prior_box_op.h 6.7 KB
Newer Older
W
wanghaox 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/math_function.h"
// #include "paddle/operators/strided_memcpy.h"

namespace paddle {
namespace operators {

inline void expand_aspect_ratios(const std::vector<float> input_aspect_ratior,
                                 bool flip,
                                 std::vector<float>& output_aspect_ratior) {
  constexpr float eps = 1e-6;
  output_aspect_ratior.clear();
  output_aspect_ratior.push_back(1.);
  for (size_t i = 0; i < input_aspect_ratior.size(); ++i) {
    float ar = input_aspect_ratior[i];
    bool already_exist = false;
    for (size_t j = 0; j < output_aspect_ratior.size(); ++j) {
      if (fabs(ar - output_aspect_ratior[j]) < eps) {
        already_exist = true;
        break;
      }
    }
    if (!already_exist) {
      output_aspect_ratior.push_back(ar);
      if (flip) {
        output_aspect_ratior.push_back(1. / ar);
      }
    }
  }
}

template <typename Place, typename T>
class PriorBoxOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<paddle::framework::Tensor>("Input");
    auto* image = ctx.Input<paddle::framework::Tensor>("Image");
    auto* out = ctx.Output<paddle::framework::Tensor>("Out");

    auto min_sizes = ctx.Attr<std::vector<int>>("min_sizes");
    auto max_sizes = ctx.Attr<std::vector<int>>("max_sizes");
    auto input_aspect_ratio = ctx.Attr<std::vector<float>>("aspect_ratios");
    auto variances = ctx.Attr<std::vector<float>>("variances");
    auto flip = ctx.Attr<bool>("flip");
    auto clip = ctx.Attr<bool>("clip");

    std::vector<float> aspect_ratios;
    expand_aspect_ratios(input_aspect_ratio, flip, aspect_ratios);

    auto img_w = ctx.Attr<int>("img_w");
    auto img_h = ctx.Attr<int>("img_h");
    auto step_w = ctx.Attr<float>("step_w");
    auto step_h = ctx.Attr<float>("step_h");
    auto offset = ctx.Attr<float>("offset");

    int img_width, img_height;
    if (img_h == 0 || img_w == 0) {
W
wanghaox 已提交
73 74
      img_width = image->dims()[3];
      img_height = image->dims()[2];
W
wanghaox 已提交
75 76 77 78 79
    } else {
      img_width = img_w;
      img_height = img_h;
    }

W
wanghaox 已提交
80 81
    const int layer_width = input->dims()[3];
    const int layer_height = input->dims()[2];
W
wanghaox 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199

    float step_width, step_height;
    if (step_w == 0 || step_h == 0) {
      step_width = static_cast<float>(img_width) / layer_width;
      step_height = static_cast<float>(img_height) / layer_height;
    } else {
      step_width = step_w;
      step_height = step_h;
    }

    int num_priors = aspect_ratios.size() * min_sizes.size();
    if (max_sizes.size() > 0) {
      num_priors += max_sizes.size();
    }

    int dim = layer_height * layer_width * num_priors * 4;

    T* output_data = nullptr;
    framework::Tensor output_cpu;
    out->mutable_data<T>(ctx.GetPlace());
    if (platform::is_gpu_place(ctx.GetPlace())) {
      output_data =
          output_cpu.mutable_data<T>(out->dims(), platform::CPUPlace());
    } else {
      output_data = out->mutable_data<T>(ctx.GetPlace());
    }

    int idx = 0;
    for (int h = 0; h < layer_height; ++h) {
      for (int w = 0; w < layer_width; ++w) {
        float center_x = (w + offset) * step_width;
        float center_y = (h + offset) * step_height;
        float box_width, box_height;
        for (size_t s = 0; s < min_sizes.size(); ++s) {
          int min_size = min_sizes[s];
          // first prior: aspect_ratio = 1, size = min_size
          box_width = box_height = min_size;
          // xmin
          output_data[idx++] = (center_x - box_width / 2.) / img_width;
          // ymin
          output_data[idx++] = (center_y - box_height / 2.) / img_height;
          // xmax
          output_data[idx++] = (center_x + box_width / 2.) / img_width;
          // ymax
          output_data[idx++] = (center_y + box_height / 2.) / img_height;

          if (max_sizes.size() > 0) {
            int max_size = max_sizes[s];
            // second prior: aspect_ratio = 1,
            // size = sqrt(min_size * max_size)
            box_width = box_height = sqrt(min_size * max_size);
            // xmin
            output_data[idx++] = (center_x - box_width / 2.) / img_width;
            // ymin
            output_data[idx++] = (center_y - box_height / 2.) / img_height;
            // xmax
            output_data[idx++] = (center_x + box_width / 2.) / img_width;
            // ymax
            output_data[idx++] = (center_y + box_height / 2.) / img_height;
          }

          // rest of priors
          for (size_t r = 0; r < aspect_ratios.size(); ++r) {
            float ar = aspect_ratios[r];
            if (fabs(ar - 1.) < 1e-6) {
              continue;
            }
            box_width = min_size * sqrt(ar);
            box_height = min_size / sqrt(ar);
            // xmin
            output_data[idx++] = (center_x - box_width / 2.) / img_width;
            // ymin
            output_data[idx++] = (center_y - box_height / 2.) / img_height;
            // xmax
            output_data[idx++] = (center_x + box_width / 2.) / img_width;
            // ymax
            output_data[idx++] = (center_y + box_height / 2.) / img_height;
          }
        }
      }
    }

    // clip the prior's coordidate such that it is within [0, 1]
    if (clip) {
      for (int d = 0; d < dim; ++d) {
        output_data[d] = std::min<T>(std::max<T>(output_data[d], 0.), 1.);
      }
    }

    // set the variance.
    auto output_stride = framework::stride(out->dims());
    output_data += output_stride[1];
    if (variances.size() == 1) {
      for (int i = 0; i < dim; ++i) {
        output_data[i] = variances[0];
      }
    } else {
      int count = 0;
      for (int h = 0; h < layer_height; ++h) {
        for (int w = 0; w < layer_width; ++w) {
          for (int i = 0; i < num_priors; ++i) {
            for (int j = 0; j < 4; ++j) {
              output_data[count] = variances[j];
              ++count;
            }
          }
        }
      }
    }
    if (platform::is_gpu_place(ctx.GetPlace())) {
      framework::CopyFrom(output_cpu, platform::CPUPlace(),
                          ctx.device_context(), out);
    }
  }
};

}  // namespace operators
}  // namespace paddle