test_where_op.py 12.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
G
GaoWei8 已提交
19
import paddle
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
from op_test import OpTest
from paddle.fluid import compiler, Program, program_guard
from paddle.fluid.op import Operator
from paddle.fluid.backward import append_backward


class TestWhereOp(OpTest):
    def setUp(self):
        self.op_type = "where"
        self.init_config()
        self.inputs = {'Condition': self.cond, 'X': self.x, 'Y': self.y}
        self.outputs = {'Out': np.where(self.cond, self.x, self.y)}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X', 'Y'], 'Out')

    def init_config(self):
        self.x = np.random.uniform(-3, 5, (100)).astype("float64")
        self.y = np.random.uniform(-3, 5, (100)).astype("float64")
        self.cond = np.zeros((100)).astype("bool")


class TestWhereOp2(TestWhereOp):
    def init_config(self):
        self.x = np.random.uniform(-5, 5, (60, 2)).astype("float64")
        self.y = np.random.uniform(-5, 5, (60, 2)).astype("float64")
        self.cond = np.ones((60, 2)).astype("bool")


class TestWhereOp3(TestWhereOp):
    def init_config(self):
        self.x = np.random.uniform(-3, 5, (20, 2, 4)).astype("float64")
        self.y = np.random.uniform(-3, 5, (20, 2, 4)).astype("float64")
        self.cond = np.array(np.random.randint(2, size=(20, 2, 4)), dtype=bool)


class TestWhereAPI(unittest.TestCase):
G
GaoWei8 已提交
63 64
    def setUp(self):
        self.init_data()
65

G
GaoWei8 已提交
66 67 68 69 70 71
    def init_data(self):
        self.shape = [10, 15]
        self.cond = np.array(np.random.randint(2, size=self.shape), dtype=bool)
        self.x = np.random.uniform(-2, 3, self.shape).astype(np.float32)
        self.y = np.random.uniform(-2, 3, self.shape).astype(np.float32)
        self.out = np.where(self.cond, self.x, self.y)
72

G
GaoWei8 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    def ref_x_backward(self, dout):
        return np.where(self.cond == True, dout, 0)

    def ref_y_backward(self, dout):
        return np.where(self.cond == False, dout, 0)

    def test_api(self, use_cuda=False):
        for x_stop_gradient in [False, True]:
            for y_stop_gradient in [False, True]:
                with fluid.program_guard(Program(), Program()):
                    cond = fluid.layers.data(
                        name='cond', shape=self.shape, dtype='bool')
                    x = fluid.layers.data(
                        name='x', shape=self.shape, dtype='float32')
                    y = fluid.layers.data(
                        name='y', shape=self.shape, dtype='float32')
                    x.stop_gradient = x_stop_gradient
                    y.stop_gradient = y_stop_gradient
                    result = paddle.where(cond, x, y)
                    append_backward(layers.mean(result))

                    for use_cuda in [False, True]:
                        if use_cuda and not fluid.core.is_compiled_with_cuda():
                            break
                        place = fluid.CUDAPlace(
                            0) if use_cuda else fluid.CPUPlace()
                        exe = fluid.Executor(place)
                        fetch_list = [result, result.grad_name]
                        if x_stop_gradient is False:
                            fetch_list.append(x.grad_name)
                        if y_stop_gradient is False:
                            fetch_list.append(y.grad_name)
                        out = exe.run(
                            fluid.default_main_program(),
                            feed={'cond': self.cond,
                                  'x': self.x,
                                  'y': self.y},
                            fetch_list=fetch_list)
                        assert np.array_equal(out[0], self.out)
                        if x_stop_gradient is False:
                            assert np.array_equal(out[2],
                                                  self.ref_x_backward(out[1]))
                            if y.stop_gradient is False:
                                assert np.array_equal(
                                    out[3], self.ref_y_backward(out[1]))
                        elif y.stop_gradient is False:
                            assert np.array_equal(out[2],
                                                  self.ref_y_backward(out[1]))
121 122 123 124 125 126 127

    def test_api_broadcast(self, use_cuda=False):
        main_program = Program()
        with fluid.program_guard(main_program):
            x = fluid.layers.data(name='x', shape=[4, 1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[4, 2], dtype='float32')
            x_i = np.array([[0.9383, 0.1983, 3.2, 1.2]]).astype("float32")
128 129
            y_i = np.array([[1.0, 1.0, 1.0, 1.0],
                            [1.0, 1.0, 1.0, 1.0]]).astype("float32")
G
GaoWei8 已提交
130
            result = paddle.where(x > 1, x=x, y=y)
131 132 133 134 135 136 137 138 139 140

            for use_cuda in [False, True]:
                if use_cuda and not fluid.core.is_compiled_with_cuda():
                    return
                place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
                exe = fluid.Executor(place)
                out = exe.run(fluid.default_main_program(),
                              feed={'x': x_i,
                                    'y': y_i},
                              fetch_list=[result])
G
GaoWei8 已提交
141
                assert np.array_equal(out[0], np.where(x_i > 1, x_i, y_i))
142

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
    def __test_where_with_broadcast_static(self, cond_shape, x_shape, y_shape):
        paddle.enable_static()

        main_program = Program()
        with fluid.program_guard(main_program):
            cond = fluid.layers.data(
                name='cond', shape=cond_shape, dtype='bool')
            x = fluid.layers.data(name='x', shape=x_shape, dtype='float32')
            y = fluid.layers.data(name='y', shape=y_shape, dtype='float32')

            cond_data_tmp = np.random.random(size=cond_shape).astype("float32")
            cond_data = cond_data_tmp < 0.3
            x_data = np.random.random(size=x_shape).astype("float32")
            y_data = np.random.random(size=y_shape).astype("float32")

            result = paddle.where(condition=cond, x=x, y=y)

            for use_cuda in [False, True]:
                if use_cuda and not fluid.core.is_compiled_with_cuda():
                    return
                place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()

                exe = fluid.Executor(place)
                out = exe.run(
                    fluid.default_main_program(),
                    feed={'cond': cond_data,
                          'x': x_data,
                          'y': y_data},
                    fetch_list=[result])

                expect = np.where(cond_data, x_data, y_data)

                assert np.array_equal(out[0], expect)

    def test_static_api_broadcast_1(self):
        cond_shape = [2, 4]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)

    def test_static_api_broadcast_2(self):
        cond_shape = [2, 1]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)

    def test_static_api_broadcast_3(self):
        cond_shape = [2, 2, 1]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)

    def test_static_api_broadcast_4(self):
        cond_shape = [2, 1, 4]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)

    # @Note Now, maybe not compatibility with old version
    def test_static_api_broadcast_5(self):
        cond_shape = [3, 2, 2, 4]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)

    # @Note Now, maybe not compatibility with old version
    def test_static_api_broadcast_6(self):
        cond_shape = [2, 2, 4]
        a_shape = [2, 2, 1]
        b_shape = [2, 2, 1]
        self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)

    # @Note Now, maybe not compatibility with old version
    def test_static_api_broadcast_7(self):
        cond_shape = [2, 2, 4]
        a_shape = [2, 1, 4]
        b_shape = [2, 1, 4]
        self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)

    # @Note Now, maybe not compatibility with old version
    def test_static_api_broadcast_8(self):
        cond_shape = [3, 2, 2, 4]
        a_shape = [2, 2, 1]
        b_shape = [2, 2, 1]
        self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)

229 230 231 232 233 234 235 236 237 238

class TestWhereDygraphAPI(unittest.TestCase):
    def test_api(self):
        with fluid.dygraph.guard():
            x_i = np.array([0.9383, 0.1983, 3.2, 1.2]).astype("float64")
            y_i = np.array([1.0, 1.0, 1.0, 1.0]).astype("float64")
            cond_i = np.array([False, False, True, True]).astype("bool")
            x = fluid.dygraph.to_variable(x_i)
            y = fluid.dygraph.to_variable(y_i)
            cond = fluid.dygraph.to_variable(cond_i)
G
GaoWei8 已提交
239
            out = paddle.where(cond, x, y)
240 241
            assert np.array_equal(out.numpy(), np.where(cond_i, x_i, y_i))

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
    def __test_where_with_broadcast_dygraph(self, cond_shape, a_shape, b_shape):
        with fluid.dygraph.guard():
            cond_tmp = paddle.rand(cond_shape)
            cond = cond_tmp < 0.3
            a = paddle.rand(a_shape)
            b = paddle.rand(b_shape)

            result = paddle.where(cond, a, b)
            result = result.numpy()

            expect = np.where(cond, a, b)

            self.assertTrue(np.array_equal(expect, result))

    def test_dygraph_api_broadcast_1(self):
        cond_shape = [2, 4]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)

    def test_dygraph_api_broadcast_2(self):
        cond_shape = [2, 1]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)

    def test_dygraph_api_broadcast_3(self):
        cond_shape = [2, 2, 1]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)

    def test_dygraph_api_broadcast_4(self):
        cond_shape = [2, 1, 4]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)

    # @Note Now, maybe not compatibility with old version
    def test_dygraph_api_broadcast_5(self):
        cond_shape = [3, 2, 2, 4]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)

    # @Note Now, maybe not compatibility with old version
    def test_dygraph_api_broadcast_6(self):
        cond_shape = [2, 2, 4]
        a_shape = [2, 2, 1]
        b_shape = [2, 2, 1]
        self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)

    # @Note Now, maybe not compatibility with old version
    def test_dygraph_api_broadcast_7(self):
        cond_shape = [2, 2, 4]
        a_shape = [2, 1, 4]
        b_shape = [2, 1, 4]
        self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)

    # @Note Now, maybe not compatibility with old version
    def test_dygraph_api_broadcast_8(self):
        cond_shape = [3, 2, 2, 4]
        a_shape = [2, 2, 1]
        b_shape = [2, 2, 1]
        self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)

308 309 310 311 312 313 314 315 316

class TestWhereOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
            x_i = np.array([0.9383, 0.1983, 3.2, 1.2]).astype("float64")
            y_i = np.array([1.0, 1.0, 1.0, 1.0]).astype("float64")
            cond_i = np.array([False, False, True, True]).astype("bool")

            def test_Variable():
G
GaoWei8 已提交
317
                paddle.where(cond_i, x_i, y_i)
318 319 320 321 322 323 324

            self.assertRaises(TypeError, test_Variable)

            def test_type():
                x = fluid.layers.data(name='x', shape=[4], dtype='bool')
                y = fluid.layers.data(name='y', shape=[4], dtype='float16')
                cond = fluid.layers.data(name='cond', shape=[4], dtype='int32')
G
GaoWei8 已提交
325
                paddle.where(cond, x, y)
326 327 328 329 330 331

            self.assertRaises(TypeError, test_type)


if __name__ == '__main__':
    unittest.main()