.95.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
H
hong 已提交
2971
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2972
            This parameter is required in dygraph mode. \
2973
            The default value is None in static graph mode, at this time all parameters will be updated.
2974 2975 2976 2977 2978
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2979 2980 2981
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
2982
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2983 2984 2985 2986 2987 2988
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, DecayedAdagradOptimizer doesn't support sparse parameter optimization.**
2989 2990 2991 2992

    Examples:
        .. code-block:: python

C
Charles-hit 已提交
2993
            import paddle
2994 2995
            import paddle.fluid as fluid

C
Charles-hit 已提交
2996
            paddle.enable_static()
2997
            x = paddle.static.data(name='x', shape=[None, 10], dtype='float32')
C
Charles-hit 已提交
2998 2999
            trans = paddle.static.nn.fc(x, 100)
            cost = paddle.mean(trans)
3000
            optimizer = fluid.optimizer.DecayedAdagradOptimizer(learning_rate=0.2)
3001
            optimizer.minimize(cost)
3002 3003 3004
    """
    _moment_acc_str = "moment"

3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
    def __init__(
        self,
        learning_rate,
        decay=0.95,
        epsilon=1.0e-6,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
3015 3016 3017 3018
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

3019
        super().__init__(
3020 3021 3022 3023 3024 3025
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

3039 3040 3041
        moment_acc = self._get_accumulator(
            self._moment_acc_str, param_and_grad[0]
        )
3042

姜永久 已提交
3043
        if in_dygraph_mode():
3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
            _legacy_C_ops.decayed_adagrad(
                param_and_grad[0],
                param_and_grad[1],
                moment_acc,
                self._create_param_lr(param_and_grad),
                param_and_grad[0],
                moment_acc,
                "epsilon",
                self._epsilon,
                "decay",
                self._decay,
            )
3056 3057 3058 3059 3060 3061 3062 3063
        else:
            # Create the decayed adagrad optimizer op
            decayed_adagrad_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "Moment": moment_acc,
3064
                    "LearningRate": self._create_param_lr(param_and_grad),
3065 3066 3067
                },
                outputs={
                    "ParamOut": param_and_grad[0],
3068
                    "MomentOut": moment_acc,
3069
                },
3070 3071 3072
                attrs={"epsilon": self._epsilon, "decay": self._decay},
                stop_gradient=True,
            )
3073

3074
            return decayed_adagrad_op
3075 3076


3077
class AdadeltaOptimizer(Optimizer):
3078
    r"""
Z
Zeng Jinle 已提交
3079
    **Notes: This API does not support sparse parameter optimization.**
Q
qiaolongfei 已提交
3080

Z
Zeng Jinle 已提交
3081
    Adadelta Optimizer. Please refer to this for details:
Z
Zeng Jinle 已提交
3082 3083 3084
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD <https://arxiv.org/abs/1212.5701>`_.

    The update is done as follows:
3085

Z
Zeng Jinle 已提交
3086 3087
    .. math::

Z
Zeng Jinle 已提交
3088
        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2
3089

Z
Zeng Jinle 已提交
3090
        learning\_rate &= \sqrt{ ( E(dx_{t-1}^2) + \\epsilon ) / ( E(g_t^2) + \\epsilon ) }
Z
Zeng Jinle 已提交
3091

Z
Zeng Jinle 已提交
3092
        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\_rate)^2
3093 3094

    Args:
Z
Zeng Jinle 已提交
3095 3096 3097
        learning_rate (float|Variable): global learning rate.
        epsilon (float): a small float number for numeric stability. Default 1.0e-6.
        rho (float): a floating point value indicating the decay rate. Default 0.95.
H
hong 已提交
3098
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3099
            This parameter is required in dygraph mode. \
3100
            The default value is None in static graph mode, at this time all parameters will be updated.
3101 3102 3103 3104 3105
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3106 3107 3108
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
3109
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
3110 3111 3112
        name (str, optional): The default value is None. Normally there is no need for user
                to set this property. For more information, please refer to
                :ref:`api_guide_Name` .
3113 3114 3115 3116

    Examples:
        .. code-block:: python

C
Charles-hit 已提交
3117
            import paddle
3118
            import paddle.fluid as fluid
Z
Zeng Jinle 已提交
3119

C
Charles-hit 已提交
3120
            paddle.enable_static()
3121
            image = paddle.static.data(name='image', shape=[None, 28], dtype='float32')
C
Charles-hit 已提交
3122 3123
            fc = paddle.static.nn.fc(image, size=10)
            cost = paddle.mean(fc)
3124 3125
            optimizer = fluid.optimizer.Adadelta(
                learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
C
chengduo 已提交
3126

Z
Zeng Jinle 已提交
3127 3128 3129 3130
            # optimizer_ops is a list of optimizer operators to update parameters
            # params_grads is a list of (param, param_grad), where param is each
            # parameter and param_grad is the gradient variable of param.
            optimizer_ops, params_grads = optimizer.minimize(cost)
3131
    """
3132

3133 3134 3135
    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
    def __init__(
        self,
        learning_rate,
        epsilon=1.0e-6,
        rho=0.95,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
3146 3147 3148 3149 3150 3151
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
3152
        super().__init__(
3153 3154 3155 3156 3157 3158
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
3159
        self.type = "adadelta"
3160 3161
        self._multi_precision = False
        self._master_weights = {}
3162 3163 3164 3165
        self._epsilon = epsilon
        self._rho = rho

    def _create_accumulators(self, block, parameters):
3166 3167
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
3168 3169

        for p in parameters:
3170
            if self._multi_precision and self._is_dtype_fp16_or_bf16(p.dtype):
3171 3172 3173 3174 3175 3176 3177
                master_p = self._create_master_weight(p)
                self._add_accumulator(self._avg_squared_grad_acc_str, master_p)
                self._add_accumulator(
                    self._avg_squared_update_acc_str, master_p
                )
                continue
            if (
3178
                self._is_dtype_fp16_or_bf16(p.dtype)
3179 3180 3181
                and not self._multi_precision
            ):
                warnings.warn(
3182
                    "Accumulating with FP16/BF16 in optimizer can lead to poor accuracy or slow convergence."
3183 3184
                    "Consider using multi_precision=True option of the Lars optimizer."
                )
3185 3186 3187 3188
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
3189 3190
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
3191

3192
        avg_squared_grad_acc = self._get_accumulator_master(
3193 3194
            self._avg_squared_grad_acc_str, param_and_grad[0]
        )
3195
        avg_squared_update_acc = self._get_accumulator_master(
3196 3197
            self._avg_squared_update_acc_str, param_and_grad[0]
        )
3198 3199 3200

        find_master = self._multi_precision and self._is_dtype_fp16_or_bf16(
            param_and_grad[0].dtype
3201 3202 3203 3204 3205 3206
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )
3207

姜永久 已提交
3208
        if in_dygraph_mode():
3209 3210 3211 3212 3213
            _C_ops.adadelta_(
                param_and_grad[0],
                param_and_grad[1],
                avg_squared_grad_acc,
                avg_squared_update_acc,
3214
                master_weight,
3215 3216
                self._rho,
                self._epsilon,
3217
                find_master,
3218
            )
3219 3220
        else:
            # Create the adadelta optimizer op
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
            inputs = {
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "AvgSquaredGrad": avg_squared_grad_acc,
                "AvgSquaredUpdate": avg_squared_update_acc,
            }
            outputs = {
                "ParamOut": param_and_grad[0],
                "AvgSquaredGradOut": avg_squared_grad_acc,
                "AvgSquaredUpdateOut": avg_squared_update_acc,
            }

            if find_master:
                inputs["MasterParam"] = master_weight
                outputs["MasterParamOut"] = master_weight

3237 3238
            adadelta_op = block.append_op(
                type=self.type,
3239 3240 3241 3242 3243 3244
                inputs=inputs,
                outputs=outputs,
                attrs={
                    "epsilon": self._epsilon,
                    "rho": self._rho,
                    "multi_precision": find_master,
3245 3246 3247
                },
                stop_gradient=True,
            )
3248

3249
            return adadelta_op
3250 3251


Q
qingqing01 已提交
3252
class RMSPropOptimizer(Optimizer):
3253
    r"""
Q
qingqing01 已提交
3254 3255 3256 3257 3258 3259 3260 3261
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

Q
qiaolongfei 已提交
3262
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
3263 3264 3265 3266

        w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w)

    The first equation calculates moving average of the squared gradient for
Q
qiaolongfei 已提交
3267
    each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`.
Q
qingqing01 已提交
3268 3269 3270 3271 3272 3273

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

Q
qiaolongfei 已提交
3274
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
3275

3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289
        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) +
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

    if centered is True:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2

        g(w, t) & = \\rho g(w, t-1) + (1 - \\rho)\\nabla Q_{i}(w)

        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) - (g(w, t))^2 +
Q
qingqing01 已提交
3290 3291 3292 3293
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

Q
qiaolongfei 已提交
3294
    where, :math:`\\rho` is a hyperparameter and typical values are 0.9, 0.95
Q
qingqing01 已提交
3295 3296 3297 3298 3299
    and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


3300 3301 3302
    Parameters:
        learning_rate(float): Global learning rate.
        rho(float): rho is :math: `\\rho` in equation, default is 0.95.
Q
qingqing01 已提交
3303
        epsilon(float): :math: `\\epsilon` in equation is smoothing term to
3304
            avoid division by zero, default is 1e-6.
Q
qiaolongfei 已提交
3305
        momentum(float): :math:`\\beta` in equation is the momentum term,
3306
            default is 0.0.
3307 3308 3309 3310
        centered(bool): If True, gradients are normalized by the estimated variance of
            the gradient; if False, by the uncentered second moment. Setting this to
            True may help with training, but is slightly more expensive in terms of
            computation and memory. Defaults to False.
H
hong 已提交
3311
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3312
            This parameter is required in dygraph mode. \
3313
            The default value is None in static graph mode, at this time all parameters will be updated.
3314 3315 3316 3317 3318
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3319 3320 3321
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
3322
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
3323 3324
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qingqing01 已提交
3325 3326 3327 3328 3329 3330 3331

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

3332 3333 3334 3335
            import paddle
            import paddle.fluid as fluid
            import numpy as np

3336
            paddle.enable_static()
3337 3338 3339
            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
G
GGBond8488 已提交
3340 3341
                x = paddle.static.data(name='x', shape=[-1, 13], dtype='float32')
                y = paddle.static.data(name='y', shape=[-1, 1], dtype='float32')
C
Charles-hit 已提交
3342
                y_predict = paddle.static.nn.fc(x, size=1, activation=None)
3343
                cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
2
201716010711 已提交
3344
                avg_cost = paddle.mean(cost)
3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357

                rms_optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
                rms_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
qingqing01 已提交
3358 3359 3360 3361
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"
3362
    _mean_grad_acc_str = "mean_grad"
Q
qingqing01 已提交
3363

3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
    def __init__(
        self,
        learning_rate,
        rho=0.95,
        epsilon=1.0e-6,
        momentum=0.0,
        centered=False,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
3376
        super().__init__(
3377 3378 3379 3380 3381 3382
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
Q
qingqing01 已提交
3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum
3396
        self._centered = centered
3397 3398 3399
        self._multi_precision = False
        self._master_weights = {}

Q
qingqing01 已提交
3400 3401 3402 3403 3404
    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
3405
            if self._multi_precision and self._is_dtype_fp16_or_bf16(p.dtype):
3406 3407 3408 3409 3410 3411
                master_p = self._create_master_weight(p)
                self._add_accumulator(self._momentum_acc_str, master_p)
                self._add_accumulator(self._mean_square_acc_str, master_p)
                self._add_accumulator(self._mean_grad_acc_str, master_p)
                continue
            if (
3412
                self._is_dtype_fp16_or_bf16(p.dtype)
3413 3414 3415
                and not self._multi_precision
            ):
                warnings.warn(
3416
                    "Accumulating with FP16/BF16 in optimizer can lead to poor accuracy or slow convergence."
3417 3418
                    "Consider using multi_precision=True option of the Lars optimizer."
                )
Q
qingqing01 已提交
3419 3420
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)
3421
            self._add_accumulator(self._mean_grad_acc_str, p)
Q
qingqing01 已提交
3422 3423 3424 3425 3426

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

3427
        momentum_acc = self._get_accumulator_master(
3428 3429
            self._momentum_acc_str, param_and_grad[0]
        )
3430
        mean_square_acc = self._get_accumulator_master(
3431 3432
            self._mean_square_acc_str, param_and_grad[0]
        )
3433
        mean_grad_acc = self._get_accumulator_master(
3434 3435
            self._mean_grad_acc_str, param_and_grad[0]
        )
3436 3437
        find_master = self._multi_precision and self._is_dtype_fp16_or_bf16(
            param_and_grad[0].dtype
3438 3439 3440 3441 3442 3443
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )
C
caozhou 已提交
3444
        if in_dygraph_mode():
3445 3446 3447 3448 3449 3450 3451
            _C_ops.rmsprop_(
                param_and_grad[0],
                mean_square_acc,
                param_and_grad[1],
                momentum_acc,
                self._create_param_lr(param_and_grad),
                mean_grad_acc,
3452
                master_weight,
3453 3454 3455 3456
                self._epsilon,
                self._rho,
                self._momentum,
                self._centered,
3457
                find_master,
3458
            )
C
caozhou 已提交
3459
            return None
3460
        else:
3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
            inputs = {
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": momentum_acc,
                "MeanSquare": mean_square_acc,
                "MeanGrad": mean_grad_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            }

            outputs = {
                "ParamOut": param_and_grad[0],
                "MomentOut": momentum_acc,
                "MeanSquareOut": mean_square_acc,
                "MeanGradOut": mean_grad_acc,
            }

            if find_master:
                inputs["MasterParam"] = master_weight
                outputs["MasterParamOut"] = master_weight

3481 3482
            rmsprop_op = block.append_op(
                type=self.type,
3483 3484
                inputs=inputs,
                outputs=outputs,
3485 3486 3487 3488
                attrs={
                    "epsilon": self._epsilon,
                    "decay": self._rho,
                    "momentum": self._momentum,
3489
                    "centered": self._centered,
3490
                    "multi_precision": find_master,
3491
                },
3492 3493
                stop_gradient=True,
            )
Q
qingqing01 已提交
3494

3495
            return rmsprop_op
Q
qingqing01 已提交
3496 3497


Q
qiaolongfei 已提交
3498
class FtrlOptimizer(Optimizer):
3499
    r"""
Q
qiaolongfei 已提交
3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537
    FTRL (Follow The Regularized Leader) Optimizer.

    The paper that proposed Follow The Regularized Leader (FTRL):
    (https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf)

    ..  math::

        &new\_accum = squared\_accum + grad^2

        &if (lr\_power == -0.5):

        &\quad  linear\_accum += grad - \\frac{\\sqrt{new\_accum} - \\sqrt{squared\_accum}}{learning\_rate * param}

        &else:

        &\quad   linear\_accum += grad - \\frac{new\_accum^{-lr\_power} - accum^{-lr\_power}}{learning\_rate * param}


        &x = l1 * sign(linear\_accum) - linear\_accum

        &if (lr\_power == -0.5):

        &\quad   y = \\frac{\\sqrt{new\_accum}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &else:

        &\quad   y = \\frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &squared\_accum += grad^2

3538 3539 3540 3541 3542
    Parameters:
        learning_rate (float|Variable): Global learning rate.
        l1 (float): L1 regularization strength, default is 0.0.
        l2 (float): L2 regularization strength, default is 0.0.
        lr_power (float): Learning Rate Power, default is -0.5.
H
hong 已提交
3543
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3544
            This parameter is required in dygraph mode. \
3545
            The default value is None in static graph mode, at this time all parameters will be updated.
3546 3547 3548 3549 3550
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3551 3552 3553
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
3554
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
3555 3556
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
3557 3558 3559 3560 3561 3562 3563

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

3564 3565 3566 3567
            import paddle
            import paddle.fluid as fluid
            import numpy as np

3568 3569
            paddle.enable_static()

3570 3571 3572
            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
G
GGBond8488 已提交
3573 3574
                x = paddle.static.data(name='x', shape=[-1, 13], dtype='float32')
                y = paddle.static.data(name='y', shape=[-1, 1], dtype='float32')
C
Charles-hit 已提交
3575
                y_predict = paddle.static.nn.fc(x, size=1, activation=None)
3576
                cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
2
201716010711 已提交
3577
                avg_cost = paddle.mean(cost)
3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589

                ftrl_optimizer = fluid.optimizer.Ftrl(learning_rate=0.1)
                ftrl_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
C
chengduo 已提交
3590

3591
    NOTE:
C
chengduo 已提交
3592
       Currently, FtrlOptimizer doesn't support sparse parameter optimization.
Q
qiaolongfei 已提交
3593 3594 3595 3596 3597
    """

    _squared_acc_str = "squared"
    _linear_acc_str = "linear"

3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608
    def __init__(
        self,
        learning_rate,
        l1=0.0,
        l2=0.0,
        lr_power=-0.5,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
3609
        super().__init__(
3610 3611 3612 3613 3614 3615
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
Q
qiaolongfei 已提交
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")

        self.type = "ftrl"
        self._l1 = l1
        self._l2 = l2
        self._lr_power = lr_power

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._squared_acc_str, p)
            self._add_accumulator(self._linear_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

3636 3637 3638 3639 3640 3641
        squared_acc = self._get_accumulator(
            self._squared_acc_str, param_and_grad[0]
        )
        linear_acc = self._get_accumulator(
            self._linear_acc_str, param_and_grad[0]
        )
姜永久 已提交
3642
        if in_dygraph_mode():
3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658
            _legacy_C_ops.ftrl(
                param_and_grad[0],
                squared_acc,
                linear_acc,
                param_and_grad[1],
                self._create_param_lr(param_and_grad),
                param_and_grad[0],
                squared_acc,
                linear_acc,
                "l1",
                self._l1,
                "l2",
                self._l2,
                "lr_power",
                self._lr_power,
            )
3659 3660

        else:
3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681
            ftrl_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "SquaredAccumulator": squared_acc,
                    "LinearAccumulator": linear_acc,
                    "LearningRate": self._create_param_lr(param_and_grad),
                },
                outputs={
                    "ParamOut": param_and_grad[0],
                    "SquaredAccumOut": squared_acc,
                    "LinearAccumOut": linear_acc,
                },
                attrs={
                    "l1": self._l1,
                    "l2": self._l2,
                    "lr_power": self._lr_power,
                },
                stop_gradient=True,
            )
Q
qiaolongfei 已提交
3682

3683
            return ftrl_op
Q
qiaolongfei 已提交
3684 3685


Y
Yibing Liu 已提交
3686
class LambOptimizer(AdamOptimizer):
3687
    r"""
Y
Yibing Liu 已提交
3688 3689
    LAMB (Layer-wise Adaptive Moments optimizer for Batching training) Optimizer.

3690 3691 3692
    LAMB Optimizer is designed to scale up the batch size of training without losing
    accuracy, which supports adaptive element-wise updating and accurate layer-wise
    correction. For more information, please refer to `Large Batch Optimization for
Y
Yibing Liu 已提交
3693
    Deep Learning: Training BERT in 76 minutes <https://arxiv.org/abs/1904.00962>`_ .
Y
Yibing Liu 已提交
3694 3695 3696 3697 3698

    The updating of parameters follows:

    ..  math::

3699
        m_t &= \\beta_1 m_{t - 1}+ (1 - \\beta_1)g_t
Y
Yibing Liu 已提交
3700

Y
Yibing Liu 已提交
3701
        v_t &= \\beta_2 v_{t - 1}  + (1 - \\beta_2)g_t^2
Y
Yibing Liu 已提交
3702

3703 3704 3705 3706
        m_t &= \\frac{m_t}{\\beta_1^t}

        v_t &= \\frac{v_t}{\\beta_2^t}

Y
Yibing Liu 已提交
3707
        r_t &= \\frac{m_t}{\\sqrt{v_t}+\\epsilon}
Y
Yibing Liu 已提交
3708

Y
Yibing Liu 已提交
3709
        w_t &= w_{t-1} -\\eta_t \\frac{\\left \| w_{t-1}\\right \|}{\\left \| r_t + \\lambda w_{t-1}\\right \|} (r_t + \\lambda w_{t-1})
Y
Yibing Liu 已提交
3710 3711


3712
    where :math:`m` is the 1st moment, and :math:`v` the 2nd moment, :math:`\\eta` the
Y
Yibing Liu 已提交
3713 3714 3715
    learning rate, :math:`\\lambda` the LAMB weight decay rate.

    Args:
Y
Yibing Liu 已提交
3716 3717 3718 3719 3720 3721 3722 3723
        learning_rate (float|Variable, optional): the learning rate used to update parameters. \
            Can be a float value or a Variable with data type float32. Default 0.001.
        lamb_weight_decay (float, optional): The LAMB weight decay rate. Default 0.01.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            Default 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            Default 0.999.
        epsilon (float, optional): A small float value for numerical stability. Default 1e-6.
H
hong 已提交
3724
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3725
            This parameter is required in dygraph mode. \
3726
            The default value is None in static graph mode, at this time all parameters will be updated.
3727 3728 3729 3730 3731
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3732 3733
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
3734 3735 3736
            ( :ref:`api_paddle_fluid_clip_ClipGradByGlobalNorm` , :ref:`api_paddle_fluid_clip_ClipGradByNorm` ,
            :ref:`api_paddle_fluid_clip_ClipGradByValue` ). If you want better convergence, it is recommended
            to use :ref:`api_paddle_fluid_clip_ClipGradByGlobalNorm` . Default None, meaning there is no gradient clipping.
3737 3738
        exclude_from_weight_decay_fn (function|None): Exclude a parameter from weight
            decay when **exclude_from_weight_decay_fn(parameter)** returns true.
Y
Yibing Liu 已提交
3739
            Default None.
3740
        name(str|None): For detailed information, please refer to
Y
Yibing Liu 已提交
3741
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
Y
Yibing Liu 已提交
3742 3743 3744

    Examples:
        .. code-block:: python
3745

2
201716010711 已提交
3746
            import paddle
3747
            import paddle.fluid as fluid
2
201716010711 已提交
3748
            paddle.enable_static()
Y
Yibing Liu 已提交
3749

3750
            data = paddle.static.data(name='x', shape=[-1, 5], dtype='float32')
C
Charles-hit 已提交
3751
            hidden = paddle.static.nn.fc(x=data, size=10)
2
201716010711 已提交
3752
            cost = paddle.mean(hidden)
Y
Yibing Liu 已提交
3753

Y
Yibing Liu 已提交
3754 3755 3756 3757 3758
            def exclude_fn(param):
                return param.name.endswith('.b_0')

            optimizer = fluid.optimizer.Lamb(learning_rate=0.002,
                                             exclude_from_weight_decay_fn=exclude_fn)
Y
Yibing Liu 已提交
3759 3760 3761 3762 3763 3764 3765
            optimizer.minimize(cost)
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"

3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778
    def __init__(
        self,
        learning_rate=0.001,
        lamb_weight_decay=0.01,
        beta1=0.9,
        beta2=0.999,
        epsilon=1e-6,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        exclude_from_weight_decay_fn=None,
        name=None,
    ):
Y
Yibing Liu 已提交
3779 3780 3781 3782 3783
        assert learning_rate is not None
        assert lamb_weight_decay is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
3784
        super().__init__(
3785 3786 3787 3788 3789 3790 3791 3792 3793
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            beta1=beta1,
            beta2=beta2,
            epsilon=epsilon,
            name=name,
        )
Y
Yibing Liu 已提交
3794 3795
        self.type = "lamb"
        self._weight_decay = lamb_weight_decay
Y
Yibing Liu 已提交
3796
        self._exclude_from_weight_decay_fn = exclude_from_weight_decay_fn
Y
Yibing Liu 已提交
3797 3798 3799

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
3800
        block.program._use_lamb = True
Y
Yibing Liu 已提交
3801

3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818
        moment1 = self._get_accumulator(
            self._moment1_acc_str, param_and_grad[0]
        )
        moment2 = self._get_accumulator(
            self._moment2_acc_str, param_and_grad[0]
        )
        beta1_pow_acc = self._get_accumulator(
            self._beta1_pow_acc_str, param_and_grad[0]
        )
        beta2_pow_acc = self._get_accumulator(
            self._beta2_pow_acc_str, param_and_grad[0]
        )

        if (
            self._exclude_from_weight_decay_fn is not None
            and self._exclude_from_weight_decay_fn(param_and_grad[0])
        ):
Y
Yibing Liu 已提交
3819 3820 3821
            weight_decay = 0.0
        else:
            weight_decay = self._weight_decay
3822
        lr = self._create_param_lr(param_and_grad)
3823
        master_weight = None
姜永久 已提交
3824
        if in_dygraph_mode():
3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848
            _legacy_C_ops.lamb(
                param_and_grad[0],
                param_and_grad[1],
                lr,
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
                param_and_grad[0],
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
                'beta1',
                self._beta1,
                'beta2',
                self._beta2,
                'epsilon',
                self._epsilon,
                'weight_decay',
                weight_decay,
            )
3849
            return None
Y
Yibing Liu 已提交
3850

Y
Yibing Liu 已提交
3851
        # create the lamb optimize op
3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877
        lamb_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": lr,
                "Moment1": moment1,
                "Moment2": moment2,
                "Beta1Pow": beta1_pow_acc,
                "Beta2Pow": beta2_pow_acc,
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2,
                "Beta1PowOut": beta1_pow_acc,
                "Beta2PowOut": beta2_pow_acc,
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon,
                "weight_decay": weight_decay,
            },
            stop_gradient=True,
        )
Y
Yibing Liu 已提交
3878 3879 3880 3881

        return lamb_op


3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
3895
Dpsgd = DpsgdOptimizer
3896
DecayedAdagrad = DecayedAdagradOptimizer
3897
Adadelta = AdadeltaOptimizer
Q
qingqing01 已提交
3898
RMSProp = RMSPropOptimizer
Q
qiaolongfei 已提交
3899
Ftrl = FtrlOptimizer
3900
LarsMomentum = LarsMomentumOptimizer
Y
Yibing Liu 已提交
3901
Lamb = LambOptimizer
3902 3903 3904


class ModelAverage(Optimizer):
3905
    r"""
3906
	:api_attr: Static Graph
S
swtkiwi 已提交
3907

3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925
    The ModelAverage optimizer accumulates specific continuous historical parameters
    during training. The accumulated historical range can be controlled by the passed
    ``average_window_rate`` argument. The averaged ``Parameter`` are used in the prediction,
    which usually can improve the accuracy of the prediction.

    Accumulate the average of the ``Parameter`` in the sliding window, the result will be saved
    in a temporary variable, can be applied to the current model's ``Parameter`` by calling
    the ``apply()`` method, and the current model ``Parameter`` can be restored by calling
    the ``restore()`` method.

    The window size for calculating the average is determined by ``average_window_rate``,
    ``min_average_window``, ``max_average_window`` and the current ``Parameter`` update times (num_updates).

    When the cumulative times (num_accumulates) is greater than the specific window
    threshold (average_window), the accumulated ``Parameter`` temporary variable is set to 0.0.
    The following example will help to understand the role of these arguments:

    ::
3926

3927 3928 3929 3930 3931 3932 3933 3934 3935
        if num_accumulates >= min_average_window and num_accumulates >= min(max_average_window, num_updates * average_window_rate):
            num_accumulates = 0

    In the above conditional judgment statement, ``num_accumulates`` indicates the current
    accumulated number, which can be abstractly understood as the length of the cumulative window.
    The length of the window must be at least the length set by the ``min_average_window`` argument,
    and cannot exceed the length specified by the ``max_average_window`` argument or
    ``num_updates * average_window_rate``, where ``num_updates`` indicates the current ``Parameter``
    update times, ``average_window_rate`` is a coefficient that calculates the length of the window.
3936 3937

    Args:
3938 3939 3940
        average_window_rate (float): The calculate ratio of the window length relative to ``Parameter`` update times.
        min_average_window (int, optional): the minimum size of average window length. The default value is 10000.
        max_average_window (int, optional): The maximum size of average window length. The default value is 10000.
3941 3942 3943 3944 3945
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3946 3947 3948
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
3949

3950
    Examples:
Q
qiaolongfei 已提交
3951 3952 3953

      .. code-block:: python

2
201716010711 已提交
3954
        import paddle
3955 3956
        import paddle.fluid as fluid
        import numpy
2
201716010711 已提交
3957
        paddle.enable_static()
3958 3959 3960 3961

        # First create the Executor.
        place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
3962

3963 3964 3965 3966
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # build net
3967
            data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
C
Charles-hit 已提交
3968
            hidden = paddle.static.nn.fc(x=data, size=10)
2
201716010711 已提交
3969
            loss = paddle.mean(hidden)
3970 3971 3972 3973 3974 3975
            optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
            optimizer.minimize(loss)

            # build ModelAverage optimizer
            model_average = fluid.optimizer.ModelAverage(0.15,
                                                         min_average_window=10000,
3976
                                                         max_average_window=12500)
3977 3978

            exe.run(startup_program)
3979 3980 3981 3982 3983
            for i in range(12500):
                x = numpy.random.random(size=(10, 1)).astype('float32')
                outs = exe.run(program=train_program,
                               feed={'X': x},
                               fetch_list=[loss.name])
3984 3985

            # apply ModelAverage
3986
            with model_average.apply(exe):
3987 3988 3989 3990
                x = numpy.random.random(size=(10, 1)).astype('float32')
                exe.run(program=train_program,
                        feed={'X': x},
                        fetch_list=[loss.name])
3991 3992
    """

3993 3994 3995 3996 3997 3998 3999 4000
    def __init__(
        self,
        average_window_rate,
        min_average_window=10000,
        max_average_window=10000,
        regularization=None,
        name=None,
    ):
姜永久 已提交
4001
        if in_dygraph_mode():
Z
zhongpu 已提交
4002
            raise Exception("In dygraph, don't support ModelAverage.")
4003
        super().__init__(0.0, regularization=regularization, name=name)
4004 4005 4006
        self.average_window = average_window_rate
        self.min_average_window = min_average_window
        self.max_average_window = max_average_window
4007

4008
        self.params_grads = []
4009 4010 4011
        for param in (
            framework.default_main_program().global_block().all_parameters()
        ):
4012
            if param.do_model_average != False:
4013
                grad = param.block.create_var(
4014 4015 4016
                    name=unique_name.generate_with_ignorable_key(
                        ".".join([param.name, 'tmp'])
                    ),
4017 4018
                    dtype=param.dtype,
                    persistable=False,
4019 4020
                    stop_gradient=True,
                )
4021
                self.params_grads.append((param, grad))
4022

4023
        for param, grad in self.params_grads:
4024 4025
            if grad is None:
                continue
X
Xin Pan 已提交
4026
            with param.block.program._optimized_guard(
4027 4028
                [param, grad]
            ), name_scope('move_average'):
4029
                self._append_average_accumulate_op(param)
4030

4031 4032 4033 4034
        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            for param_grad in self.params_grads:
4035
                self._add_average_apply_op(block, param_grad)
4036 4037 4038 4039 4040

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param_grad in self.params_grads:
4041
                self._add_average_restore_op(block, param_grad)
4042

4043
    def _add_average_apply_op(self, block, param_grad):
L
Luo Tao 已提交
4044 4045 4046 4047 4048 4049
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
        sum_1 = block._clone_variable(self._get_accumulator('sum_1', param))
        sum_2 = block._clone_variable(self._get_accumulator('sum_2', param))
        sum_3 = block._clone_variable(self._get_accumulator('sum_3', param))
        num_accumulates = block._clone_variable(
4050 4051
            self._get_accumulator('num_accumulates', param)
        )
L
Luo Tao 已提交
4052
        old_num_accumulates = block._clone_variable(
4053 4054
            self._get_accumulator('old_num_accumulates', param)
        )
L
Luo Tao 已提交
4055
        num_updates = block._clone_variable(
4056 4057
            self._get_accumulator('num_updates', param)
        )
4058
        # backup param value to grad
4059
        paddle.assign(param, output=grad)
4060
        # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
4061 4062
        tmp = paddle.add_n([num_accumulates, old_num_accumulates])
        sum = paddle.add_n([sum_1, sum_2, sum_3])
4063
        tmp = paddle.cast(
4064
            x=tmp, dtype='float32' if self._dtype is None else self._dtype
4065
        )
4066
        sum = paddle.cast(
4067
            x=sum, dtype='float32' if self._dtype is None else self._dtype
4068
        )
4069
        paddle.assign(paddle.divide(sum, tmp), output=param)
4070 4071

    def _add_average_restore_op(self, block, param_grad):
L
Luo Tao 已提交
4072 4073
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
4074
        paddle.assign(grad, output=param)
4075 4076 4077 4078 4079 4080

    def _append_average_accumulate_op(self, param):
        self.helper = LayerHelper("average_accumulate")
        sum_1 = self._add_accumulator('sum_1', param)
        sum_2 = self._add_accumulator('sum_2', param)
        sum_3 = self._add_accumulator('sum_3', param)
4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116
        num_accumulates = self._add_accumulator(
            'num_accumulates', param, dtype='int64', shape=[1]
        )
        old_num_accumulates = self._add_accumulator(
            'old_num_accumulates', param, dtype='int64', shape=[1]
        )
        num_updates = self._add_accumulator(
            'num_updates', param, dtype='int64', shape=[1]
        )

        self.helper.append_op(
            type='average_accumulates',
            inputs={
                "param": param,
                "in_sum_1": sum_1,
                "in_sum_2": sum_2,
                "in_sum_3": sum_3,
                "in_num_accumulates": num_accumulates,
                "in_old_num_accumulates": old_num_accumulates,
                "in_num_updates": num_updates,
            },
            outputs={
                "out_sum_1": sum_1,
                "out_sum_2": sum_2,
                "out_sum_3": sum_3,
                "out_num_accumulates": num_accumulates,
                "out_old_num_accumulates": old_num_accumulates,
                "out_num_updates": num_updates,
            },
            attrs={
                "average_window": self.average_window,
                "min_average_window": self.min_average_window,
                "max_average_window": self.max_average_window,
            },
            stop_gradient=True,
        )
4117

S
rename  
sneaxiy 已提交
4118
    @signature_safe_contextmanager
4119
    def apply(self, executor, need_restore=True):
4120 4121
        """
        Apply the average of the cumulative ``Parameter`` to the parameters of the current model.
4122 4123

        Args:
4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134
            executor(fluid.Executor): The current network executor.
            need_restore(bool): Restore flag variable, if set to True, the network will restore
                the parameters of the network to the default value, if set to False,
                it will not be restored. The default value is True.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy
2
201716010711 已提交
4135 4136
            import paddle
            paddle.enable_static()
4137 4138 4139 4140 4141 4142 4143 4144 4145

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
4146
                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
C
Charles-hit 已提交
4147
                hidden = paddle.static.nn.fc(x=data, size=10)
2
201716010711 已提交
4148
                loss = paddle.mean(hidden)
4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])
4170
        """
4171 4172 4173 4174 4175 4176
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)
4177 4178

    def restore(self, executor):
4179 4180
        """
        Restore ``Parameter`` values of current model.
4181

4182
        Args:
4183 4184 4185 4186 4187 4188 4189 4190
            executor(fluid.Executor): The current network executor.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy
2
201716010711 已提交
4191 4192
            import paddle
            paddle.enable_static()
4193 4194 4195 4196 4197 4198 4199 4200 4201

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
4202
                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
C
Charles-hit 已提交
4203
                hidden = paddle.static.nn.fc(x=data, size=10)
2
201716010711 已提交
4204
                loss = paddle.mean(hidden)
4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe, False):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])

                # restore Parameters
                model_average.restore(exe)
4229
        """
4230
        executor.run(self.restore_program)
4231 4232


4233
class ExponentialMovingAverage:
4234
    r"""
S
swtkiwi 已提交
4235

4236 4237 4238 4239 4240 4241
    Compute the moving average of parameters with exponential decay.
    Given a parameter :math:`\\theta`, its exponential moving average (EMA)
    will be

    ..  math::

4242
        \text{EMA}_0 & = 0
4243

4244
        \text{EMA}_t & = \text{decay} * \text{EMA}_{t-1} + (1 - \text{decay}) * \theta_t
4245

4246 4247 4248
    The average results calculated by **update()** method will be saved in
    temporary variables which are created and maintained by the object, and can
    be applied to parameters of current model by calling **apply()** method. And
Y
Yibing Liu 已提交
4249
    the **restore()** method is used to restore the parameters.
4250

4251 4252
    **Bias correction**. All EMAs are initialized to :math:`0` and hence they will be
    zero biased, which can be corrected by divided by a factor
4253
    :math:`(1 - \text{decay}^t)` , i.e., the actual EMAs applied to parameters
4254
    when calling **apply()** method would be
4255 4256

    ..  math::
4257

4258
        \widehat{\text{EMA}}_t = \frac{\text{EMA}_t}{1 - \text{decay}^t}
4259

4260 4261
    **Decay rate scheduling**. A large decay rate very close to 1 would result
    in that the averages move very slowly. And a better strategy is to set a
4262
    relative smaller decay rate in the very beginning. The argument **thres_steps**
4263
    allows users to pass a Variable to schedule the decay rate, in this case,
4264
    the actual decay rate becomes
4265

4266
    ..  math::
4267

4268
        \min(\text{decay}, \frac{1 + \text{thres_steps}}{10 + \text{thres_steps}})
4269 4270

    Usually **thres_steps** can be the global training steps.
4271 4272 4273


    Args:
4274 4275 4276
        decay (float, optional): The exponential decay rate, usually close to 1, such as 0.999, 0.9999, ... . Default 0.999.
        thres_steps (Variable|None, optional): If not `None`, schedule the decay rate. Default None.
        name (str|None, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
4277 4278 4279 4280


    Examples:

4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308
        .. code-block:: python

            import numpy
            import paddle
            import paddle.static as static
            from paddle.static import ExponentialMovingAverage

            paddle.enable_static()

            data = static.data(name='x', shape=[-1, 5], dtype='float32')
            hidden = static.nn.fc(x=data, size=10)
            cost = paddle.mean(hidden)

            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Adam(learning_rate=0.001)
            optimizer.minimize(cost)

            ema = ExponentialMovingAverage(0.999)
            ema.update()

            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())

            for pass_id in range(3):
                for batch_id in range(6):
                    data = numpy.random.random(size=(10, 5)).astype('float32')
                    exe.run(program=static.default_main_program(),
4309
                    feed={'x': data},
4310 4311 4312 4313 4314 4315
                    fetch_list=[cost.name])

                # usage 1
                with ema.apply(exe):
                    data = numpy.random.random(size=(10, 5)).astype('float32')
                    exe.run(program=test_program,
4316
                        feed={'x': data},
4317 4318 4319 4320 4321 4322
                        fetch_list=[hidden.name])

                # usage 2
                with ema.apply(exe, need_restore=False):
                    data = numpy.random.random(size=(10, 5)).astype('float32')
                    exe.run(program=test_program,
4323
                        feed={'x': data},
4324 4325 4326
                        fetch_list=[hidden.name])
                ema.restore(exe)

4327 4328
    """

4329
    def __init__(self, decay=0.999, thres_steps=None, name=None):
姜永久 已提交
4330
        if in_dygraph_mode():
Z
zhongpu 已提交
4331
            raise Exception(
4332 4333
                "In dygraph, don't support ExponentialMovingAverage."
            )
4334
        self._decay = decay
4335
        self._thres_steps = thres_steps
4336
        self._name = name if name is not None else ''
4337 4338
        self._decay_var = self._get_ema_decay()

4339
        self._step_counter_name = "@EMA_STEP_COUNTER@"
Y
Yibing Liu 已提交
4340
        self._params_tmps = []
4341
        for param in default_main_program().global_block().all_parameters():
4342
            if param.do_model_average != False:
4343 4344 4345 4346 4347 4348 4349 4350
                tmp = param.block.create_var(
                    name=unique_name.generate(
                        ".".join([self._name + param.name, 'ema_tmp'])
                    ),
                    dtype=param.dtype,
                    persistable=False,
                    stop_gradient=True,
                )
Y
Yibing Liu 已提交
4351
                self._params_tmps.append((param, tmp))
4352

Y
Yibing Liu 已提交
4353 4354
        self._ema_vars = {}
        for param, tmp in self._params_tmps:
4355 4356 4357
            with param.block.program._optimized_guard([param, tmp]), name_scope(
                'moving_average'
            ):
Y
Yibing Liu 已提交
4358
                self._ema_vars[param.name] = self._create_ema_vars(param)
4359 4360 4361 4362

        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
4363
            decay_pow, global_step = self._get_decay_pow(block)
Y
Yibing Liu 已提交
4364
            for param, tmp in self._params_tmps:
4365 4366
                param = block._clone_variable(param)
                tmp = block._clone_variable(tmp)
Y
Yibing Liu 已提交
4367
                ema = block._clone_variable(self._ema_vars[param.name])
4368
                paddle.assign(param, output=tmp)
4369
                # bias correction
4370 4371
                with layers.control_flow.Switch() as switch:
                    with switch.case(global_step > 0):
4372
                        paddle.assign(ema / (1.0 - decay_pow), output=param)
4373
                    with switch.default():
4374
                        paddle.assign(ema, output=param)
4375 4376 4377 4378

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
Y
Yibing Liu 已提交
4379
            for param, tmp in self._params_tmps:
4380 4381
                tmp = block._clone_variable(tmp)
                param = block._clone_variable(param)
4382
                paddle.assign(tmp, output=param)
4383

4384 4385
    def _get_ema_decay(self):
        with default_main_program()._lr_schedule_guard():
4386
            decay_var = paddle.static.create_global_var(
4387 4388 4389 4390
                shape=[1],
                value=self._decay,
                dtype='float32',
                persistable=True,
4391 4392
                name="scheduled_ema_decay_rate",
            )
4393 4394 4395 4396 4397

            if self._thres_steps is not None:
                decay_t = (self._thres_steps + 1.0) / (self._thres_steps + 10.0)
                with layers.control_flow.Switch() as switch:
                    with switch.case(decay_t < self._decay):
4398
                        paddle.assign(decay_t, decay_var)
4399
                    with switch.default():
4400
                        paddle.assign(
4401 4402
                            np.array([self._decay], dtype=np.float32), decay_var
                        )
4403 4404 4405
        return decay_var

    def _get_decay_pow(self, block):
4406
        global_step = paddle.static.create_global_var(
4407 4408 4409 4410 4411 4412
            name=self._step_counter_name,
            shape=[1],
            value=0,
            dtype='int64',
            persistable=True,
        )
4413
        global_step = paddle.cast(global_step, "float32")
4414
        decay_var = block._clone_variable(self._decay_var)
4415
        decay_pow_acc = paddle.pow(decay_var, global_step)
4416
        return decay_pow_acc, global_step
4417

Y
Yibing Liu 已提交
4418
    def _create_ema_vars(self, param):
4419
        param_ema = paddle.static.create_global_var(
4420 4421 4422 4423
            name=unique_name.generate(self._name + param.name + '_ema'),
            shape=param.shape,
            value=0.0,
            dtype=param.dtype,
4424 4425
            persistable=True,
        )
4426 4427 4428

        return param_ema

Y
Yibing Liu 已提交
4429
    def update(self):
4430 4431
        """
        Update Exponential Moving Average. Should only call this method in
Y
Yibing Liu 已提交
4432 4433
        train program.
        """
4434
        global_step = layers.autoincreased_step_counter(
4435 4436
            counter_name=self._step_counter_name
        )
4437
        param_master_emas = []
Y
Yibing Liu 已提交
4438
        for param, tmp in self._params_tmps:
4439 4440 4441
            with param.block.program._optimized_guard([param, tmp]), name_scope(
                'moving_average'
            ):
Y
Yibing Liu 已提交
4442
                param_ema = self._ema_vars[param.name]
4443
                if param.name + '.master' in self._ema_vars:
4444 4445 4446 4447
                    master_ema = self._ema_vars[param.name + '.master']
                    param_master_emas.append([param_ema, master_ema])
                else:
                    ema_t = param_ema * self._decay_var + param * (
4448 4449
                        1 - self._decay_var
                    )
4450
                    paddle.assign(ema_t, output=param_ema)
4451 4452 4453 4454 4455 4456 4457 4458 4459

        # for fp16 params
        for param_ema, master_ema in param_master_emas:
            default_main_program().global_block().append_op(
                type="cast",
                inputs={"X": master_ema},
                outputs={"Out": param_ema},
                attrs={
                    "in_dtype": master_ema.dtype,
4460 4461 4462
                    "out_dtype": param_ema.dtype,
                },
            )
Y
Yibing Liu 已提交
4463

4464 4465 4466 4467
    @signature_safe_contextmanager
    def apply(self, executor, need_restore=True):
        """
        Apply moving average to parameters for evaluation.
4468

4469 4470
        Args:
            executor (Executor): The Executor to execute applying.
4471
            need_restore (bool, optional): Whether to restore parameters after
Y
Yibing Liu 已提交
4472
                applying. Default True.
4473 4474 4475 4476 4477 4478 4479 4480 4481 4482
        """
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)

    def restore(self, executor):
        """Restore parameters.
4483

4484 4485 4486 4487
        Args:
            executor (Executor): The Executor to execute restoring.
        """
        executor.run(self.restore_program)
H
hutuxian 已提交
4488 4489


4490
class PipelineOptimizer:
4491
    """
4492
        :api_attr: Static Graph
S
swtkiwi 已提交
4493

4494 4495 4496 4497
    Pipeline Optimizer: Make a program to run as pipeline, that is splitting a
    program into multiple sections (sub-programs) and each section run on a
    device to enable the training of large scale models and the use of
    heterogeneous devices. Meanwhile, all sections run in the stype of pipeline.
H
hutuxian 已提交
4498

4499
    Args:
4500 4501 4502
        optimizer (Optimizer): The optimizer to use, such as SGD.
        num_microbatches (int): Number of microbatches. [Optional. Default:1].
        start_cpu_core_id (int): The first cpu core id to use. [Optional. Default:0].
4503

4504 4505
    Examples:
        .. code-block:: python
H
hutuxian 已提交
4506

C
Charles-hit 已提交
4507
            import paddle
4508
            import paddle.fluid as fluid
H
hutuxian 已提交
4509
            import paddle.fluid.layers as layers
G
GGBond8488 已提交
4510
            import numpy as np
H
hutuxian 已提交
4511

C
Charles-hit 已提交
4512
            paddle.enable_static()
4513
            with fluid.device_guard("gpu:0"):
G
GGBond8488 已提交
4514 4515
                x = paddle.static.data(name='x', shape=[-1, 1], dtype='int64', lod_level=0)
                y = paddle.static.data(name='y', shape=[-1, 1], dtype='int64', lod_level=0)
4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526
                data_loader = fluid.io.DataLoader.from_generator(
                    feed_list=[x, y],
                    capacity=64,
                    use_double_buffer=True,
                    iterable=False)

                emb_x = layers.embedding(input=x, param_attr=fluid.ParamAttr(name="embx"), size=[10,2], is_sparse=False)
                emb_y = layers.embedding(input=y, param_attr=fluid.ParamAttr(name="emby",learning_rate=0.9), size=[10,2], is_sparse=False)

            with fluid.device_guard("gpu:1"):
                concat = layers.concat([emb_x, emb_y], axis=1)
C
Charles-hit 已提交
4527 4528
                fc = paddle.static.nn.fc(x=concat, name="fc", size=1, num_flatten_dims=1, bias_attr=False)
                loss = paddle.mean(fc)
H
hutuxian 已提交
4529
            optimizer = fluid.optimizer.SGD(learning_rate=0.5)
4530
            optimizer = fluid.optimizer.PipelineOptimizer(optimizer)
H
hutuxian 已提交
4531
            optimizer.minimize(loss)
4532 4533 4534 4535 4536 4537 4538 4539 4540

            def train_reader():
                for _ in range(4):
                    x = np.random.random(size=[1]).astype('int64')
                    y = np.random.random(size=[1]).astype('int64')
                    yield x, y
            data_loader.set_sample_generator(train_reader, batch_size=1)

            place = fluid.CUDAPlace(0)
H
hutuxian 已提交
4541 4542
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
4543 4544
            batch_size = 1
            data_loader.start()
H
hutuxian 已提交
4545
            exe.train_from_dataset(
4546
                    fluid.default_main_program())
4547
            data_loader.reset()
4548 4549
    """

4550
    def __init__(self, optimizer, num_microbatches=1, start_cpu_core_id=0):
4551 4552 4553 4554 4555
        self._device = 'cpu'
        if core.is_compiled_with_npu():
            self._device = "npu"
        elif core.is_compiled_with_cuda():
            self._device = "gpu"
姜永久 已提交
4556
        if in_dygraph_mode():
Z
zhongpu 已提交
4557
            raise Exception("In dygraph, don't support PipelineOptimizer.")
4558 4559 4560
        valid_optimizers = (
            Optimizer,
            paddle.optimizer.Optimizer,
4561
            paddle.static.amp.decorator.OptimizerWithMixedPrecision,
4562
        )
4563
        if not isinstance(optimizer, valid_optimizers):
4564 4565 4566 4567 4568 4569 4570
            raise ValueError(
                "The 'optimizer' parameter for "
                "PipelineOptimizer must be an instance of "
                "{}, but the given type is {}.".format(
                    valid_optimizers, type(optimizer)
                )
            )
H
hutuxian 已提交
4571
        self._optimizer = optimizer
4572 4573 4574 4575 4576 4577

        # Get the original optimizer defined by users, such as SGD
        self._origin_optimizer = self._optimizer
        while hasattr(self._origin_optimizer, "inner_opt"):
            self._origin_optimizer = self._origin_optimizer.inner_opt

4578 4579 4580
        assert (
            num_microbatches >= 1
        ), "num_microbatches must be a positive value."
4581
        self._num_microbatches = num_microbatches
4582 4583 4584
        assert (
            start_cpu_core_id >= 0
        ), "start_cpu_core_id must be a non-negative integer."
H
hutuxian 已提交
4585
        self._start_cpu_core_id = start_cpu_core_id
4586 4587 4588 4589 4590 4591
        self._place_list = None
        op_maker = core.op_proto_and_checker_maker
        self._op_role = op_maker.OpRole
        self._op_role_key = op_maker.kOpRoleAttrName()
        self._op_role_var_key = op_maker.kOpRoleVarAttrName()
        self._op_device_key = op_maker.kOpDeviceAttrName()
4592
        self._param_device_map = None
4593 4594
        self._pipeline_pair = []
        self._pp_ring_map = dict()
4595 4596
        self.output_var_to_op = None
        self.input_var_to_op = None
4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611

    # insert allreduce op to sync global information for global
    # gradient clip and amp
    def _insert_allreduce_op(self, op_idx, block):
        """
        Insert allreduce op to sync global information for global
        gradient clip and amp.
        """
        op = block.ops[op_idx]
        out_name = op.desc.output_arg_names()[0]
        out_var = block.var(out_name)
        offset = 0
        if op.type == "reduce_any":
            # cast the bool var to int32 to use allreduce_max op
            temp_var_name = unique_name.generate(out_name + "_cast_int32")
4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625
            temp_var = block.create_var(
                name=temp_var_name, shape=[1], dtype="int32"
            )
            block._insert_op(
                op_idx + 1 + offset,
                type='cast',
                inputs={'X': out_var},
                outputs={'Out': temp_var},
                attrs={
                    'in_dtype': out_var.dtype,
                    'out_dtype': temp_var.dtype,
                    self._op_role_key: self._op_role.Optimize,
                },
            )
4626 4627 4628 4629
            offset += 1
        block._insert_op(
            op_idx + 1 + offset,
            type='c_allreduce_max'
4630 4631
            if op.type == "reduce_any"
            else 'c_allreduce_sum',
4632 4633 4634
            inputs={'X': temp_var if op.type == "reduce_any" else out_var},
            outputs={'Out': temp_var if op.type == "reduce_any" else out_var},
            attrs={
4635
                'ring_id': self.global_ring_id,
4636
                self._op_role_key: self._op_role.Optimize,
4637 4638 4639
                'use_calc_stream': True,
            },
        )
4640 4641
        offset += 1
        if op.type == "reduce_any":
4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652
            block._insert_op(
                op_idx + 1 + offset,
                type='cast',
                inputs={'X': temp_var},
                outputs={'Out': out_var},
                attrs={
                    'in_dtype': temp_var.dtype,
                    'out_dtype': out_var.dtype,
                    self._op_role_key: self._op_role.Optimize,
                },
            )
4653
            offset += 1
4654
        return offset
H
hutuxian 已提交
4655

4656
    def _create_vars(self, block, ori_block):
4657
        # Create vars for block, copied from ori_block
H
hutuxian 已提交
4658
        used_var_set = set()
4659 4660 4661 4662 4663 4664 4665 4666 4667
        added_op_num = 0
        op_idx = 0
        op_size = block.desc.op_size()
        while op_idx < op_size + added_op_num:
            # Whether to insert allreduce_sum or allreduce_max op.
            # For amp and global gradient clip strategies, we should
            # get the global information, so allreduce op is needed.
            should_insert = False
            op = block.ops[op_idx]
4668
            # For op process vars on all devices, remove its input
4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683
            # vars not in this block
            reserved_x = []
            if op.type == 'reduce_any' and self._is_optimize_op(op):
                should_insert = True
            elif op.type == 'concat' and self._is_optimize_op(op):
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
            elif op.type == 'update_loss_scaling':
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
                op.desc.set_output('Out', reserved_x)
4684 4685 4686 4687 4688 4689 4690 4691 4692 4693
            elif op.type == 'check_finite_and_unscale':
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
                op.desc.set_output('Out', reserved_x)
                if len(reserved_x) == 0:
                    block._remove_op(op_idx)
                    op_size -= 1
                    continue
4694 4695 4696 4697 4698 4699 4700 4701
            elif op.type == 'sum' and self._is_gradient_clip_op(op):
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
                should_insert = True

            vars = op.desc.input_arg_names() + op.desc.output_arg_names()
H
hutuxian 已提交
4702
            for var in vars:
4703 4704
                # a var whose name contains "blocking_queue"
                # only exists in startup program
4705
                if var in used_var_set or "_blocking_queue" in var:
H
hutuxian 已提交
4706 4707
                    continue
                used_var_set.add(var)
4708 4709
                if block._find_var_recursive(str(var)):
                    continue
4710
                source_var = ori_block._var_recursive(str(var))
4711
                if source_var.type == core.VarDesc.VarType.READER:
4712
                    dest_var = block.create_var(
4713 4714
                        name=var,
                        type=core.VarDesc.VarType.READER,
4715 4716
                        persistable=source_var.persistable,
                    )
4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727
                elif isinstance(source_var, Parameter):
                    dest_var = block.create_parameter(
                        name=source_var.name,
                        shape=source_var.shape,
                        dtype=source_var.dtype,
                        type=source_var.type,
                        lod_level=source_var.lod_level,
                        stop_gradient=source_var.stop_gradient,
                        trainable=source_var.trainable,
                        optimize_attr=source_var.optimize_attr,
                        regularizer=source_var.regularizer,
4728 4729
                        error_clip=source_var.error_clip,
                    )
4730
                else:
4731
                    dest_var = block._clone_variable(source_var, False)
4732
                self._clone_var_attr(dest_var, source_var)
4733 4734 4735
            # When use with sharding, allreduce_sum and allreduce_max
            # used for global gradient clip and amp will be added by sharding.
            op_idx += 1
4736 4737
            if self.use_sharding or not should_insert:
                continue
4738 4739 4740 4741
            inserted_ops = self._insert_allreduce_op(op_idx - 1, block)
            added_op_num += inserted_ops
            op_idx += inserted_ops
        block._sync_with_cpp()
H
hutuxian 已提交
4742

4743
    def _is_loss_grad_op(self, op):
4744 4745
        assert self._op_role_key in op.attr_names
        op_role = int(op.attr(self._op_role_key))
4746
        return op_role & int(self._op_role.Backward) and op_role & int(
4747 4748
            self._op_role.Loss
        )
4749

4750
    def _is_forward_op(self, op):
4751 4752 4753
        return self._op_role_key in op.attr_names and (
            int(op.attr(self._op_role_key)) == int(self._op_role.Forward)
        )
4754

4755
    def _is_backward_op(self, op):
4756
        return self._op_role_key in op.attr_names and (
4757 4758
            int(op.attr(self._op_role_key)) & int(self._op_role.Backward)
        )
4759 4760 4761 4762

    def _is_loss_op(self, op):
        assert self._op_role_key in op.attr_names
        return int(op.attr(self._op_role_key)) == int(self._op_role.Loss)
4763 4764

    def _is_optimize_op(self, op):
4765
        return self._op_role_key in op.attr_names and (
4766 4767
            int(op.attr(self._op_role_key)) & int(self._op_role.Optimize)
        )
4768 4769

    def _is_update_op(self, op):
4770 4771 4772 4773 4774
        return (
            'Param' in op.input_names
            and 'Grad' in op.input_names
            and ("LearningRate" in op.input_names)
        )
4775

4776
    def _split_program(self, main_program, devices):
H
hutuxian 已提交
4777
        """
4778
        Split a program into sections according to devices that ops run on.
4779
        The op whose op_device attr is "gpu:all" is copied to all sections.
4780 4781 4782

        Args:
            main_program (Program): the main program
4783
            devices: all used devices
H
hutuxian 已提交
4784
        """
4785
        # Map from device to its corresponding section program info
4786
        device_program_map = defaultdict(Program)
4787

4788
        block = main_program.block(0)
4789 4790
        for op in block.ops:
            device = op.attr(self._op_device_key)
4791
            # Copy ops whose op_device set to "gpu:all" to all sections.
4792
            if device == f"{self._device}:all":
4793
                for device in devices:
4794 4795
                    program = device_program_map[device]
                    op_desc = op.desc
4796
                    ap_op = program.global_block().desc.append_op()
4797
                    ap_op.copy_from(op_desc)
4798
                    ap_op._set_attr(self._op_device_key, "")
4799 4800 4801
            else:
                program = device_program_map[device]
                op_desc = op.desc
4802
                ap_op = program.global_block().desc.append_op()
4803
                ap_op.copy_from(op_desc)
4804
                ap_op._set_attr(self._op_device_key, "")
4805

4806
        program_list = []
4807
        for key in devices:
4808
            program = device_program_map[key]
4809 4810
            program._sync_with_cpp()
            program_list.append(program)
H
hutuxian 已提交
4811

4812
        return program_list
H
hutuxian 已提交
4813

4814 4815 4816 4817 4818 4819 4820
    def _get_op_device_for_startup_program(self, var_name):
        """
        For adam optimizer, it will add accumulators and initialize them
        with fill_constant, and force the op device to cpu. Hence, we should
        get the real op_device attribute of the fill_constant as the device
        where the corresponding parameters on.
        """
4821 4822
        assert "beta1_pow_acc" in var_name or "beta2_pow_acc" in var_name, (
            'For accumulators for Adam, the name must contain beta1_pow_acc '
4823
            'or beta2_pow_acc.'
4824 4825
        )
        param_name = var_name[0 : var_name.index('_beta')]
4826 4827 4828
        device = self._param_device_map[param_name]
        return device

4829 4830
    def _split_startup_program(self, startup_program, device_id):
        block = startup_program.global_block()
4831 4832 4833
        new_startup_program = Program()
        for op in block.ops:
            device = op.attr(self._op_device_key)
4834 4835
            if device == "cpu":
                assert op.type == "fill_constant", (
4836
                    "For ops in startup program with the op_device attribute "
4837 4838
                    "of cpu, they must be of type fill_constant."
                )
4839 4840 4841
                output_var = op.output_arg_names[0]
                device = self._get_op_device_for_startup_program(output_var)

4842
            if device:
4843
                device_index = int(device.split(':')[1])
4844
            else:
4845 4846
                # LR related ops
                device = None
4847 4848
            if device and device_index != device_id:
                continue
4849
            op_desc = op.desc
4850
            ap_op = new_startup_program.global_block().desc.append_op()
4851 4852 4853
            ap_op.copy_from(op_desc)
            ap_op._set_attr(self._op_device_key, "")
        new_startup_program._sync_with_cpp()
4854
        self._create_vars(new_startup_program.global_block(), block)
4855 4856
        return new_startup_program

4857
    def _find_post_op(self, index, var_name):
H
hutuxian 已提交
4858
        """
4859
        Find the post op that has variable named var_name as input.
H
hutuxian 已提交
4860
        """
4861 4862 4863 4864 4865 4866
        # bugfix for uniform hybrid parallelism
        if '.cast_fp32' in var_name:
            var_name = var_name.replace('.cast_fp32', '')
        if '.cast_fp16' in var_name:
            var_name = var_name.replace('.cast_fp16', '')

4867
        post_ops = self.input_var_to_op[var_name]
4868
        if post_ops is None:
4869
            return None
4870 4871 4872 4873 4874 4875
        result_op = None
        for post_op, post_idx in reversed(post_ops):
            if post_idx > index:
                result_op = post_op
                break
        return result_op
4876

4877
    def _find_prev_op(self, index, var_name):
H
hutuxian 已提交
4878
        """
4879 4880
        Find the previous op of op with index that outputs
        variable named var_name.
H
hutuxian 已提交
4881
        """
4882
        prev_ops = self.output_var_to_op[var_name]
4883
        if prev_ops is None:
4884
            return None
4885 4886 4887 4888
        result_op = None
        for prev_op, prev_idx in reversed(prev_ops):
            if prev_idx < index:
                result_op = prev_op
4889
                break
4890
        return result_op
4891 4892

    def _rename_arg(self, op, old_name, new_name):
4893 4894
        op._rename_input(old_name, new_name)
        op._rename_output(old_name, new_name)
4895

4896
    def _create_var(self, block, ref_var, name, dtype=None):
4897 4898 4899 4900 4901 4902 4903 4904
        """
        Create a new var for block, which has the same type,
        shape and dtype as ref_var, then rename it with the
        name `name`.
        """
        new_var = block.create_var(
            name=name,
            shape=ref_var.shape,
4905
            dtype=ref_var.dtype if dtype is None else dtype,
4906 4907
            type=ref_var.type,
            lod_level=ref_var.lod_level,
4908 4909
            persistable=ref_var.persistable,
            is_data=ref_var.is_data,
4910 4911
            need_check_feed=ref_var.desc.need_check_feed(),
        )
4912
        self._clone_var_attr(new_var, ref_var)
4913 4914
        return new_var

4915 4916 4917 4918 4919
    def _clone_var_attr(self, dest, src):
        dest.stop_gradient = src.stop_gradient
        if hasattr(src, 'is_distributed'):
            dest.is_distributed = src.is_distributed

4920 4921 4922 4923 4924 4925
    def _strip_grad_suffix(self, name):
        """
        Strip the grad suffix from the given variable name
        """
        pos = name.find(core.grad_var_suffix())
        return name[:pos] if pos != -1 else name
H
hutuxian 已提交
4926

4927 4928 4929 4930 4931 4932
    def _append_grad_suffix(self, name):
        """
        Append grad suffix to the given variable name
        """
        return name + core.grad_var_suffix()

4933
    def _get_op_device_attr(self, op):
H
hutuxian 已提交
4934
        """
4935
        Get the op_device attribute of a op.
H
hutuxian 已提交
4936
        """
4937 4938 4939 4940 4941
        device = (
            op.attr(self._op_device_key)
            if op.has_attr(self._op_device_key)
            else None
        )
4942
        if device:
4943 4944
            assert device[0:3] == 'gpu' or device[0:3] == 'npu', (
                "Now, only gpu and npu devices are "
4945
                "supported in pipeline parallemism."
4946
            )
4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959
        return device

    def _add_op_device_attr_for_op(self, op, idx, block):
        """
        Add op_device attrribute for ops that have not that attribute set.
        We use "gpu:all" to represent the op should be put on all
        sub-programs, such as lr-related ops. Note that: "gpu:all"
        is only used by pipeline as an indicator.
        """
        lrsched_role = int(self._op_role.LRSched)
        if op.attr(self._op_role_key) == lrsched_role:
            # For LRSched ops, we should put them on all sub-programs to
            # make sure each sub-program update the lr correctly
4960
            op._set_attr(self._op_device_key, f"{self._device}:all")
4961 4962 4963 4964
        # bugfix in hybrid parallelism
        elif op.type == "sum" and self._is_backward_op(op):
            # For sum ops that compute the sum of @RENAMED@ vars
            for name in op.desc.input_arg_names():
4965 4966 4967
                assert (
                    '@RENAME@' in name
                ), "The op must be sum used to accumulate renamed vars."
4968 4969 4970 4971
            assert len(op.desc.output_arg_names()) == 1
            out_name = op.desc.output_arg_names()[0]
            post_op = self._find_post_op(idx, out_name)
            assert post_op.has_attr(
4972 4973 4974 4975
                'op_device'
            ), "{} has no op_device attr for var {}".format(
                post_op.type, out_name
            )
4976 4977 4978
            device = post_op.attr(self._op_device_key)
            assert device, "The post op must have op_device set."
            op._set_attr(self._op_device_key, device)
4979 4980 4981
        elif (op.type == "cast" or op.type == "scale") and self._is_backward_op(
            op
        ):
4982
            prev_op = self._find_prev_op(idx, op.desc.input("X")[0])
4983 4984
            op._set_attr(self._op_device_key, prev_op.attr(self._op_device_key))
        elif op.type == "memcpy" and not self._is_optimize_op(op):
4985
            # for checkpoint offloading
4986 4987 4988
            assert (
                len(op.input_arg_names) == 1 and len(op.output_arg_names) == 1
            )
4989 4990 4991
            input_name = op.input_arg_names[0]
            output_name = op.output_arg_names[0]
            if '@Fetch' in output_name:
4992
                post_op = self._find_post_op(idx, output_name)
4993 4994 4995
                op._set_attr(
                    self._op_device_key, post_op.attr(self._op_device_key)
                )
4996
            else:
4997
                prev_op = self._find_prev_op(idx, op.desc.input("X")[0])
4998 4999 5000
                op._set_attr(
                    self._op_device_key, prev_op.attr(self._op_device_key)
                )
5001 5002 5003
        elif self._is_loss_op(op):
            # For loss * loss_scaling op added by AMP
            offset = 1
5004 5005 5006
            while not block.ops[idx + offset].has_attr(
                self._op_device_key
            ) or not block.ops[idx + offset].attr(self._op_device_key):
5007 5008 5009 5010 5011 5012 5013 5014 5015
                offset += 1
            device = block.ops[idx + offset].attr(self._op_device_key)
            assert device, "Please put you program within device_guard scope."
            for i in range(offset):
                block.ops[idx + i]._set_attr(self._op_device_key, device)
        elif self._is_optimize_op(op) and op.type == "cast":
            # For fp16-->fp32 cast added by AMP
            grad_name = op.output('Out')
            assert len(grad_name) == 1
5016
            param_name = self._strip_grad_suffix(grad_name[0])
5017 5018 5019 5020 5021
            device = self._param_device_map[param_name]
            op._set_attr(self._op_device_key, device)
        elif self._is_gradient_clip_op(op) or self._is_regularization_op(op):
            # For gradient clip and regularization ops, we set their op_device
            # attribute to the device where their corresponding parameters on.
5022 5023
            assert self._op_role_var_key in op.attr_names, (
                "gradient_clip "
5024
                "and regularization ops must have op_role_var attribute."
5025
            )
5026
            op_role_var = op.attr(self._op_role_var_key)
5027 5028
            assert len(op_role_var) == 2, (
                "op_role_var for gradient_clip "
5029
                "regularization ops must have two elements."
5030
            )
5031 5032
            param_name = op_role_var[0]
            device = self._param_device_map[param_name]
5033
            # For sum op added by global gradient clip, it must be
5034
            # put on all devices
5035 5036 5037 5038 5039 5040 5041
            if (
                op.type == 'sum'
                or op.type == 'sqrt'
                or op.type == 'fill_constant'
                or op.type == 'elementwise_max'
                or op.type == 'elementwise_div'
            ):
5042
                device = f"{self._device}:all"
5043
            op._set_attr(self._op_device_key, device)
R
Roc 已提交
5044
        elif op.type == "alloc_float_status" or op.type == "clear_float_status":
5045
            op._set_attr(self._op_device_key, f"{self._device}:all")
5046 5047 5048 5049 5050 5051 5052 5053 5054 5055
            # NOTE(wangxi): NPU should only clear the float status
            # once at each batch step
            op._set_attr(self._op_role_key, self._op_role.LRSched)

            float_status_name = op.output_arg_names[0]
            float_status_var = block.var(float_status_name)
            # FIXME(wangxi): pipeline lr schedule will exec on sub_scope(0)
            # while update will exec on sub_scope(last_micro_step), should
            # set persistable to use global scope
            float_status_var.persistable = True
5056 5057
        else:
            other_known_ops = [
5058 5059 5060 5061 5062 5063
                'update_loss_scaling',
                'reduce_any',
                'concat',
                'sum',
                'check_finite_and_unscale',
                'memcpy',
5064
            ]
5065 5066 5067
            assert op.type in other_known_ops, (
                "For other ops without "
                "op_device set, they must be one of {}, but it "
5068
                "is {}".format(other_known_ops, op.type)
5069
            )
5070
            assert self._is_optimize_op(op)
5071
            op._set_attr(self._op_device_key, f"{self._device}:all")
5072 5073

    def _add_op_device_attr(self, block):
5074
        """
5075
        Add op_device attrribute for ops in block that have
5076
        not that attribute set.
5077
        """
5078
        for idx, op in enumerate(list(block.ops)):
5079 5080 5081 5082 5083
            if (
                op.type == "create_py_reader"
                or op.type == "read"
                or op.type == "create_double_buffer_reader"
            ):
5084
                # Copy read related ops to all section to make them exit
5085 5086 5087 5088
                # after each epoch.
                # We use "gpu:all" to represent the op should be put on all
                # sub-programs, such as lr-related ops. Note that: "gpu:all"
                # is only used by pipeline as an indicator.
5089
                op._set_attr(self._op_device_key, f"{self._device}:all")
5090 5091
                continue
            # op_device attribute has been set
5092 5093
            if self._get_op_device_attr(op):
                continue
5094
            self._add_op_device_attr_for_op(op, idx, block)
H
hutuxian 已提交
5095

5096 5097
    def _check_validation(self, block):
        """
5098
        Check whether ops in a block have both the op_device and the
5099 5100
        op_role attributes set.
        Then, return all devices in order.
5101
        """
5102 5103 5104 5105 5106 5107 5108 5109 5110 5111
        device_list = []
        # Section worker only supports the following op_role
        valid_op_role_value = [
            int(self._op_role.LRSched),
            int(self._op_role.Forward),
            int(self._op_role.Backward),
            int(self._op_role.Loss),
            int(self._op_role.Optimize),
            int(self._op_role.Backward) | int(self._op_role.Loss),
        ]
5112
        for op in block.ops:
5113
            if not op._has_kernel(op.type):
5114 5115 5116 5117 5118 5119
                assert op.type == "conditional_block" and (
                    op.attr(self._op_role_key) == int(self._op_role.LRSched)
                ), (
                    "Now, the only supported op without kernel is "
                    "conditional_block, and its op role must be LRSched."
                )
5120
            assert op.has_attr(
5121 5122
                self._op_role_key
            ), "op ({}) has no {} attribute.".format(op.type, self._op_role_key)
5123
            op_role = op.attr(self._op_role_key)
5124 5125 5126 5127 5128
            assert (
                int(op_role) in valid_op_role_value
            ), "op_role {} for op {} must be one of {}".format(
                op_role, op.type, valid_op_role_value
            )
5129

5130
            assert op.has_attr(
5131 5132 5133 5134
                self._op_device_key
            ), "op ({}) has no {} attribute.".format(
                op.type, self._op_device_key
            )
5135 5136

            device = op.attr(self._op_device_key)
5137 5138 5139 5140 5141 5142 5143
            assert (
                device
            ), "op_device attribute for op " "{} has not been set.".format(
                op.type
            )
            if device == f"{self._device}:all":
                continue
5144

5145
            dev_type = device.split(':')[0]
B
Baibaifan 已提交
5146 5147
            assert dev_type == "gpu" or dev_type == 'npu', (
                "Now only gpu and npu devices are supported "
5148 5149
                "for pipeline parallelism."
            )
5150 5151

            if device not in device_list:
5152
                device_list.append(device)
5153

5154
        return device_list
5155

5156
    def _insert_sendrecv_ops_for_boundaries(self, block):
5157
        """
5158
        Insert a pair of send and recv ops for every two
5159 5160
        consecutive ops on different devices.
        """
5161
        # A map from var to device where op takes it as input,
5162
        # avoiding multiple send and recv ops.
5163
        input_var_to_device = dict()
5164 5165 5166 5167 5168 5169 5170 5171
        # bugfix hybrid parallelism
        first_optimize_index = None
        for index, op in enumerate(list(block.ops)):
            if self._is_optimize_op(op):
                first_optimize_index = index
                break
        extra_index_info = {
            'index': 0,
5172
            'first_optimize_index': first_optimize_index,
5173
        }
5174

5175
        for index, op in enumerate(list(block.ops)):
5176
            cur_device = op.attr(self._op_device_key)
5177 5178
            if cur_device == f"{self._device}:all":
                continue
5179 5180
            for var_name in op.input_arg_names:
                var = block.var(var_name)
5181
                # skip data var
5182 5183
                if var.is_data:
                    continue
5184
                prev_device = None
5185 5186 5187

                prev_op = self._find_prev_op(index, var_name)
                if prev_op is None:
5188 5189
                    if var_name not in self._param_device_map:
                        continue
5190
                    prev_device = self._param_device_map[var_name]
5191

5192
                if not prev_device:
5193 5194 5195
                    prev_device = (
                        prev_op.attr(self._op_device_key) if prev_op else None
                    )
5196

5197 5198
                if prev_device is None or prev_device == f"{self._device}:all":
                    continue
5199

5200 5201
                if prev_device == cur_device:
                    continue
5202

5203 5204 5205 5206 5207 5208 5209
                if var_name not in input_var_to_device:
                    input_var_to_device[var_name] = []
                if (cur_device, prev_device) in input_var_to_device[var_name]:
                    continue

                device_type = cur_device.split(':')[0] + ':'

5210 5211 5212 5213
                def _check_stage(cur_id, prev_id):
                    # check send/recv stage valid
                    is_forward = self._is_forward_op(op)
                    is_backward = self._is_backward_op(op)
5214 5215
                    assert is_forward or is_backward, (
                        'send/recv in pipeline should only be inserted in forward or backward,'
5216
                        'please check the op_role of op={}'.format(op)
5217
                    )
5218 5219

                    if is_forward:
5220 5221
                        assert prev_id < cur_id, (
                            "In forward, send/recv can only be passed forward, but now "
5222
                            "prev_stage={} great than cur_stage={}, please check op_device of op={}".format(
5223 5224 5225
                                prev_id, cur_id, op
                            )
                        )
5226
                    elif is_backward:
5227 5228
                        assert prev_id > cur_id, (
                            "In backward, send/recv can only be passed backward, but now "
5229
                            "prev_stage={} less than cur_stage={}, please check op_device of op={}".format(
5230 5231 5232
                                prev_id, cur_id, op
                            )
                        )
5233

5234 5235 5236 5237 5238 5239 5240 5241 5242 5243
                def _insert_send_recv(cur_id, prev_id):
                    cur_dev = device_type + str(cur_id)
                    prev_dev = device_type + str(prev_id)
                    if (cur_dev, prev_dev) in input_var_to_device[var_name]:
                        return

                    if cur_id - prev_id > 1:
                        _insert_send_recv(cur_id - 1, prev_id)
                        _insert_send_recv(cur_id, cur_id - 1)
                        input_var_to_device[var_name].append(
5244 5245
                            (cur_dev, prev_dev)
                        )
5246 5247 5248 5249 5250
                        return
                    elif cur_id - prev_id < -1:
                        _insert_send_recv(cur_id + 1, prev_id)
                        _insert_send_recv(cur_id, cur_id + 1)
                        input_var_to_device[var_name].append(
5251 5252
                            (cur_dev, prev_dev)
                        )
5253 5254 5255 5256 5257 5258
                        return

                    assert abs(cur_id - prev_id) == 1
                    input_var_to_device[var_name].append((cur_dev, prev_dev))

                    op_role = op.attr(self._op_role_key)
5259
                    var = block.vars[var_name]
5260 5261 5262
                    pair = (prev_id, cur_id)
                    # 1000 is just a magic number
                    pair_key = prev_id * 1000 + cur_id
5263 5264 5265 5266 5267 5268 5269
                    if pair not in self._pipeline_pair:
                        self._pipeline_pair.append(pair)
                        self._pp_ring_map[pair_key] = self.ring_id
                        ring_id = self.ring_id
                        self.ring_id += 1
                    else:
                        ring_id = self._pp_ring_map[pair_key]
5270

5271
                    if self.schedule_mode == 'F-then-B':  # F-then-B
F
fangshuixun007 已提交
5272
                        block._insert_op_without_sync(
5273
                            index=index + extra_index_info['index'],
5274 5275 5276
                            type='send_v2',
                            inputs={'X': var},
                            attrs={
5277
                                self._op_device_key: prev_dev,
5278 5279 5280
                                self._op_role_key: op_role,
                                'use_calc_stream': True,
                                'peer': 1,
5281 5282 5283
                                'ring_id': ring_id,
                            },
                        )
5284
                        extra_index_info['index'] += 1
5285
                        var_shape = list(var.shape)
5286 5287 5288 5289 5290
                        var_shape[0] = (
                            self.micro_batch_size
                            if var_shape[0] < 0
                            else var_shape[0]
                        )
F
fangshuixun007 已提交
5291
                        block._insert_op_without_sync(
5292
                            index=index + extra_index_info['index'],
5293 5294 5295
                            type='recv_v2',
                            outputs={'Out': [var]},
                            attrs={
5296
                                'out_shape': var_shape,
5297
                                'dtype': var.dtype,
5298
                                self._op_device_key: cur_dev,
5299 5300 5301
                                self._op_role_key: op_role,
                                'use_calc_stream': True,
                                'peer': 0,
5302 5303 5304
                                'ring_id': ring_id,
                            },
                        )
5305
                        extra_index_info['index'] += 1
5306
                    elif self.schedule_mode == '1F1B':  # 1F1B
5307
                        var_shape = list(var.shape)
5308 5309 5310 5311 5312
                        var_shape[0] = (
                            self.micro_batch_size
                            if var_shape[0] < 0
                            else var_shape[0]
                        )
5313

5314
                        numel = np.prod(var_shape)
5315 5316 5317
                        use_mp = (self.mp_degree > 1) and (
                            numel % self.mp_degree == 0
                        )
5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339

                        if 'subprog' in var.name:
                            # For recompute, if the checkpoints var is layer_norm_6.tmp_2
                            # this var will be sent twice, layer_norm_6.tmp_2 for forward pass,
                            # layer_norm_6.tmp_2.subprog_* for recompute pass.
                            # We can store the first sent var and copy the value to the
                            # second one to reduce one send/recv op.
                            # The origin_ckpt_name is layer_norm_6.tmp_2, which will be used
                            # to find the stored var for the forward pass.
                            origin_name = var.name.split('subprog')[0][0:-1]
                            associate_var = block.var(origin_name)
                            block._insert_op_without_sync(
                                index=index + extra_index_info['index'],
                                type='assign',
                                inputs={'X': [associate_var]},
                                outputs={'Out': [var]},
                                attrs={
                                    'out_shape': var_shape,
                                    'dtype': var.dtype,
                                    self._op_device_key: cur_dev,
                                    self._op_role_key: op_role,
                                    'use_calc_stream': True,
5340 5341
                                },
                            )
5342 5343 5344
                            extra_index_info['index'] += 1
                            return

5345 5346
                        _check_stage(cur_id, prev_id)

5347 5348 5349 5350 5351 5352 5353 5354 5355 5356
                        block._insert_op_without_sync(
                            index=index + extra_index_info['index'],
                            type='c_sync_calc_stream',
                            inputs={'X': [var]},
                            outputs={'Out': [var]},
                            attrs={
                                self._op_device_key: prev_dev,
                                self._op_role_key: op_role,
                            },
                        )
5357
                        extra_index_info['index'] += 1
5358 5359
                        prefix_name = var.name.split('@')[0]
                        prefix_var = block.var(prefix_name)
5360 5361 5362
                        is_param = (
                            True if isinstance(prefix_var, Parameter) else False
                        )
F
fangshuixun007 已提交
5363
                        block._insert_op_without_sync(
5364
                            index=index + extra_index_info['index'],
5365
                            type='send_v2'
5366 5367
                            if not use_mp or is_param
                            else 'partial_send',
5368 5369
                            inputs={'X': var},
                            attrs={
5370
                                self._op_device_key: prev_dev,
5371 5372 5373 5374
                                self._op_role_key: op_role,
                                'use_calc_stream': False,
                                'ring_id': ring_id,
                                'peer': 1,
5375 5376 5377
                                # if send_v2, num&id attr is not in op_attrs, will not insert
                                'num': self.mp_degree,
                                'id': self.mp_rank,
5378 5379
                            },
                        )
5380
                        extra_index_info['index'] += 1
5381 5382 5383
                        insert_index = None
                        if int(op_role) == int(self._op_role.Backward):
                            insert_index = extra_index_info[
5384 5385
                                'first_optimize_index'
                            ]
5386 5387 5388 5389
                            new_op_role = self._op_role.Optimize
                        else:
                            insert_index = index
                            new_op_role = self._op_role.Backward
5390
                        sync_comm_op = block._insert_op_without_sync(
5391
                            index=insert_index + extra_index_info['index'],
5392 5393 5394 5395
                            type='c_sync_comm_stream',
                            inputs={'X': [var]},
                            outputs={'Out': [var]},
                            attrs={
5396
                                self._op_device_key: prev_dev,
5397
                                self._op_role_key: new_op_role,
5398
                                'ring_id': ring_id,
5399 5400
                            },
                        )
5401
                        if int(op_role) == int(self._op_role.Forward):
5402
                            sync_comm_op._set_attr('pipeline_flag', '')
5403
                            extra_index_info['index'] += 1
F
fangshuixun007 已提交
5404
                        block._insert_op_without_sync(
5405
                            index=index + extra_index_info['index'],
5406
                            type='recv_v2'
5407 5408
                            if not use_mp or is_param
                            else 'partial_recv',
5409 5410 5411 5412
                            outputs={'Out': [var]},
                            attrs={
                                'out_shape': var_shape,
                                'dtype': var.dtype,
5413
                                self._op_device_key: cur_dev,
5414 5415 5416
                                self._op_role_key: op_role,
                                'use_calc_stream': True,
                                'peer': 0,
5417 5418 5419 5420
                                'ring_id': ring_id,
                                # if recv_v2, num&id attr is not in op_attrs, will not insert
                                'num': self.mp_degree,
                                'id': self.mp_rank,
5421 5422
                            },
                        )
5423
                        extra_index_info['index'] += 1
5424
                        if use_mp and not is_param:
5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437
                            block._insert_op_without_sync(
                                index=index + extra_index_info['index'],
                                type='partial_allgather',
                                inputs={'X': [var]},
                                outputs={'Out': [var]},
                                attrs={
                                    self._op_device_key: cur_dev,
                                    self._op_role_key: op_role,
                                    'use_calc_stream': True,
                                    'ring_id': 0,
                                    # if recv_v2, num&id attr is not in op_attrs, will not insert
                                    'nranks': self.mp_degree,
                                    'rank': self.mp_rank,
5438 5439
                                },
                            )
5440
                            extra_index_info['index'] += 1
5441 5442 5443
                    else:
                        raise ValueError(
                            "Now only 'F-then-B' and '1F1B' are supported."
5444 5445
                            "The given value is {}.".format(self.schedule_mode)
                        )
5446

5447 5448 5449 5450
                _insert_send_recv(
                    int(cur_device.split(':')[1]),
                    int(prev_device.split(':')[1]),
                )
5451 5452
        block._sync_with_cpp()

5453
    def _insert_loss_scale(self, block):
5454
        """
5455
        Scale the loss corresponding to number of micro-batches.
5456
        """
5457 5458
        if self._num_microbatches == 1:
            return
5459
        for index, op in reversed(tuple(enumerate(list(block.ops)))):
5460
            if self._is_loss_grad_op(op):
5461 5462
                assert op.type == 'fill_constant', (
                    "loss_grad_op must be fill_constant op, "
5463
                    "but this op is {}".format(op.type)
5464
                )
5465 5466 5467 5468
                assert op.has_attr('value')
                loss_scale = float(op.attr('value'))
                loss_scale = loss_scale / self._num_microbatches
                op._set_attr('value', loss_scale)
5469 5470
                break

5471 5472
    def _rename_gradient_var_name(self, block):
        for index, op in enumerate(block.ops):
5473 5474
            if not self._is_optimize_op(op):
                continue
5475 5476 5477
            input_names = op.input_arg_names
            output_names = op.output_arg_names
            in_out_names = input_names + output_names
5478 5479
            if op.type == 'cast' or op.type == "c_sync_comm_stream":
                continue
5480 5481 5482
            # append "MERGED" to the names of parameter gradients,
            # and mofify the op_role_var attribute (by rename_arg func).
            for name in in_out_names:
5483 5484
                if not core.grad_var_suffix() in name:
                    continue
5485 5486 5487 5488
                param_name = name.strip(core.grad_var_suffix())
                new_grad_name = name + "@MERGED"
                self._rename_arg(op, name, new_grad_name)

5489 5490 5491
    def _accumulate_gradients(
        self, block, pp_allreduce_in_optimize=False, strategy=None, shard=None
    ):
5492 5493 5494 5495
        """
        Create a new merged gradient for each parameter and accumulate the
        corresponding gradient to it.
        """
5496 5497
        fp16_allreduce = strategy.fp16_allreduce if strategy else False
        if strategy and strategy.fuse_grad_merge:
5498
            fused_gradient_names = self._accumulate_gradients_with_fuse(
5499 5500
                block, fp16_allreduce, strategy.fuse_grad_size_in_MB, shard
            )
5501 5502
            return fused_gradient_names

5503 5504 5505
        merged_gradient_names = []
        first_opt_op_idx = None

5506 5507 5508
        merged_suffix = '@MERGED@FP16' if fp16_allreduce else '@MERGED'
        dtype = paddle.float16 if fp16_allreduce else None

5509 5510 5511 5512 5513 5514 5515 5516
        for index, op in reversed(tuple(enumerate(list(block.ops)))):
            # remove the cast op of fp16 grad to fp32 grad
            if self._is_optimize_op(op) and op.type == 'cast':
                in_name = op.input_arg_names[0]
                out_name = op.output_arg_names[0]
                if out_name.strip('@GRAD') in self._param_device_map:
                    assert in_name.replace('.cast_fp16', '') == out_name
                    block._remove_op(index)
5517
                    continue
5518

5519
            if self._is_backward_op(op) and first_opt_op_idx is None:
5520
                first_opt_op_idx = index + 1
5521 5522
                # maybe have no optimize
                # if first_opt_op_idx == len(block.ops): return
5523

5524 5525 5526
            if self._is_backward_op(op) and (
                self._op_role_var_key in op.attr_names
            ):
5527
                op_role_var = op.attr(self._op_role_var_key)
5528 5529
                if len(op_role_var) == 0:
                    continue
5530 5531
                assert len(op_role_var) % 2 == 0
                for i in range(0, len(op_role_var), 2):
5532 5533
                    offset = 0
                    param_name = op_role_var[i]
5534 5535 5536 5537
                    if not block.has_var(param_name):
                        continue
                    if '@BroadCast' in param_name:
                        continue
5538

5539
                    param_grad_name = param_name + core.grad_var_suffix()
5540
                    merged_param_grad_name = param_grad_name + merged_suffix
5541
                    if not block.has_var(merged_param_grad_name):
5542 5543 5544 5545 5546 5547
                        self._create_var(
                            block,
                            block.vars[param_name],
                            merged_param_grad_name,
                            dtype,
                        )
5548
                    assert block.has_var(merged_param_grad_name)
5549

5550 5551 5552
                    param_grad_var = block.var(param_grad_name)
                    merged_param_grad_var = block.var(merged_param_grad_name)
                    merged_param_grad_var.persistable = True
5553
                    block._insert_op(
5554 5555 5556 5557
                        index=first_opt_op_idx + offset,
                        type='fill_constant',
                        inputs={},
                        outputs={'Out': [merged_param_grad_var]},
5558
                        attrs={
5559 5560 5561
                            'shape': merged_param_grad_var.shape,
                            'dtype': merged_param_grad_var.dtype,
                            'value': float(0),
5562
                            # a trick to run this op once per mini-batch
5563 5564 5565
                            self._op_role_key: self._op_role.Optimize.LRSched,
                        },
                    )
5566
                    offset += 1
5567 5568
                    grad_name = op_role_var[i + 1]
                    grad_var = block.vars[grad_name]
5569 5570

                    is_fp16_grad = 'cast_fp16' in grad_name
5571
                    need_cast = is_fp16_grad is not fp16_allreduce
5572 5573 5574 5575 5576 5577

                    if need_cast:
                        # if fp16_allreduce:
                        #     cast grad to fp16 to accumulate to merged gradient
                        # else:
                        #     cast grad to fp32 to accumulate to merged gradient
5578
                        cast_grad_var_name = param_grad_name + '@TMP'
5579
                        cast_grad_var = self._create_var(
5580 5581
                            block, param_grad_var, cast_grad_var_name, dtype
                        )
5582
                        cast_grad_var.persistable = False
5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593
                        block._insert_op(
                            index=first_opt_op_idx + offset,
                            type='cast',
                            inputs={'X': grad_var},
                            outputs={'Out': cast_grad_var},
                            attrs={
                                'in_dtype': grad_var.dtype,
                                'out_dtype': cast_grad_var.dtype,
                                self._op_role_key: self._op_role.Backward,
                            },
                        )
5594
                        offset += 1
5595 5596 5597 5598 5599 5600 5601
                        grad_var = cast_grad_var

                    block._insert_op(
                        index=first_opt_op_idx + offset,
                        type='sum',
                        inputs={'X': [merged_param_grad_var, grad_var]},
                        outputs={'Out': merged_param_grad_var},
5602 5603
                        attrs={
                            self._op_role_key: self._op_role.Backward,
5604 5605
                        },
                    )
5606 5607 5608
                    offset += 1
                    merged_gradient_names.append(merged_param_grad_name)

5609 5610
        if not fp16_allreduce:
            return merged_gradient_names
5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633

        first_opt_op_idx = None
        for index, op in reversed(tuple(enumerate(list(block.ops)))):
            if self._is_backward_op(op) and first_opt_op_idx is None:
                first_opt_op_idx = index + 1
                break
        assert first_opt_op_idx is not None

        # insert cast op from fp16->fp32
        # FIXME(wangxi): maybe put in sharding is better, for some grad
        #                is not in sharding device.
        for fp16_grad_name in merged_gradient_names:
            grad_name = fp16_grad_name.replace('@FP16', '')
            param_name = fp16_grad_name.replace('@GRAD@MERGED@FP16', '')

            if not block.has_var(grad_name):
                self._create_var(block, block.vars[param_name], grad_name)
            assert block.has_var(grad_name)

            fp16_grad_var = block.var(fp16_grad_name)
            grad_var = block.var(grad_name)
            grad_var.persistable = False

5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644
            block._insert_op(
                index=first_opt_op_idx,
                type='cast',
                inputs={'X': fp16_grad_var},
                outputs={'Out': grad_var},
                attrs={
                    'in_dtype': fp16_grad_var.dtype,
                    'out_dtype': grad_var.dtype,
                    self._op_role_key: self._op_role.Optimize,
                },
            )
5645

5646
        return merged_gradient_names
5647

5648 5649 5650
    def _insert_accumulate_gradients_with_fuse(
        self, main_block, fp16, fused_size, grad_param_pairs, first_opt_op_idx
    ):
5651
        grad_param_pairs = self._sort_grad_param_by_dtype(
5652 5653
            main_block, grad_param_pairs
        )
5654

5655 5656 5657
        grad_param_segments = []
        merged_suffix = '@MERGED@FP16' if fp16 else '@MERGED'
        dtype = paddle.float16 if fp16 else paddle.float32
5658
        cur_size = 0.0
5659 5660 5661 5662 5663 5664 5665 5666 5667 5668
        last_dtype = None
        # split the grad based on dtype and fused size
        for grad, param in grad_param_pairs:
            real_grad = main_block.var(grad)
            # create the gradient merged var for each grad
            merged_grad_var = main_block.create_var(
                name=param + core.grad_var_suffix() + merged_suffix,
                dtype=dtype,
                shape=real_grad.shape,
                persistable=True,
5669 5670
                stop_gradient=False,
            )
5671
            real_param = main_block.var(param)
5672 5673
            if hasattr(real_param, 'is_distributed'):
                merged_grad_var.is_distributed = real_param.is_distributed
5674 5675 5676 5677
            tmp_size = self._get_var_size(real_grad)
            # two strategies for splitting the grad
            # 1. the current segment's size reach the user defined grad_size_in_MB
            # 2. the upcoming grad holds different dtype compared with grads in current segment
5678 5679 5680 5681 5682
            if (
                len(grad_param_segments) == 0
                or cur_size + tmp_size > fused_size
                or real_grad.dtype != last_dtype
            ):
5683
                grad_param_segments.append(
5684 5685
                    ([real_grad], [real_param], [merged_grad_var])
                )
5686
                last_dtype = real_grad.dtype
5687
                cur_size = 0.0
5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699
            else:
                grad_param_segments[-1][0].append(real_grad)
                grad_param_segments[-1][1].append(real_param)
                grad_param_segments[-1][2].append(merged_grad_var)
                cur_size += tmp_size

        fused_gradients = []
        fused_merged_gradients = []
        # create fused vars for grad and param
        for grad_param_segment in grad_param_segments:
            grad_segment = grad_param_segment[0]
            merged_grad_segment = grad_param_segment[2]
5700 5701 5702 5703 5704 5705
            fused_grad = main_block.create_var(
                name='FusedGrad_{}'.format(grad_segment[0].name),
                dtype=grad_segment[0].dtype,
                persistable=False,
                stop_gradient=False,
            )
5706
            # keep the '.cast_fp16' info in the fuse var name
5707 5708 5709 5710 5711 5712 5713 5714 5715
            fused_merged_grad_name_prefix = (
                'FusedMergedGrad.cast_fp16.'
                if merged_grad_segment[0].dtype == paddle.float16
                else 'FusedMergedGrad'
            )
            fused_merged_grad_name = (
                fused_merged_grad_name_prefix
                + '_{}'.format(merged_grad_segment[0].name)
            )
5716 5717 5718 5719
            fused_merged_grad = main_block.create_var(
                name=fused_merged_grad_name,
                dtype=merged_grad_segment[0].dtype,
                persistable=True,
5720 5721
                stop_gradient=False,
            )
5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746
            fused_gradients.append(fused_grad)
            fused_merged_gradients.append(fused_merged_grad)

        assert len(fused_gradients) == len(grad_param_segments)
        assert len(fused_merged_gradients) == len(grad_param_segments)

        # insert coalesce op at the start of the backward pass
        # use param as the coalesce input to make sure the two Fused vars are in same shape
        first_back_op_idx = None
        for index, op in enumerate(main_block.ops):
            if self._is_backward_op(op) and first_back_op_idx is None:
                first_back_op_idx = index
                break
        assert first_back_op_idx is not None
        offset = 0
        for i in range(len(grad_param_segments)):
            fused_grad = fused_gradients[i]
            fused_merged_grad = fused_merged_gradients[i]
            grads = grad_param_segments[i][0]
            params = grad_param_segments[i][1]
            merged_grads = grad_param_segments[i][2]
            main_block._insert_op_without_sync(
                first_back_op_idx + offset,
                type="coalesce_tensor",
                inputs={"Input": params},
5747
                outputs={"Output": grads, "FusedOutput": fused_grad},
5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763
                attrs={
                    # Explanation of user_defined_size_of_dtype:
                    # In coalesce op, the align size is 256 bytes
                    # the float takes 4 bytes while fp16 takes 2 bytes.
                    # To meet the requirement, 128 fp16 or 64 float will be aligned
                    # Think the total shape of the input tensors if [64],
                    # if the dtype is float, then the shape of the fuse var is [64]
                    # however if the dytpe if fp16, the shape of the fuse var is [128],
                    # which will cause the fused vars' shape vary between each other.
                    # To make sure the shape of the fused vars are identical,
                    # we set the dtype of float and fp16 both to 2.
                    # Under this way, the fused vars' shape for float and fp16 are all [128]
                    "user_defined_size_of_dtype": 2,
                    "copy_data": False,
                    "use_align": True,
                    "dtype": grads[0].dtype,
5764 5765 5766 5767 5768 5769 5770
                    self._op_role_key: self._op_role.Backward,
                    # On npu, the nan/inf check login is different with gpu.
                    # If there are some not initialized sections in the fused var,
                    # and the value in those sections are nan/inf, it will trigger the nan/inf check.
                    # To avoid these problematic triggers, set constant is needed for npu
                    "set_constant": core.is_compiled_with_npu(),
                    "constant": float(0.0),
5771 5772
                },
            )
5773 5774 5775 5776 5777 5778 5779 5780 5781 5782
            offset += 1
            # For the gradient_merged_fused_var, given a init value during the coalesce op
            # this will remove a problematic fill_constant op. This op role of this coalesce
            # is set to be LRSched to make this coalesce (with init) only run once
            main_block._insert_op_without_sync(
                first_back_op_idx + offset,
                type="coalesce_tensor",
                inputs={"Input": params},
                outputs={
                    "Output": merged_grads,
5783
                    "FusedOutput": fused_merged_grad,
5784 5785 5786 5787 5788 5789 5790 5791
                },
                attrs={
                    "user_defined_size_of_dtype": 2,
                    "set_constant": True,
                    "constant": float(0.0),
                    "copy_data": False,
                    "use_align": True,
                    "dtype": merged_grads[0].dtype,
5792 5793 5794
                    self._op_role_key: self._op_role.Optimize.LRSched,
                },
            )
5795 5796 5797 5798 5799 5800 5801 5802 5803
            offset += 1

        # insert gradient merge relating ops
        first_opt_op_idx += offset
        offset = 0
        for i in range(len(fused_gradients)):
            fused_grad = fused_gradients[i]
            fused_merged_grad = fused_merged_gradients[i]
            is_fp16_grad = 'cast_fp16' in fused_grad.name
5804
            need_cast = is_fp16_grad is not fp16
5805 5806 5807 5808
            if need_cast:
                # for fp16 allreduce, cast fp32 grad to fp16
                # for fp32 allreduce, cast fp16 grad to fp32
                cast_grad_var_name = fused_grad.name + '@TMP'
5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825
                cast_grad_var = main_block.create_var(
                    name=cast_grad_var_name,
                    dtype=dtype,
                    persistable=False,
                    stop_gradient=False,
                )
                main_block._insert_op(
                    index=first_opt_op_idx + offset,
                    type='cast',
                    inputs={'X': fused_grad},
                    outputs={'Out': cast_grad_var},
                    attrs={
                        'in_dtype': fused_grad.dtype,
                        'out_dtype': cast_grad_var.dtype,
                        self._op_role_key: self._op_role.Backward,
                    },
                )
5826 5827 5828 5829 5830 5831 5832
                offset += 1
                fused_grad = cast_grad_var
            main_block._insert_op(
                index=first_opt_op_idx + offset,
                type='sum',
                inputs={'X': [fused_merged_grad, fused_grad]},
                outputs={'Out': fused_merged_grad},
5833 5834
                attrs={self._op_role_key: self._op_role.Backward},
            )
5835 5836 5837 5838 5839 5840 5841 5842 5843 5844
            offset += 1

        if fp16:
            # if using fp16 allreduce, the optimizer needs fp32 grads, cast them back to fp32
            for grad, param in grad_param_pairs:
                real_grad = main_block.var(grad)
                fp16_grad_name = param + core.grad_var_suffix() + '@MERGED@FP16'
                assert main_block.has_var(fp16_grad_name)
                fp16_grad = main_block.var(fp16_grad_name)
                fp32_grad_name = param + core.grad_var_suffix() + '@MERGED'
5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862
                fp32_grad = main_block.create_var(
                    name=fp32_grad_name,
                    dtype=paddle.float32,
                    shape=real_grad.shape,
                    persistable=False,
                    stop_gradient=False,
                )
                main_block._insert_op(
                    index=first_opt_op_idx + offset,
                    type='cast',
                    inputs={'X': fp16_grad},
                    outputs={'Out': fp32_grad},
                    attrs={
                        'in_dtype': paddle.float16,
                        'out_dtype': paddle.float32,
                        self._op_role_key: self._op_role.Optimize,
                    },
                )
5863 5864 5865 5866 5867 5868
                offset += 1

        # replace the var with it's name, which will be used for inserting allreduce
        for i in range(len(fused_merged_gradients)):
            fused_merged_gradients[i] = fused_merged_gradients[i].name

5869
        return fused_merged_gradients, first_opt_op_idx
5870

5871 5872 5873
    def _accumulate_gradients_with_fuse(
        self, main_block, fp16, fused_size, shard=None
    ):
5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892
        first_opt_op_idx = None
        grad_param_pairs = []
        # obtain all param/grad pairs that needed to be fused
        for index, op in reversed(tuple(enumerate(list(main_block.ops)))):
            # remove the cast op of fp16 grad to fp32 grad
            if self._is_optimize_op(op) and op.type == 'cast':
                in_name = op.input_arg_names[0]
                out_name = op.output_arg_names[0]
                if out_name.strip('@GRAD') in self._param_device_map:
                    assert in_name.replace('.cast_fp16', '') == out_name
                    main_block._remove_op(index)
                    continue

            if self._is_backward_op(op) and first_opt_op_idx is None:
                first_opt_op_idx = index + 1
                # no optimize phase
                if first_opt_op_idx == len(main_block.ops):
                    return

5893 5894 5895
            if self._is_backward_op(op) and (
                self._op_role_var_key in op.attr_names
            ):
5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906
                op_role_var = op.attr(self._op_role_var_key)
                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0
                for i in range(0, len(op_role_var), 2):
                    param_name = op_role_var[i]
                    if not main_block.has_var(param_name):
                        continue
                    if '@BroadCast' in param_name:
                        continue
                    grad_param_pairs.append(
5907 5908
                        (op_role_var[i + 1], op_role_var[i])
                    )
5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921

        if len(grad_param_pairs) == 0:
            return

        nranks = shard.worker_num if shard else 1
        device_to_pairs = [[] for _ in range(nranks)]
        for pair in grad_param_pairs:
            root_id = shard.device(pair[1]) if shard else 0
            assert 0 <= root_id < nranks
            device_to_pairs[root_id].append(pair)

        all_fused_merged_gradients = []
        for pairs in device_to_pairs:
5922 5923 5924 5925 5926 5927
            (
                fused_merged_gradients,
                first_opt_op_idx,
            ) = self._insert_accumulate_gradients_with_fuse(
                main_block, fp16, fused_size, pairs, first_opt_op_idx
            )
5928 5929 5930 5931
            all_fused_merged_gradients += fused_merged_gradients

        main_block._sync_with_cpp()
        return all_fused_merged_gradients
5932

5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950
    def _sort_grad_param_by_dtype(self, main_block, grad_param_pairs):
        # sort the grad param paris by the dtype
        fp16_pairs = []
        fp32_pairs = []
        other_pairs = []
        for pairs in grad_param_pairs:
            dtype = main_block.var(pairs[0]).dtype
            if dtype == paddle.float32:
                fp32_pairs.append(pairs)
            elif dtype == paddle.float16:
                fp16_pairs.append(pairs)
            else:
                other_pairs.append(pairs)
        sorted_pairs = fp16_pairs
        sorted_pairs.extend(fp32_pairs)
        sorted_pairs.extend(other_pairs)
        return sorted_pairs

5951 5952 5953
    def _get_var_size(self, var):
        dtype_to_size = {
            core.VarDesc.VarType.FP16: 2,
5954
            core.VarDesc.VarType.BF16: 2,
5955 5956 5957 5958 5959 5960 5961 5962 5963
            core.VarDesc.VarType.FP32: 4,
            core.VarDesc.VarType.FP64: 8,
            core.VarDesc.VarType.INT16: 2,
            core.VarDesc.VarType.INT32: 4,
            core.VarDesc.VarType.INT64: 8,
            core.VarDesc.VarType.BOOL: 1,
            core.VarDesc.VarType.UINT8: 1,
        }
        assert -1 not in var.shape
5964 5965 5966 5967 5968 5969
        return (
            reduce(lambda x, y: x * y, var.shape)
            * dtype_to_size[var.dtype]
            / 1024.0
            / 1024.0
        )
5970

5971 5972
    def _add_sub_blocks(self, main_block, program_list):
        main_program = main_block.program
5973
        for prog in program_list:
5974 5975 5976 5977 5978 5979
            for op in prog.block(0).ops:
                if not op.has_attr('sub_block'):
                    continue
                origin_sub_block_id = op.attr('sub_block').id
                origin_sub_block = main_program.block(origin_sub_block_id)
                new_sub_block = prog._create_block(parent_idx=0)
5980 5981
                for sub_op in origin_sub_block.ops:
                    op_desc = sub_op.desc
5982 5983 5984
                    ap_op = new_sub_block.desc.append_op()
                    ap_op.copy_from(op_desc)
                new_sub_block._sync_with_cpp()
5985
                self._create_vars(new_sub_block, origin_sub_block)
5986
                op._set_attr('sub_block', new_sub_block)
5987 5988 5989

    def _get_device_info(self, block):
        for op in block.ops:
5990 5991
            if not op._has_kernel(op.type):
                continue
5992 5993 5994
            op_device = op.attr(self._op_device_key)
            return op_device

5995 5996 5997
    def _process_persistable_vars_in_multi_sections(
        self, main_program, startup_prog, program_list
    ):
5998 5999 6000 6001 6002 6003 6004
        """
        Special Case: process persistable vars that exist in
        multiple sections, e.g., shared weight
        """
        # var_info = {var_name: [program1, program2...]},
        # persistable var only
        var_info = dict()
6005
        for prog in program_list:
6006 6007
            block = prog.block(0)
            for var_name in block.vars:
6008 6009
                if var_name == "double_buffer_0":
                    continue
6010
                var = block.var(var_name)
6011 6012
                if not var.persistable:
                    continue
6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027
                if not var_name in var_info:
                    var_info[var_name] = []
                if not prog in var_info[var_name]:
                    var_info[var_name].append(prog)
        for var_name in list(var_info.keys()):
            if len(var_info[var_name]) == 1:
                var_info.pop(var_name)

        # write_info = {var_name: program}, where program is the only program
        # in which the var named var_name is written.
        write_info = dict()
        for var_name in var_info.keys():
            for prog in var_info[var_name]:
                block = prog.block(0)
                for op in block.ops:
6028 6029 6030 6031 6032 6033
                    if (
                        op.type == "recv_v2"
                        or op.type == "create_py_reader"
                        or op.type == "read"
                        or op.type == "update_loss_scaling"
                    ):
6034
                        continue
6035 6036
                    # We have processed lr related vars
                    if op.attr(self._op_role_key) == int(
6037 6038
                        self._op_role.Optimize.LRSched
                    ):
6039 6040 6041 6042
                        continue
                    if var_name in op.desc.output_arg_names():
                        assert var_name not in write_info, (
                            "two sections write the same var({}): second "
6043 6044
                            "op {}.".format(var_name, op)
                        )
6045 6046 6047 6048 6049
                        write_info[var_name] = prog
                        break

        for var_name in var_info.keys():
            # Case 1: read only variables, no special process
6050 6051
            if not var_name in write_info:
                continue
6052 6053 6054 6055 6056

            # Case 2: one write multiple reads
            write_prog = write_info[var_name]
            write_block = write_prog.block(0)
            write_device = self._get_device_info(write_block)
6057
            write_dev_index = int(write_device.split(':')[1])
6058 6059
            all_progs = var_info[var_name]
            for prog in all_progs:
6060 6061
                if prog == write_prog:
                    continue
6062 6063 6064
                read_block = prog.block(0)
                read_device = self._get_device_info(read_block)
                read_dev_index = int(read_device.split(':')[1])
6065 6066 6067 6068 6069 6070 6071 6072 6073
                pair = (write_dev_index, read_dev_index)
                pair_key = write_dev_index * 1000 + read_dev_index
                if pair not in self._pipeline_pair:
                    self._pipeline_pair.append(pair)
                    self._pp_ring_map[pair_key] = self.ring_id
                    ring_id = self.ring_id
                    self.ring_id += 1
                else:
                    ring_id = self._pp_ring_map[pair_key]
6074 6075 6076

                write_block._insert_op(
                    index=0,
6077
                    type='send_v2',
6078 6079 6080
                    inputs={
                        'X': write_block.var(var_name),
                    },
6081
                    attrs={
6082 6083
                        self._op_device_key: write_device,
                        'use_calc_stream': False,
6084 6085
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
6086 6087 6088 6089 6090
                        self._op_role_key: self._op_role.LRSched,
                        'peer': read_dev_index,
                        'ring_id': ring_id,
                    },
                )
6091 6092
                read_block._insert_op(
                    index=0,
6093
                    type='recv_v2',
6094 6095
                    outputs={'Out': [read_block.var(var_name)]},
                    attrs={
6096 6097 6098 6099
                        'out_shape': read_block.var(var_name).shape,
                        'dtype': read_block.var(var_name).dtype,
                        self._op_device_key: read_device,
                        'use_calc_stream': False,
6100 6101
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
6102 6103 6104 6105 6106
                        self._op_role_key: self._op_role.LRSched,
                        'peer': write_dev_index,
                        'ring_id': ring_id,
                    },
                )
6107 6108 6109 6110 6111 6112
                read_block._insert_op(
                    index=1,
                    type='c_sync_comm_stream',
                    inputs={'X': [read_block.var(var_name)]},
                    outputs={'Out': [read_block.var(var_name)]},
                    attrs={
6113
                        self._op_device_key: read_device,
6114 6115
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
6116 6117 6118 6119
                        self._op_role_key: self._op_role.LRSched,
                        'ring_id': ring_id,
                    },
                )
6120 6121

    def _is_gradient_clip_op(self, op):
6122 6123 6124
        return op.desc.has_attr("op_namescope") and op.desc.attr(
            "op_namescope"
        ).startswith("/gradient_clip")
6125 6126

    def _is_regularization_op(self, op):
6127 6128 6129
        return op.desc.has_attr("op_namescope") and op.desc.attr(
            "op_namescope"
        ).startswith("/regularization")
H
hutuxian 已提交
6130

6131 6132
    def _is_weight_decay_op(self, op):
        # in AdamW namescope is /optimizer_*/weight decay/
6133 6134 6135
        return op.desc.has_attr(
            "op_namescope"
        ) and 'weight decay' in op.desc.attr("op_namescope")
6136

6137 6138 6139 6140 6141
    def _get_input_output_info(self, block):
        '''
        Get info of op input and output.
        '''
        # A map from output var to op which generate it.
6142
        output_var_to_op = defaultdict(list)
6143
        # A map from var to op which takes it as input.
6144
        input_var_to_op = defaultdict(list)
6145

6146
        for index, op in enumerate(block.ops):
6147
            for var_name in op.input_arg_names:
6148
                input_var_to_op[var_name].append([op, index])
6149
            for var_name in op.output_arg_names:
6150 6151 6152 6153 6154 6155 6156 6157
                output_var_to_op[var_name].append([op, index])

        return output_var_to_op, input_var_to_op

    def _optimize_forward_send_sync(self, program):
        """
        optimize forward send's sync_comm_stream schedule
        """
6158 6159
        if self.schedule_mode != '1F1B':
            return
6160 6161 6162

        block = program.block(0)

6163
        recv_type = 'recv_v2' if self.mp_degree == 1 else 'partial_recv'
6164 6165
        backward_recv_index = None
        for index, op in enumerate(block.ops):
6166
            if op.type == recv_type and self._is_backward_op(op):
6167 6168 6169
                backward_recv_index = index
                break

6170
        # last pipeline stage
6171 6172
        if backward_recv_index is None:
            return
6173 6174 6175

        offset = 0
        for index, op in enumerate(list(block.ops)):
6176 6177
            if index >= backward_recv_index:
                break
6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193
            if op.type == 'c_sync_comm_stream' and op.has_attr('pipeline_flag'):
                var_name = op.input_arg_names[0]
                var = block.var(var_name)
                block._remove_op(index + offset, sync=False)
                offset -= 1
                # NOTE:
                # 1. When the backward recv is completed, it indicates
                # that the forward send is completed too. So we only need
                # to use the NOP op to prevent memory release.
                # 2. Because we removed sync_comm_op,
                # we will insert NOP after recv_op.
                block._insert_op_without_sync(
                    index=backward_recv_index,
                    type='nop',
                    inputs={'X': [var]},
                    outputs={'Out': [var]},
6194 6195
                    attrs={self._op_role_key: self._op_role.Backward},
                )
6196
        block._sync_with_cpp()
6197

6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210
    def _mv_head_recv(self, program):
        """
        A pass to move the recv op to the beginning of
        the forward/backward phase
        """
        forward_insert_index = 0
        backward_insert_index = None
        block = program.global_block()
        num_ops = len(program.global_block().ops)
        for i in range(num_ops):
            insert_index = None
            op = program.global_block().ops[i]
            op_role = int(op.attr(self._op_role_key))
6211 6212 6213 6214
            if (
                op_role == int(self._op_role.Backward)
                and backward_insert_index is None
            ):
6215
                backward_insert_index = i
6216 6217 6218 6219 6220 6221
            if (
                op.type != "partial_recv"
                and op.type != "partial_allgather"
                and op.type != "nop"
                and op.type != "recv_v2"
            ):
6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240
                continue
            if op_role == int(self._op_role.Forward):
                if i == forward_insert_index:
                    forward_insert_index += 1
                    continue
                insert_index = forward_insert_index
            elif op_role == int(self._op_role.Backward):
                if i == backward_insert_index:
                    backward_insert_index += 1
                    continue
                insert_index = backward_insert_index
            else:
                raise ValueError("Unknown op_role: {}".format(op_role))
            op_inputs = dict()
            for name in op.input_names:
                op_inputs[name] = op.input(name)
            op_outputs = dict()
            for name in op.output_names:
                op_outputs[name] = op.output(name)
6241 6242 6243 6244 6245 6246 6247
            block._insert_op_without_sync(
                index=insert_index,
                type=op.type,
                inputs=op_inputs,
                outputs=op_outputs,
                attrs=op.all_attrs(),
            )
6248 6249 6250 6251 6252 6253 6254
            block._remove_op(i + 1)
            if op_role == int(self._op_role.Forward):
                forward_insert_index += 1
            elif op_role == int(self._op_role.Backward):
                backward_insert_index += 1
        block._sync_with_cpp()

6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281
    def _check_pipeline_persist_var(self, program):
        """
        Pipeline may need multiple forward before
        """
        block = program.global_block()

        persist_output = set()
        used_in_backward = set()
        for op in block.ops:
            if self._is_forward_op(op):
                for var_name in op.output_arg_names:
                    var = block.vars[var_name]
                    if var.persistable:
                        persist_output.add(var_name)
            elif self._is_backward_op(op):
                for var_name in op.input_arg_names:
                    if var_name in persist_output:
                        used_in_backward.add(var_name)
        if len(used_in_backward) == 0:
            return
        warnings.warn(
            "The pipeline requires multiple forward calculations before backward, "
            "so when the persistable var is changed in the forward, it may cause "
            "errors in the backward calculation who using this persistable var. "
            "However, some backward op don't need this var(NoNeedBufferVars), "
            "there will be no error at this time.\n"
            "So please check these persistable vars which changed in "
6282 6283
            "forward and used in backward:\n{}".format(used_in_backward)
        )
6284

6285 6286 6287
    def minimize(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
6288
        main_block = loss.block
6289
        self.origin_main_block = main_block
6290
        main_program = main_block.program
6291 6292
        if startup_program is None:
            startup_program = default_startup_program()
6293

6294 6295
        pipeline_opt = main_program._pipeline_opt
        assert pipeline_opt, 'Please use pipeline with fleet.'
6296 6297 6298 6299 6300 6301 6302
        required_keys = [
            'local_rank',
            'schedule_mode',
            'micro_batch_size',
            'ring_id',
            'global_ring_id',
            'use_sharding',
6303 6304
            'mp_degree',
            'mp_rank',
6305 6306
        ]
        for key in required_keys:
6307 6308 6309
            assert (
                key in pipeline_opt
            ), 'Please use pipeline with fleet to use {}.'.format(key)
6310 6311 6312 6313 6314 6315 6316 6317
        self.local_rank = pipeline_opt['local_rank']
        self.schedule_mode = pipeline_opt['schedule_mode']
        self.micro_batch_size = pipeline_opt['micro_batch_size']
        self.use_sharding = pipeline_opt['use_sharding']
        self.ring_id = pipeline_opt['ring_id']
        self.global_ring_id = pipeline_opt['global_ring_id']
        self.mp_degree = pipeline_opt['mp_degree']
        self.mp_rank = pipeline_opt['mp_rank']
6318
        self.scale_gradient = pipeline_opt.get('scale_gradient', False)
6319 6320
        assert self.mp_degree >= 1
        assert 0 <= self.mp_rank < self.mp_degree
6321 6322

        optimize_ops, params_grads = self._optimizer.minimize(
6323 6324
            loss, startup_program, parameter_list, no_grad_set
        )
6325
        self._param_device_map = self._origin_optimizer._param_device_map
6326

6327 6328 6329 6330
        (
            self.output_var_to_op,
            self.input_var_to_op,
        ) = self._get_input_output_info(main_block)
6331 6332 6333
        # Step1: add default op_device attribute for ops.
        self._add_op_device_attr(main_block)
        device_list = self._check_validation(main_block)
6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344

        def device_cmp(device1, device2):
            dev1_id = int(device1.split(':')[1])
            dev2_id = int(device2.split(':')[1])
            if dev1_id < dev2_id:
                return -1
            elif dev1_id > dev2_id:
                return 1
            else:
                return 0

6345 6346 6347
        sorted_device_list = sorted(device_list, key=cmp_to_key(device_cmp))
        assert sorted_device_list == device_list, (
            "With pipeline parallelism, you must use gpu devices one after "
6348 6349
            "another in the order of their ids."
        )
6350
        # Step2: add send and recv ops between section boundaries
6351
        self._insert_sendrecv_ops_for_boundaries(main_block)
6352

6353
        # Step3: split program into sections and add pairs of
6354 6355
        # send and recv ops for data var.
        main_program = main_block.program
6356
        program_list = self._split_program(main_program, device_list)
6357
        for p in program_list:
6358
            self._create_vars(p.global_block(), main_block)
6359

L
lilong12 已提交
6360 6361 6362 6363 6364
        if os.getenv("PADDLE_MANUAL_PIPELINE_STAGE", None):
            self.local_rank = int(os.getenv("PADDLE_MANUAL_PIPELINE_STAGE"))
            assert self.local_rank < len(device_list), (
                "Manually specified "
                "pipeline stage must be less than total number of pipeline "
6365 6366
                "stages."
            )
L
lilong12 已提交
6367 6368
        else:
            self.local_rank %= len(device_list)
6369 6370 6371
        # Step3.5: optimize forward send sync_comm to overlap send and recv
        self._optimize_forward_send_sync(program_list[self.local_rank])

6372
        # Step4: Special Case: process persistable vars that exist in
6373
        # multiple sections
6374
        # FIXME
6375 6376
        # self._process_persistable_vars_in_multi_sections(
        #     main_program, startup_program, program_list)
6377

6378
        # Step5: Add sub blocks for section programs
6379 6380
        self._add_sub_blocks(main_block, program_list)

6381
        place_list = []
6382 6383
        for dev in device_list:
            dev_index = int(dev.split(":")[1])
6384 6385 6386 6387
            if core.is_compiled_with_cuda():
                place_list.append(core.CUDAPlace(dev_index % 1))
            elif core.is_compiled_with_npu():
                place_list.append(core.NPUPlace(dev_index % 1))
6388

6389
        # Step6: Split startup program
6390
        new_startup_program = self._split_startup_program(
6391 6392
            startup_program, self.local_rank
        )
6393 6394 6395 6396

        startup_program._pipeline_opt = {
            "startup_program": new_startup_program,
        }
6397
        real_block = program_list[self.local_rank].global_block()
6398 6399
        if not self.scale_gradient:
            self._insert_loss_scale(real_block)
6400
        if not self.use_sharding:
6401
            # Step7: clear gradients before each mini-batch and
6402 6403 6404 6405 6406
            # accumulate gradients during backward
            self._rename_gradient_var_name(real_block)
            real_block._sync_with_cpp()
            self._accumulate_gradients(real_block)
            real_block._sync_with_cpp()
6407

6408 6409 6410 6411
        if core.is_compiled_with_cuda():
            place_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        elif core.is_compiled_with_npu():
            place_id = int(os.getenv("FLAGS_selected_npus", "0"))
6412 6413 6414
        # A pass to move the recv op to the beginning of
        # the forward/backward phase
        self._mv_head_recv(program_list[self.local_rank])
6415 6416 6417 6418 6419

        # A pass to check pipeline persist var which changed in
        # forward and used in backward
        self._check_pipeline_persist_var(program_list[self.local_rank])

6420
        main_program._pipeline_opt = {
H
hutuxian 已提交
6421 6422
            "trainer": "PipelineTrainer",
            "device_worker": "Section",
6423
            "pipeline_stage": self.local_rank,
6424
            "num_pipeline_stages": len(device_list),
6425
            "schedule_mode": self.schedule_mode,
6426
            "inner_parallelism": len(device_list),
6427 6428
            "section_program": program_list[self.local_rank],
            "place": place_list[self.local_rank],
6429
            "place_id": place_id,
6430
            "sync_steps": -1,
L
lilong12 已提交
6431
            "num_microbatches": self._num_microbatches,
H
hutuxian 已提交
6432 6433
            "start_cpu_core_id": self._start_cpu_core_id,
        }
6434 6435 6436 6437 6438 6439 6440
        return (
            optimize_ops,
            params_grads,
            program_list,
            self._pipeline_pair,
            self._pp_ring_map,
        )
M
mapingshuo 已提交
6441 6442


M
mapingshuo 已提交
6443 6444
class RecomputeOptimizer(Optimizer):
    """
6445
        :api_attr: Static Graph
S
swtkiwi 已提交
6446

M
mapingshuo 已提交
6447 6448 6449
    Recompute Optimizer Wrapper

    Normally, a training step contains three sub-steps: first, run forward
6450
    Operators to calculate the loss; second, run backward Operators to
M
mapingshuo 已提交
6451 6452 6453
    calculate gradient of the parameters; third, apply optimization method
    to update the value of the parameters.

6454
    In the forward computation process, all variables that are needed by
M
mapingshuo 已提交
6455 6456 6457
    backward computation process will be kept in memory, which occupy a great
    amount of memory when the network becomes very deep.

6458
    Recompute split the network to k segments. In each segment, It will
M
mapingshuo 已提交
6459 6460
    recompute the forward Operators, before running backward operators. It is
    very helpful for saving memory.
6461

M
mapingshuo 已提交
6462 6463 6464 6465 6466 6467 6468 6469 6470
    The Variables that separate a network to segments are called as checkpoints,
    and users should set it manually. The usage is very simple:

    Args:
        optimizer (Optimizer): The optimizer that is applied to parameters.

    Examples:
        .. code-block:: python

6471
            import paddle
M
mapingshuo 已提交
6472 6473
            import paddle.fluid as fluid
            import numpy as np
6474 6475 6476

            paddle.enable_static()

M
mapingshuo 已提交
6477 6478 6479 6480 6481
            def gen_data():
                return {"x": np.random.random(size=(32, 32)).astype('float32'),
                "y": np.random.randint(2, size=(32, 1)).astype('int64')}
            def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                print(input_x)
C
Charles-hit 已提交
6482 6483
                fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim)
                prediction = paddle.static.nn.fc(x=[fc_1], size=label_dim, activation='softmax')
6484 6485 6486 6487 6488
                cost = paddle.nn.functional.cross_entropy(
                    input=prediction, label=input_y,
                    reduction='none', use_softmax=False
                )
                sum_cost = paddle.mean(cost)
M
mapingshuo 已提交
6489
                return sum_cost, fc_1, prediction
G
GGBond8488 已提交
6490 6491
            input_x = paddle.static.data(name="x", shape=[-1,32], dtype='float32')
            input_y = paddle.static.data(name="y", shape=[-1,1], dtype='int64')
M
mapingshuo 已提交
6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513
            cost, fc_1, pred = mlp(input_x, input_y)

            sgd = fluid.optimizer.Adam(learning_rate=0.01)
            sgd = fluid.optimizer.RecomputeOptimizer(sgd)
            sgd._set_checkpoints([fc_1, pred])
            sgd.minimize(cost)

            print("Finished optimize")
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            step = 10

            for i in range(step):
                cost_val = exe.run(feed=gen_data(),
                       program=fluid.default_main_program(),
                       fetch_list=[cost.name])
                print("step=%d cost=%f" % (i, cost_val[0]))

    """

    def __init__(self, optimizer):
姜永久 已提交
6514
        if in_dygraph_mode():
Z
zhongpu 已提交
6515
            raise Exception("In dygraph, don't support RecomputeOptimizer.")
M
mapingshuo 已提交
6516 6517
        self._optimizer = optimizer
        self._checkpoints = None
M
mapingshuo 已提交
6518 6519
        self._learning_rate = self._optimizer._learning_rate
        self._learning_rate_map = self._optimizer._learning_rate_map
J
JZ-LIANG 已提交
6520
        self.enable_offload = False
M
mapingshuo 已提交
6521 6522

    def _set_checkpoints(self, checkpoints):
6523 6524
        """
        Args:
6525
            checkpoints (list): List of Variable or string
6526 6527 6528 6529 6530
        """
        assert isinstance(
            checkpoints, list
        ), "_checkpoints should be a list of Variable or a list of String"
        for ckpt in checkpoints:
6531 6532
            assert isinstance(ckpt, str) or isinstance(
                ckpt, Variable
6533
            ), "_checkpoints should be a list of Variable or a list of String"
M
mapingshuo 已提交
6534 6535
        self._checkpoints = checkpoints

6536
    # should enable offload before calling backward
J
JZ-LIANG 已提交
6537 6538 6539
    def _enable_offload(self):
        self.enable_offload = True

6540 6541
    @framework.deprecate_stat_dict
    def load(self, state_dict):
M
mapingshuo 已提交
6542
        """
6543
            :api_attr: Static Graph
S
swtkiwi 已提交
6544

M
mapingshuo 已提交
6545 6546 6547 6548
        load function is not supported by Recompute Optimizer for now.
        :return: None

        Args:
6549
            state_dict: the dict load by load_persistable method
M
mapingshuo 已提交
6550 6551 6552 6553

        Examples:
            .. code-block:: python

6554
                import paddle
M
mapingshuo 已提交
6555
                import paddle.fluid as fluid
6556

6557
                paddle.enable_static()
M
mapingshuo 已提交
6558
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
C
Charles-hit 已提交
6559 6560
                    fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim)
                    prediction = paddle.static.nn.fc(x=[fc_1], size=label_dim, activation='softmax')
6561 6562 6563 6564 6565
                    cost = paddle.nn.functional.cross_entropy(
                        input=prediction, label=input_y,
                        reduction='none', use_softmax=False
                    )
                    sum_cost = paddle.mean(cost)
M
mapingshuo 已提交
6566
                    return sum_cost, fc_1, prediction
6567

G
GGBond8488 已提交
6568 6569
                input_x = paddle.static.data(name="x", shape=[-1,32], dtype='float32')
                input_y = paddle.static.data(name="y", shape=[-1,1], dtype='int64')
M
mapingshuo 已提交
6570 6571
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
6572

M
mapingshuo 已提交
6573 6574 6575 6576
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
                sgd._set_checkpoints([fc_1, pred])
                try:
6577 6578
                    state_dict = {}
                    sgd.load(state_dict)
M
mapingshuo 已提交
6579
                except NotImplementedError as e:
6580
                    print(e)
M
mapingshuo 已提交
6581 6582
        """
        raise NotImplementedError(
6583 6584
            "load function is not supported by Recompute Optimizer for now"
        )
M
mapingshuo 已提交
6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598

    def apply_gradients(self, params_grads):
        """
        call apply_gradients function of self._optimizer.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.

        Returns:
            list: A list of operators appended to the current program.

        Examples:
            .. code-block:: python

6599
                import paddle
M
mapingshuo 已提交
6600 6601 6602
                import paddle.fluid as fluid
                import paddle.fluid.framework as framework

6603 6604
                paddle.enable_static()

M
mapingshuo 已提交
6605
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
C
Charles-hit 已提交
6606 6607
                    fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim)
                    prediction = paddle.static.nn.fc(x=[fc_1], size=label_dim, activation='softmax')
6608 6609 6610 6611 6612
                    cost = paddle.nn.functional.cross_entropy(
                        input=prediction, label=input_y,
                        reduction='none', use_softmax=False
                    )
                    sum_cost = paddle.mean(cost)
M
mapingshuo 已提交
6613 6614 6615
                    return sum_cost, fc_1, prediction


G
GGBond8488 已提交
6616 6617
                input_x = paddle.static.data(name="x", shape=[-1,32], dtype='float32')
                input_y = paddle.static.data(name="y", shape=[-1,1], dtype='int64')
M
mapingshuo 已提交
6618 6619 6620 6621 6622
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")

                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
6623
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
6624 6625 6626 6627
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
6628
                    no_grad_set=None)
M
mapingshuo 已提交
6629 6630 6631 6632 6633 6634 6635 6636 6637 6638

                program = cost.block.program
                with framework.program_guard(program, None):
                    optimize_ops = sgd.apply_gradients(params_grads)

                print("Finished apply gradients")
        """

        return self._optimizer.apply_gradients(params_grads=params_grads)

J
JZ-LIANG 已提交
6639 6640 6641 6642 6643 6644 6645 6646 6647
    def _creat_vars(self, varname):
        pinned_var_name = unique_name.generate(varname + "@Pinned")
        fetched_var_name = unique_name.generate(varname + "@Fetch")

        pinned_var = self._main_program.global_block().create_var(
            name=pinned_var_name,
            shape=self.checkpoint_shape,
            dtype=self._main_program.global_block().var(varname).dtype,
            persistable=False,
6648 6649
            stop_gradient=True,
        )
J
JZ-LIANG 已提交
6650 6651 6652 6653 6654 6655

        fetch_var = self._main_program.global_block().create_var(
            name=fetched_var_name,
            shape=self.checkpoint_shape,
            dtype=self._main_program.global_block().var(varname).dtype,
            persistable=False,
6656 6657
            stop_gradient=False,
        )
J
JZ-LIANG 已提交
6658 6659 6660 6661 6662 6663 6664 6665

        return pinned_var_name, fetched_var_name

    def _append_fill_constant_ops(self, startup_program):
        """
        add fill_constant_ops to the end of the prog

        we should fill the pinned vars before runing the main_prog
6666 6667 6668
        to instantiate their tensor hold_, which could tell us whether
        the host memory could hold all the checkpoints from all the
        GPU devices in this node.
J
JZ-LIANG 已提交
6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681
        """
        op_role = 0
        block = startup_program.global_block()
        fill_constant_vars = self.checkpoint_name2pinned_name.values()
        OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()
        for varname in fill_constant_vars:
            var = self._main_program.global_block().var(varname)
            # NOTE (JZ-LIANG) to pre-allocate the CUDAPinned MEM
            pinned_var = block.create_var(
                name=varname,
                shape=self.checkpoint_shape,
                dtype=self._main_program.global_block().var(var.name).dtype,
                persistable=False,
6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694
                stop_gradient=True,
            )
            block.append_op(
                type='fill_constant',
                outputs={'Out': varname},
                attrs={
                    "shape": var.shape,
                    "dtype": var.dtype,
                    "value": 0.0,
                    "place_type": 2,
                    OP_ROLE_KEY: op_role,
                },
            )
J
JZ-LIANG 已提交
6695 6696 6697

        return

6698 6699 6700
    def _insert_async_memcpy_op(
        self, insert_idx, src_varname, dst_varname, op_role, dst_place_type
    ):
J
JZ-LIANG 已提交
6701 6702 6703 6704 6705 6706 6707 6708
        OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()
        self.block._insert_op_without_sync(
            insert_idx,
            type='memcpy',
            inputs={'X': [self._main_program.global_block().var(src_varname)]},
            outputs={
                'Out': [self._main_program.global_block().var(dst_varname)]
            },
6709 6710
            attrs={"dst_place_type": int(dst_place_type), OP_ROLE_KEY: op_role},
        )
J
JZ-LIANG 已提交
6711 6712

    def _insert_fetch_op(self, idx, varname):
6713 6714 6715 6716 6717
        assert (
            varname in self.checkpoint_name2pinned_name
        ), "Try to fetch {} from Pinned Memory, but it is NOT a checkpoint".format(
            varname
        )
J
JZ-LIANG 已提交
6718 6719 6720

        pinned_varname = self.checkpoint_name2pinned_name[varname]
        fetch_varname = self.checkpoint_name2fetch_name[varname]
6721
        self._insert_async_memcpy_op(idx, pinned_varname, fetch_varname, 1, 1)
J
JZ-LIANG 已提交
6722 6723

    def _insert_offload_op(self, idx, varname):
6724 6725 6726 6727 6728
        assert (
            varname in self.checkpoint_name2pinned_name
        ), "Try to offload {} to Pinned Memory, but it is NOT a checkpoint".format(
            varname
        )
J
JZ-LIANG 已提交
6729
        pinned_varname = self.checkpoint_name2pinned_name[varname]
6730
        self._insert_async_memcpy_op(idx, varname, pinned_varname, 0, 2)
J
JZ-LIANG 已提交
6731 6732

    def _insert_sync_op(self, op_idx, checkpoint_name):
6733
        # single stream offload no need sync
J
JZ-LIANG 已提交
6734 6735 6736
        pass

    def _record_fetch_op(self, idx):
6737 6738 6739
        assert (
            len(self.un_fetch_checkpoint_names) > 0
        ), "Could NOT found checkpoint to fetch"
J
JZ-LIANG 已提交
6740 6741 6742 6743 6744 6745 6746 6747
        checkpoint_name = self.un_fetch_checkpoint_names.pop(-1)
        logging.debug("Record fetch [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("fetch", checkpoint_name)

        return checkpoint_name

    def _record_offload_op(self, idx, checkpoint_name):
        expected_checkpoint_name = self.un_offload_checkpoint_names.pop(0)
6748 6749 6750 6751 6752
        assert (
            checkpoint_name == expected_checkpoint_name
        ), "expected to offload [{}] but got [{}]".format(
            expected_checkpoint_name, checkpoint_name
        )
J
JZ-LIANG 已提交
6753 6754 6755 6756
        logging.debug("Record offload [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("offload", checkpoint_name)

    def _record_sync_op(self, idx, checkpoint_name):
6757 6758 6759
        assert (
            checkpoint_name not in self.synced_checkpoints
        ), "Try to sync the checkpoint [{}] twice".format(checkpoint_name)
J
JZ-LIANG 已提交
6760 6761 6762 6763 6764 6765 6766
        self.synced_checkpoints.add(checkpoint_name)
        logging.debug("Record offload sync [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("sync", checkpoint_name)

    def _parse_backward(self):

        self.idx2insertions = {}
6767
        # don't offload the last checkpoints, to favor throughput
J
JZ-LIANG 已提交
6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781
        self.un_fetch_checkpoint_names = self.sorted_checkpoint_names[:]
        self.un_fetch_checkpoint_names.pop(-1)
        need_fetch_checkpoint_names = self.un_fetch_checkpoint_names[:]
        self.checkpoint_usage_count = {}
        for checkpoint_name in self.un_fetch_checkpoint_names:
            self.checkpoint_usage_count[checkpoint_name] = 0

        self.bw_strart_op_idx = len(self.block.ops)
        for idx, op in enumerate(self.block.ops):
            if int(op.desc.attr("op_role")) == 1:
                self.bw_strart_op_idx = idx
                break

        assert self.bw_strart_op_idx < len(
6782 6783
            self.block.ops
        ), "Could NOT found backword op in prog"
J
JZ-LIANG 已提交
6784 6785 6786

        # fetch second to last checkpoint at the beginning of BW
        fetched_checkpoint_varname = self._record_fetch_op(
6787 6788
            self.bw_strart_op_idx
        )
J
JZ-LIANG 已提交
6789 6790
        last_last_fetch_checkpoint = None

6791
        for i, op in enumerate(self.block.ops[self.bw_strart_op_idx :]):
J
JZ-LIANG 已提交
6792 6793 6794 6795 6796 6797 6798 6799 6800
            idx = self.bw_strart_op_idx + i
            input_vars = op.desc.input_arg_names()

            for input_var in input_vars:
                if input_var in need_fetch_checkpoint_names:
                    if input_var not in self.un_fetch_checkpoint_names:
                        # fetch the  offloade checkpoint when the first usage of its previous one
                        if self.checkpoint_usage_count[input_var] == 0:
                            # TODO (JZ-LIANG) sync memcpy_stream if extra stream for memcpy
6801 6802 6803
                            second_to_last_fetch_checkpoint = (
                                fetched_checkpoint_varname
                            )
6804
                            # there is NO fetch ahead the first checkpoint
J
JZ-LIANG 已提交
6805
                            if input_var != self.sorted_checkpoint_names[0]:
6806 6807 6808
                                fetched_checkpoint_varname = (
                                    self._record_fetch_op(idx)
                                )
J
JZ-LIANG 已提交
6809

6810
                        # should check the current used checkpoint is ths last fetch one
6811 6812 6813 6814 6815
                        assert (
                            second_to_last_fetch_checkpoint == input_var
                        ), "Current recompute segment should use [{}] BUT got [{}]".format(
                            second_to_last_fetch_checkpoint, input_var
                        )
J
JZ-LIANG 已提交
6816 6817 6818
                        # rename
                        self.block.ops[idx]._rename_input(
                            input_var,
6819 6820
                            self.checkpoint_name2fetch_name[input_var],
                        )
J
JZ-LIANG 已提交
6821 6822 6823 6824
                        self.checkpoint_usage_count[input_var] += 1
                    else:
                        raise ValueError(
                            "use checkpoint [{}] before fetch in BW".format(
6825 6826 6827
                                input_var
                            )
                        )
J
JZ-LIANG 已提交
6828

6829 6830 6831 6832 6833
        assert (
            len(self.un_fetch_checkpoint_names) == 0
        ), "{} checkpoints have NOT been Recorded".format(
            self.un_fetch_checkpoint_names
        )
J
JZ-LIANG 已提交
6834 6835 6836 6837 6838 6839 6840 6841 6842 6843

    def _update_backward(self):
        if len(self.idx2insertions) == 0:
            return
        total_op = len(self.block.ops)
        for op_idx in reversed(range(self.bw_strart_op_idx, total_op)):
            if op_idx in self.idx2insertions:
                operation, checkpoint_name = self.idx2insertions[op_idx]
                if operation == "fetch":
                    self._insert_fetch_op(op_idx, checkpoint_name)
6844
                    logging.debug(
6845 6846
                        "Insert [{}] fetch op.".format(checkpoint_name)
                    )
J
JZ-LIANG 已提交
6847 6848 6849 6850 6851
                    del self.idx2insertions[op_idx]
                elif operation == "sync":
                    self._insert_sync_op(op_idx, checkpoint_name)
                    logging.debug("Sync [{}] fetch op.".format(checkpoint_name))
        self.block._sync_with_cpp()
6852 6853 6854 6855 6856
        assert (
            len(self.idx2insertions) == 0
        ), "{} checkpoints left un-Fecthed".format(
            [ele[1] for ele in self.idx2insertions.values()]
        )
J
JZ-LIANG 已提交
6857 6858 6859 6860

    def _parse_forward(self):

        self.idx2insertions = {}
6861
        # don't offload the last checkpoints, faster, less memory saving
J
JZ-LIANG 已提交
6862 6863 6864 6865 6866 6867 6868
        self.un_offload_checkpoint_names = self.sorted_checkpoint_names[:]
        last_checkpoint = self.un_offload_checkpoint_names.pop(-1)
        need_offload_checkpoint_names = self.un_offload_checkpoint_names[:]
        self.checkpoint_usage_count_and_idx = {}
        for checkpoint_name in self.un_offload_checkpoint_names:
            self.checkpoint_usage_count_and_idx[checkpoint_name] = {
                'count': 0,
6869
                'idx': -1,
J
JZ-LIANG 已提交
6870 6871 6872 6873 6874 6875 6876 6877 6878
            }
        self.synced_checkpoints = set()
        self.fw_strart_op_idx = len(self.block.ops)
        for idx, op in enumerate(self.block.ops):
            if int(op.desc.attr("op_role")) == 0:
                self.fw_strart_op_idx = idx
                break

        assert self.fw_strart_op_idx < len(
6879 6880
            self.block.ops
        ), "Could NOT found Forward op in prog"
J
JZ-LIANG 已提交
6881 6882
        last_offload_checkpoint = None

6883
        for i, op in enumerate(
6884 6885
            self.block.ops[self.fw_strart_op_idx : self.bw_strart_op_idx]
        ):
J
JZ-LIANG 已提交
6886 6887 6888 6889 6890 6891 6892

            idx = self.fw_strart_op_idx + i
            output_vars = op.desc.output_arg_names()
            input_vars = op.desc.input_arg_names()

            for output_var in output_vars:
                if output_var in need_offload_checkpoint_names:
6893 6894 6895 6896 6897
                    assert (
                        len(output_vars) == 1
                    ), "chekpoint should be the only Output of a certain op, but [{}] is from [{}]".format(
                        output_var, op
                    )
J
JZ-LIANG 已提交
6898 6899 6900

                    if output_var in self.un_offload_checkpoint_names:
                        # insert sync op if last checkpoint has not been sync
6901
                        if last_offload_checkpoint is not None:
6902 6903 6904 6905 6906 6907 6908 6909 6910
                            if (
                                self.checkpoint_usage_count_and_idx[
                                    last_offload_checkpoint
                                ]['count']
                                == 0
                            ):
                                self._record_sync_op(
                                    idx, last_offload_checkpoint
                                )
J
JZ-LIANG 已提交
6911
                            else:
6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924
                                last_usage_idx = (
                                    self.checkpoint_usage_count_and_idx[
                                        last_offload_checkpoint
                                    ]['idx']
                                )
                                assert (
                                    last_usage_idx > 0
                                ), "last_usage_idx of checkpoint [{}] should large than 0".format(
                                    last_offload_checkpoint
                                )
                                self._record_sync_op(
                                    last_usage_idx + 1, last_offload_checkpoint
                                )
J
JZ-LIANG 已提交
6925 6926 6927 6928 6929
                        # insert offload op after the checkpoint's generation op
                        self._record_offload_op(idx + 1, output_var)
                        last_offload_checkpoint = output_var
                    else:
                        raise ValueError(
6930 6931 6932 6933
                            "There should be just ONE op that output checkpoint [{}]".format(
                                output_var
                            )
                        )
J
JZ-LIANG 已提交
6934 6935
                # need to sync the last need to offload checkpoint before the last checkpoint as output op
                if output_var == last_checkpoint:
6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948
                    assert (
                        len(output_vars) == 1
                    ), "chekpoint should be the only Output of a certain op, but [{}] is from [{}]".format(
                        output_var, op
                    )
                    assert (
                        last_offload_checkpoint
                        == self.sorted_checkpoint_names[-2]
                    ), "the last offload chekpoint before [{}] is suppose to be [{}], but got [{}]".format(
                        last_checkpoint,
                        self.sorted_checkpoint_names[-2],
                        last_offload_checkpoint,
                    )
J
JZ-LIANG 已提交
6949
                    # sync if last checkpoint has not been sync
6950 6951 6952 6953 6954 6955
                    if (
                        self.checkpoint_usage_count_and_idx[
                            last_offload_checkpoint
                        ]['idx']
                        == 0
                    ):
J
JZ-LIANG 已提交
6956 6957 6958
                        self._record_sync_op(idx, last_offload_checkpoint)
                    else:
                        last_usage_idx = self.checkpoint_usage_count_and_idx[
6959 6960 6961 6962 6963 6964 6965 6966 6967 6968
                            last_offload_checkpoint
                        ]['idx']
                        assert (
                            last_usage_idx > 0
                        ), "last_usage_idx of checkpoint [{}] should large than 0".format(
                            last_offload_checkpoint
                        )
                        self._record_sync_op(
                            last_usage_idx + 1, last_offload_checkpoint
                        )
6969
            # record checkpoint usage
J
JZ-LIANG 已提交
6970 6971
            for input_var in input_vars:
                if input_var in need_offload_checkpoint_names:
6972 6973 6974
                    assert (
                        input_var not in self.synced_checkpoints
                    ), "checkpoint [{}] used after sync".format(input_var)
J
JZ-LIANG 已提交
6975 6976 6977
                    self.checkpoint_usage_count_and_idx[input_var]['count'] += 1
                    self.checkpoint_usage_count_and_idx[input_var]['idx'] = idx

6978 6979 6980 6981 6982
        assert (
            len(self.un_offload_checkpoint_names) == 0
        ), "{} checkpoints have NOT been Recorded".format(
            self.un_fetch_checkpoint_names
        )
J
JZ-LIANG 已提交
6983 6984 6985
        assert len(self.synced_checkpoints) == len(
            need_offload_checkpoint_names
        ), "{} checkpoints have NOT been Recorded".format(
6986 6987
            set(need_offload_checkpoint_names) - set(self.synced_checkpoints)
        )
J
JZ-LIANG 已提交
6988 6989 6990 6991 6992

    def _update_forward(self):
        if len(self.idx2insertions) == 0:
            return
        for op_idx in reversed(
6993 6994
            range(self.fw_strart_op_idx, self.bw_strart_op_idx)
        ):
J
JZ-LIANG 已提交
6995 6996 6997 6998
            if op_idx in self.idx2insertions:
                operation, checkpoint_name = self.idx2insertions[op_idx]
                if operation == "offload":
                    self._insert_offload_op(op_idx, checkpoint_name)
6999
                    logging.debug(
7000 7001
                        "Insert [{}] offload op.".format(checkpoint_name)
                    )
J
JZ-LIANG 已提交
7002 7003 7004
                    del self.idx2insertions[op_idx]
                elif operation == "sync":
                    self._insert_sync_op(op_idx, checkpoint_name)
7005
                    logging.debug(
7006 7007
                        "Insert [{}] offload_sync op.".format(checkpoint_name)
                    )
J
JZ-LIANG 已提交
7008 7009 7010
                    del self.idx2insertions[op_idx]

        self.block._sync_with_cpp()
7011 7012 7013 7014 7015
        assert (
            len(self.idx2insertions) == 0
        ), "{} checkpoints left un-Offloaded".format(
            [ele[1] for ele in self.idx2insertions.values()]
        )
J
JZ-LIANG 已提交
7016 7017 7018 7019 7020 7021 7022 7023

    def _check_offload_fetch(self):
        # TODO(JZ-LIANG) the single stream offload need no sync
        pass

    def _offload(self, loss, startup_program=None):
        """
        core steps for recompute offload
7024
        1. create pinned vars and temp vars
J
JZ-LIANG 已提交
7025 7026 7027 7028 7029 7030
        2. parse & update Forward pass: offload, sync
        3. parse & update Backward pass: rename, fetch, sync
        4. verify the correctness
        """
        self._main_program = loss.block.program
        self.block = loss.block
7031
        if startup_program is None:
J
JZ-LIANG 已提交
7032
            startup_program = paddle.static.default_startup_program()
J
JZ-LIANG 已提交
7033 7034

        with program_guard(self._main_program, startup_program):
7035 7036 7037 7038 7039 7040 7041 7042 7043 7044
            assert (
                len(self.checkpoint_shape) > 0
            ), "checkpoints shape {} should be an non empty list like: [12, 512, 1024]".format(
                self.checkpoint_shape
            )
            assert all(
                [ele > 0 for ele in self.checkpoint_shape]
            ), "all ele in checkpoints shape {} should be a determined integer larger than 0".format(
                self.checkpoint_shape
            )
J
JZ-LIANG 已提交
7045 7046 7047 7048
            self.checkpoint_name2pinned_name = dict()
            self.checkpoint_name2fetch_name = dict()
            for checkpoint_varname in self.sorted_checkpoint_names:
                pinned_var_name, fetch_var_name = self._creat_vars(
7049 7050
                    checkpoint_varname
                )
J
JZ-LIANG 已提交
7051
                self.checkpoint_name2pinned_name[
7052 7053
                    checkpoint_varname
                ] = pinned_var_name
J
JZ-LIANG 已提交
7054
                self.checkpoint_name2fetch_name[
7055 7056
                    checkpoint_varname
                ] = fetch_var_name
J
JZ-LIANG 已提交
7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069
            self._append_fill_constant_ops(startup_program)
            # TODO (JZ-LIANG) to provide two offload stragtegy in future
            # step 2. parse & update FW: rename, offload, sync
            self._parse_backward()
            self._update_backward()
            # step 3. parse & update BW: rename, offload, sync
            self._parse_forward()
            self._update_forward()
            # step 4. verify the correctness
            self._check_offload_fetch()

        return

7070 7071 7072 7073 7074 7075 7076 7077
    def backward(
        self,
        loss,
        startup_program=None,
        parameter_list=None,
        no_grad_set=None,
        callbacks=None,
    ):
M
mapingshuo 已提交
7078 7079 7080 7081 7082 7083 7084
        """
        call append_backward with checkpoints.

        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
7085 7086
            parameter_list (list): list of Variables or Variable.names to update.
            no_grad_set (set|None): set of Variables or Variables.names should be ignored.
M
mapingshuo 已提交
7087 7088 7089 7090 7091 7092 7093
            callbacks (list|None): list of callables to run when appending backward
                operator for one parameter.
            checkpoints (list): list of Variables as checkpoints

        Examples:
            .. code-block:: python

7094
                import paddle
M
mapingshuo 已提交
7095
                import paddle.fluid as fluid
7096

7097 7098
                paddle.enable_static()

M
mapingshuo 已提交
7099
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
C
Charles-hit 已提交
7100 7101
                    fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim)
                    prediction = paddle.static.nn.fc(x=[fc_1], size=label_dim, activation='softmax')
7102 7103 7104 7105 7106
                    cost = paddle.nn.functional.cross_entropy(
                        input=prediction, label=input_y,
                        reduction='none', use_softmax=False
                    )
                    sum_cost = paddle.mean(cost)
M
mapingshuo 已提交
7107
                    return sum_cost, fc_1, prediction
7108 7109


G
GGBond8488 已提交
7110 7111
                input_x = paddle.static.data(name="x", shape=[-1,32], dtype='float32')
                input_y = paddle.static.data(name="y", shape=[-1,1], dtype='int64')
M
mapingshuo 已提交
7112 7113
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
7114

M
mapingshuo 已提交
7115 7116
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
7117
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
7118 7119 7120 7121
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
7122
                    no_grad_set=None)
M
mapingshuo 已提交
7123 7124
                print("Finished backward")
        """
7125 7126 7127
        assert (
            self._checkpoints is not None
        ), "You should call _set_checkpoints first"
M
mapingshuo 已提交
7128

姜永久 已提交
7129
        if in_dygraph_mode():
M
mapingshuo 已提交
7130
            raise NotImplementedError(
7131 7132
                "DyGraph current does not support recompute"
            )
M
mapingshuo 已提交
7133 7134 7135 7136

        self._dtype = loss.dtype
        program = loss.block.program
        with program_guard(program, startup_program):
7137 7138 7139 7140 7141 7142 7143
            checkpoint_vars = []
            for ckpt in self._checkpoints:
                if isinstance(ckpt, Variable):
                    checkpoint_vars.append(ckpt)
                else:
                    checkpoint_vars.append(loss.block.var(ckpt))

J
JZ-LIANG 已提交
7144 7145 7146 7147 7148 7149
            # allow return to non-recompute when checkpoints is empty
            if len(checkpoint_vars) > 0:
                params_grads, sorted_checkpoint_names = append_backward(
                    loss,
                    parameter_list,
                    no_grad_set,
7150 7151
                    checkpoints=checkpoint_vars,
                )
J
JZ-LIANG 已提交
7152
            else:
7153 7154 7155 7156 7157 7158
                params_grads = append_backward(
                    loss,
                    parameter_list,
                    no_grad_set,
                    checkpoints=checkpoint_vars,
                )
J
JZ-LIANG 已提交
7159 7160 7161 7162 7163

        if self.enable_offload:
            self.sorted_checkpoint_names = sorted_checkpoint_names
            self._offload(loss, startup_program=startup_program)

M
mapingshuo 已提交
7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175
        return params_grads

    def apply_optimize(self, loss, startup_program, params_grads):
        """
        call the apply_optimize function of self._optimizer
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Examples:
            .. code-block:: python
7176
                import paddle
M
mapingshuo 已提交
7177
                import paddle.fluid as fluid
7178

7179 7180
                paddle.enable_static()

M
mapingshuo 已提交
7181
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
C
Charles-hit 已提交
7182 7183
                    fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim)
                    prediction = paddle.static.nn.fc(x=[fc_1], size=label_dim, activation='softmax')
7184 7185 7186 7187 7188
                    cost = paddle.nn.functional.cross_entropy(
                        input=prediction, label=input_y,
                        reduction='none', use_softmax=False
                    )
                    sum_cost = paddle.mean(cost)
7189 7190
                    return sum_cost, fc_1, prediction

G
GGBond8488 已提交
7191 7192
                input_x = paddle.static.data(name="x", shape=[-1,32], dtype='float32')
                input_y = paddle.static.data(name="y", shape=[-1,1], dtype='int64')
M
mapingshuo 已提交
7193 7194
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
7195

M
mapingshuo 已提交
7196 7197
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
7198
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
7199 7200 7201 7202
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
7203
                    no_grad_set=None)
7204

M
mapingshuo 已提交
7205 7206
                optimize_ops = sgd.apply_optimize(
                    cost, startup_program=None, params_grads=params_grads)
7207

M
mapingshuo 已提交
7208 7209 7210
                print("Finished apply_optimize")
        """

7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222
        func = (
            self._optimizer.apply_optimize
            if hasattr(self._optimizer, 'apply_optimize')
            else self._optimizer._apply_optimize
        )
        return func(
            loss, startup_program=startup_program, params_grads=params_grads
        )

    def minimize(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
7223
        assert isinstance(loss, Variable), "The loss should be an Variable."
7224 7225 7226
        assert (
            self._checkpoints is not None
        ), "You should call _set_checkpoints first"
姜永久 已提交
7227
        if in_dygraph_mode():
M
mapingshuo 已提交
7228
            raise NotImplementedError(
7229 7230 7231 7232 7233 7234 7235 7236
                "DyGraph current does not support recompute"
            )
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set,
        )
M
mapingshuo 已提交
7237

7238 7239 7240
        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads
        )
M
mapingshuo 已提交
7241 7242 7243 7244

        return optimize_ops, params_grads


7245
class LookaheadOptimizer:
7246
    r"""
7247
        :api_attr: Static Graph
S
swtkiwi 已提交
7248

M
mapingshuo 已提交
7249 7250 7251 7252
    This implements the Lookahead optimizer of the
    paper : https://arxiv.org/abs/1907.08610.

    Lookahead keeps two sets of params: the fast_params and
7253 7254
    the slow_params. inner_optimizer update fast_params every
    training step. Lookahead updates the slow_params and fast_params
M
mapingshuo 已提交
7255 7256 7257
    every k training steps as follows:

    .. math::
7258

M
mapingshuo 已提交
7259
        slow\_param_t &= slow\_param_{t-1} + \\alpha * (fast\_param_{t-1} - slow\_param_{t-1})
7260

7261
        fast\_param_t &=  slow\_param_t
M
mapingshuo 已提交
7262 7263

    Args:
7264
        inner_optimizer (Optimizer): The optimizer that update fast params step by step.
M
mapingshuo 已提交
7265 7266 7267 7268 7269 7270 7271 7272 7273
        alpha (float): The learning rate of Lookahead.
        k (int): The slow params is updated every k steps.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import numpy as np
7274
            import numpy.random as random
M
mapingshuo 已提交
7275

7276
            paddle.enable_static()
7277

G
GGBond8488 已提交
7278 7279
            x = paddle.static.data(name='x', shape=[-1,2], dtype='float32')
            label = paddle.static.data(name="label", shape=[-1,1], dtype="int64")
C
Charles-hit 已提交
7280
            y = paddle.static.nn.fc(x=[x], size=2, activation="softmax")
7281 7282 7283 7284
            loss = paddle.nn.functional.cross_entropy(
                input=y, label=label,
                reduction='none', use_softmax=False
            )
7285
            loss = paddle.mean(x=loss)
7286 7287 7288 7289 7290 7291 7292 7293 7294
            sgd = fluid.optimizer.SGD(learning_rate=0.01)
            optimizer = fluid.optimizer.LookaheadOptimizer(sgd,
                                                alpha=0.5,
                                                k=5)
            optimizer.minimize(loss)
            main_program = fluid.default_main_program()
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
M
mapingshuo 已提交
7295

7296 7297 7298
            def train_reader(limit=5):
                for i in range(limit):
                    yield random.random([2]).astype('float32'), random.random([1]).astype('int64')
7299

7300 7301
            feeder = fluid.DataFeeder(feed_list=[x, label], place=place)
            reader = paddle.batch(paddle.reader.shuffle(train_reader, buf_size=50000),batch_size=1)
7302

7303 7304 7305
            for batch_data in reader():
                exe.run(fluid.default_main_program(),
                feed=feeder.feed(batch_data))
M
mapingshuo 已提交
7306 7307 7308 7309 7310

    """

    def __init__(self, inner_optimizer, alpha=0.5, k=5):

姜永久 已提交
7311
        if in_dygraph_mode():
Z
zhongpu 已提交
7312
            raise Exception("In dygraph, don't support LookaheadOptimizer.")
7313
        assert inner_optimizer is not None, "inner optimizer can not be None"
M
mapingshuo 已提交
7314 7315 7316
        assert (
            0.0 <= alpha <= 1.0
        ), "alpha should be larger or equal to 0.0, and less or equal than 1.0"
7317
        assert isinstance(k, int) and k > 0, "k should be a positive integer"
M
mapingshuo 已提交
7318 7319 7320 7321 7322 7323 7324 7325 7326 7327

        self.inner_optimizer = inner_optimizer
        self.alpha = alpha
        self.k = k
        self.type = "lookahead"

    def minimize(self, loss, startup_program=None):

        # Apply inner optimizer to the main_program
        mini_out = self.inner_optimizer.minimize(
7328 7329
            loss, startup_program=startup_program
        )
M
mapingshuo 已提交
7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340

        # Get startup_program and main_program
        if startup_program is None:
            startup_program = default_startup_program()
        main_block = loss.block

        # add some vars to the main_program
        params = [param.name for param in main_block.all_parameters()]
        param_to_slow = {}
        for param in params:
            fast_var = main_block.var(param)
7341 7342 7343 7344 7345 7346 7347
            assert fast_var is not None
            slow_var = main_block.create_var(
                name=param + "@SLOW",
                shape=fast_var.shape,
                dtype=fast_var.dtype,
                persistable=True,
            )
M
mapingshuo 已提交
7348 7349 7350 7351 7352 7353
            param_to_slow[param] = slow_var

        # add some vars to the startup_program
        startup_block = startup_program.global_block()
        for param in params:
            fast_var = startup_block.var(param)
7354 7355 7356 7357 7358 7359 7360
            assert fast_var is not None
            slow_var = startup_block.create_var(
                name=param + "@SLOW",
                shape=fast_var.shape,
                dtype=fast_var.dtype,
                persistable=True,
            )
M
mapingshuo 已提交
7361

7362 7363 7364
            startup_block.append_op(
                type="assign", inputs={"X": fast_var}, outputs={"Out": slow_var}
            )
M
mapingshuo 已提交
7365

7366 7367
        with framework.program_guard(main_block.program, startup_program):
            # Add Var k to main prog and startup prog
7368
            k = paddle.static.create_global_var(
7369 7370 7371 7372 7373 7374
                name="lookahead_k",
                shape=[1],
                value=int(self.k),
                dtype='int32',
                persistable=True,
            )
M
mapingshuo 已提交
7375

7376
            # Add Var alpha to main prog and startup prog
7377
            alpha = paddle.static.create_global_var(
7378 7379 7380 7381 7382 7383
                name="lookahead_alpha",
                shape=[1],
                value=float(self.alpha),
                dtype='float32',
                persistable=True,
            )
M
mapingshuo 已提交
7384

7385
            # Add Var step
7386
            step = paddle.static.create_global_var(
7387 7388 7389 7390 7391 7392
                name="lookahead_step",
                shape=[1],
                value=int(0),
                dtype='int32',
                persistable=True,
            )
7393
            paddle.increment(x=step, value=1.0)
7394 7395

            # lookahead
7396
            zero_var = paddle.tensor.fill_constant(
7397 7398
                shape=[1], dtype='float32', value=0.0
            )
7399

7400
            one_var = paddle.tensor.fill_constant(
7401 7402
                shape=[1], dtype='float32', value=1.0
            )
7403

7404
            mod = paddle.remainder(step, k)
7405
            with layers.control_flow.Switch() as switch:
7406 7407 7408 7409
                with switch.case(step == one_var):
                    for param_name in params:
                        fast_var = main_block.var(param_name)
                        slow_var = param_to_slow[param_name]
7410
                        paddle.assign(fast_var, output=slow_var)
7411 7412 7413 7414
                with switch.case(mod == zero_var):
                    for param_name in params:
                        fast_var = main_block.var(param_name)
                        slow_var = param_to_slow[param_name]
7415 7416 7417 7418
                        tmp_var = paddle.add(
                            paddle.multiply(fast_var, alpha),
                            paddle.multiply(
                                slow_var, paddle.subtract(one_var, alpha)
7419 7420
                            ),
                        )
7421 7422
                        paddle.assign(tmp_var, output=slow_var)
                        paddle.assign(tmp_var, output=fast_var)
7423 7424
                with switch.default():
                    pass
M
mapingshuo 已提交
7425
        return mini_out
7426 7427


7428
class GradientMergeOptimizer:
7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450
    """
    Gradient Merge, also called as Gradient Accumulation,
    is a training strategy for larger batches. With this strategy,
    the parameter will not be updated until specific steps.

    For each step, the forward network and the backward network
    will run to calculate the gradient of the parameters.

    For every k step, the optimization network will run,
    applying a specific optimization method (such as SGD, Adam)
    to the parameters.

    Args:
        inner_optimizer (Optimizer): The specific optimization (such as SGD, Adam)
            which update the parameters
        k_steps (int): the update period of the parameters
        avg (bool): whether to average the gradients of each mini-batch,
            the default value is `True`

    Examples:
        .. code-block:: python

7451
        import paddle
7452 7453 7454 7455 7456 7457 7458 7459
        import paddle.fluid as fluid
        import numpy as np

        def gen_data(batch_size):
            return {"x": np.random.random(size=(batch_size, 32)).astype('float32'),
                    "y": np.random.random(size=(batch_size, 1)).astype('int64')}

        def mlp(input_x, input_y, hid_dim=128, label_dim=2):
C
Charles-hit 已提交
7460 7461
            fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim)
            prediction = paddle.static.nn.fc(x=[fc_1], size=label_dim, activation='softmax')
7462 7463 7464 7465 7466
            cost = paddle.nn.functional.cross_entropy(
                input=prediction, label=input_y,
                reduction='none', use_softmax=False
            )
            sum_cost = paddle.mean(cost)
7467 7468
            return sum_cost, fc_1, prediction

G
GGBond8488 已提交
7469 7470
        input_x = paddle.static.data(name="x", shape=[-1,32], dtype='float32')
        input_y = paddle.static.data(name="y", shape=[-1,1], dtype='int64')
7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486
        cost, fc_1, pred = mlp(input_x, input_y)
        sgd = fluid.optimizer.Adam(learning_rate=0.01)
        sgd = fluid.optimizer.GradientMergeOptimizer(sgd, k_steps=4, avg=True)
        sgd.minimize(cost)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())

        for i in range(10):
            cost_val = exe.run(feed=gen_data(32),
                       program=fluid.default_main_program(),
                       fetch_list=[cost.name])
            print("step=%d, cost=%f" % (i, cost_val[0]))
    """

7487 7488
    GRAD_MERGE_COND_NAME = "grad_merge_cond_name"

7489
    def __init__(self, inner_optimizer, k_steps=1, avg=True):
姜永久 已提交
7490
        if in_dygraph_mode():
7491 7492 7493
            raise Exception(
                "In dygraph, we don't support GradientMergeOptimizer."
                "You can do Gradient merge by yourself with k-times forward + backward, "
7494 7495
                "and one-time optimizer.minimize()"
            )
7496

7497 7498 7499 7500
        assert inner_optimizer is not None, "inner optimizer can not be None"
        assert (
            isinstance(k_steps, int) and k_steps > 0
        ), "k_steps should be a positive integer"
7501 7502 7503 7504 7505

        self.inner_optimizer = inner_optimizer
        self.k_steps = k_steps
        self.type = "gradient_merge"
        self.avg = avg
7506
        self._optimize_ops = None
7507

7508 7509 7510 7511 7512 7513
    def _set_k_steps(self, k_steps):
        self.k_steps = k_steps

    def _set_avg(self, avg):
        self.avg = avg

7514 7515 7516 7517 7518 7519 7520 7521
    def backward(
        self,
        loss,
        startup_program=None,
        parameter_list=None,
        no_grad_set=None,
        callbacks=None,
    ):
7522 7523 7524 7525 7526 7527 7528 7529 7530
        assert isinstance(loss, Variable), "The loss should be an Variable."
        assert (
            parameter_list is None
        ), "The parameter_list should be None when using GradientMergeOptimizer"
        assert (
            no_grad_set is None
        ), "The no_grad_set should be None when using GradientMergeOptimizer"

        params_grads = self.inner_optimizer.backward(
7531 7532
            loss, startup_program=startup_program
        )
7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543
        return params_grads

    def apply_optimize(self, loss, startup_program, params_grads):
        program = loss.block.program
        with program_guard(program, startup_program):
            optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

    def _is_the_backward_op(self, op):
        op_maker = core.op_proto_and_checker_maker
        backward = core.op_proto_and_checker_maker.OpRole.Backward
7544 7545 7546
        if op_maker.kOpRoleVarAttrName() in op.attr_names and int(
            op.all_attrs()[op_maker.kOpRoleAttrName()]
        ) == int(backward):
7547 7548 7549 7550 7551 7552
            return True
        return False

    def _remove_op_role_var(self, param, grad):
        op_maker = core.op_proto_and_checker_maker
        op = grad.op
7553 7554 7555 7556 7557
        assert self._is_the_backward_op(
            op
        ), 'grad.op={} is not the backward op which produces the grad={}'.format(
            op, grad.name
        )
7558 7559 7560

        block = grad.block
        var_attr = op.all_attrs()[op_maker.kOpRoleVarAttrName()]
7561 7562 7563 7564 7565 7566 7567 7568 7569 7570
        assert (
            param.name in var_attr
        ), 'when using GradientMergeOptimizer, param={} must be in var_attr={}'.format(
            param.name, var_attr
        )
        assert (
            grad.name in var_attr
        ), 'when using GradientMergeOptimizer, grad={} must be in var_attr={}'.format(
            param.name, var_attr
        )
7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596

        # remove (param, grad) from op_role_var
        var_attr.remove(param.name)
        var_attr.remove(grad.name)
        if len(var_attr) > 1:
            op._set_attr(op_maker.kOpRoleVarAttrName(), var_attr)
        else:
            op._remove_attr(op_maker.kOpRoleVarAttrName())

    def _add_gm_op_role_var(self, op, param, grad, cond):
        grad.op = op
        op_maker = core.op_proto_and_checker_maker
        backward = op_maker.OpRole.Backward

        # NOTE(wangxi). When distributed, we will insert grad_merge_all_reduce_op_handle
        # in multi_devices_graph_pass, which will allreduce(grad) if cond is True, else
        # do nothing.
        # In this way, the gradient can be merged first, and then communicate when the
        # condition is met, reducing the number of communications to increase the
        # speed.
        op._set_attr(self.GRAD_MERGE_COND_NAME, cond.name)
        op._set_attr(op_maker.kOpRoleAttrName(), backward)
        op._set_attr(op_maker.kOpRoleVarAttrName(), [param.name, grad.name])

    def _get_gm_cond_var(self, main_block):
        # Add const var
7597
        k_step_var = paddle.static.create_global_var(
7598 7599 7600 7601 7602 7603 7604 7605
            name="gradient_merge_k",
            shape=[1],
            value=int(self.k_steps),
            dtype='int32',
            persistable=True,
            force_cpu=True,
        )

7606
        zero_var = paddle.static.create_global_var(
7607 7608 7609 7610 7611 7612 7613
            name="gradient_merge_zero",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True,
            force_cpu=True,
        )
7614 7615

        # Add step var & cond var
7616
        step_var = paddle.static.create_global_var(
7617 7618 7619 7620 7621 7622 7623
            name="gradient_merge_step",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True,
            force_cpu=True,
        )
7624

7625 7626 7627
        cond_var = main_block.create_var(
            name="gradient_merge_cond", shape=[1], dtype='bool'
        )
7628 7629 7630

        with device_guard("cpu"):
            # step_var = (step_var + 1) % k_step
7631
            paddle.increment(x=step_var, value=1.0)
7632 7633 7634 7635 7636 7637
            main_block.append_op(
                type='elementwise_mod',
                inputs={'X': step_var, 'Y': k_step_var},
                outputs={'Out': step_var},
                attrs={'axis': -1, 'use_mkldnn': False},
            )
7638 7639

            # cond_var = (step_var == 0)
7640 7641 7642 7643 7644
            main_block.append_op(
                type='equal',
                inputs={'X': step_var, 'Y': zero_var},
                outputs={'Out': cond_var},
            )
7645 7646 7647 7648 7649 7650 7651 7652 7653 7654

        return cond_var

    def apply_gradients(self, params_grads):
        main_program = default_main_program()
        startup_program = default_startup_program()
        main_block = main_program.global_block()
        startup_block = startup_program.global_block()

        cond = self._get_gm_cond_var(main_block)
7655

7656
        # TODO(mapingshuo) support sparse embedding
7657 7658
        # step1: remove grad.op's op_role_var
        for param, grad in params_grads:
7659
            assert (
7660
                param.type != core.VarDesc.VarType.SELECTED_ROWS
7661 7662
            ), "SELECTED_ROWS is not supported in GradientMergeOptimizer for now"

7663
            self._remove_op_role_var(param, grad)
7664

7665
        param_to_grad = {k.name: v for (k, v) in params_grads}
7666 7667 7668
        param_names = param_to_grad.keys()
        param_to_gradient_merge = {}

7669 7670 7671 7672 7673
        new_params_grads = []
        # step2: create gradient_merge var and init with 0
        # and update op_role_var
        for param, grad in params_grads:
            param_name = param.name
7674
            param_var = main_block.var(param_name)
7675 7676 7677 7678 7679 7680 7681
            assert param_var is not None
            gradient_merge_var = main_block.create_var(
                name=param_name + "@GRAD@GradientMerge",
                shape=param_var.shape,
                dtype=param_var.dtype,
                persistable=True,
            )
7682
            param_to_gradient_merge[param_name] = gradient_merge_var
7683

7684 7685 7686 7687
            startup_gradient_merge_var = startup_block.create_var(
                name=param_name + "@GRAD@GradientMerge",
                shape=param_var.shape,
                dtype=param_var.dtype,
7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698
                persistable=True,
            )
            startup_block.append_op(
                type="fill_constant",
                outputs={"Out": startup_gradient_merge_var},
                attrs={
                    "shape": param_var.shape,
                    "dtype": param_var.dtype,
                    "value": float(0),
                },
            )
7699

7700 7701 7702
            # grad_merge += grad
            new_grad_op = main_block.append_op(
                type="elementwise_add",
7703
                inputs={'X': grad, 'Y': gradient_merge_var},
7704
                outputs={'Out': gradient_merge_var},
7705 7706 7707 7708 7709
                attrs={'axis': -1, 'use_mkldnn': False},
            )
            self._add_gm_op_role_var(
                new_grad_op, param, gradient_merge_var, cond
            )
7710 7711 7712 7713 7714 7715 7716 7717
            new_params_grads.append([param, gradient_merge_var])

        def true_apply_gradient():
            cur_block_idx = main_program.current_block_idx
            cur_block = main_program.current_block()

            # cur_block's forward_block & backward_block is itself
            cur_block._set_forward_block_idx(cur_block_idx)
7718
            op_maker = core.op_proto_and_checker_maker
7719 7720 7721 7722

            if self.avg:
                for param, new_grad in new_params_grads:
                    # grad /= k_steps
7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735
                    cur_block.append_op(
                        type='scale',
                        inputs={'X': new_grad},
                        outputs={'Out': new_grad},
                        attrs={
                            'scale': 1.0 / self.k_steps,
                            'bias': 0.0,
                            'bias_after_scale': False,
                        },
                    )
                    new_grad.op._set_attr(
                        op_maker.kOpRoleAttrName(), op_maker.OpRole.Backward
                    )
7736

7737 7738 7739 7740 7741 7742
            for param, new_grad in new_params_grads:
                # NOTE. regularization will append ops to grad.block,
                # while new_grad's real block is global_block,
                # but we want append regularization ops to cur_block,
                # so we set new_grad.block = cur_block
                new_grad.block = cur_block
7743

7744
            self._optimize_ops = self.inner_optimizer.apply_gradients(
7745 7746
                new_params_grads
            )
7747

7748 7749
            # clear gradient_merge_vars
            for param, new_grad in new_params_grads:
7750
                paddle.tensor.fill_constant(
7751 7752 7753 7754 7755 7756 7757 7758
                    shape=new_grad.shape,
                    dtype=new_grad.dtype,
                    value=0.0,
                    out=new_grad,
                )
                new_grad.op._set_attr(
                    op_maker.kOpRoleAttrName(), op_maker.OpRole.Optimize
                )
7759 7760

        # step3. apply gradient
7761
        paddle.static.nn.cond(cond, true_fn=true_apply_gradient, false_fn=None)
7762 7763 7764

        return self._optimize_ops

7765 7766 7767
    def minimize(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
7768 7769
        assert isinstance(loss, Variable), "The loss should be an Variable."

7770 7771 7772 7773 7774 7775
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set,
        )
7776

7777 7778 7779
        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads
        )
7780 7781

        return optimize_ops, params_grads