cache_cudnn_frontend.h 7.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <map>
#include <mutex>
#include <string>
20
#include <thread>
21 22 23 24
#include <vector>

#include "paddle/phi/backends/dynload/cudnn_frontend.h"

25
PD_DECLARE_int32(cudnn_cache_saturation_count);
26 27 28 29 30 31 32 33 34 35 36 37

namespace phi {
namespace autotune {

class CudnnFrontendPlanCache {
 public:
  CudnnFrontendPlanCache() : cache_mutex_(new std::mutex()) {
    map_.clear();
    tracker_.clear();
    saturation_count_ = FLAGS_cudnn_cache_saturation_count;
  }

38 39 40 41 42 43 44
  int64_t Size() const {
    int64_t total_size = 0;
    for (auto it = map_.begin(); it != map_.end(); it++) {
      total_size += (it->second).size();
    }
    return total_size;
  }
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

  int64_t CacheHits() const { return cache_hits_; }

  int64_t CacheMisses() const { return cache_misses_; }

  float CacheHitRate() const {
    int64_t num_accesses = cache_hits_ + cache_misses_;
    float cache_hit_rate = 0.;
    if (num_accesses != 0) {
      cache_hit_rate =
          static_cast<float>(cache_hits_) / static_cast<float>(num_accesses);
    }
    return cache_hit_rate;
  }

  void Clean() {
    std::lock_guard<std::mutex> lock(*cache_mutex_);
    map_.clear();
    tracker_.clear();
    cache_hits_ = 0;
    cache_misses_ = 0;
  }

68 69
  bool FindPlan(const cudnn_frontend::feature_vector_t &feature,
                cudnnHandle_t handle) {
70 71
    bool ret = false;
    std::lock_guard<std::mutex> lock(*cache_mutex_);
72 73
    auto &local_map = map_[hasher(std::this_thread::get_id())];
    if (local_map.count(GetExtendedFeature(feature, handle)) > 0) {
74 75 76 77 78 79 80 81
      cache_hits_++;
      ret = true;
    } else {
      cache_misses_++;
    }
    return ret;
  }

82 83 84 85
  void GetPlanAndWorkspaceSize(const cudnn_frontend::feature_vector_t &feature,
                               const cudnn_frontend::ExecutionPlan **plan,
                               int64_t *workspace_size,
                               cudnnHandle_t handle) {
86 87 88
    // Note(tizheng): CUDNNv8 execution plan is not thread-safe.
    // A shared plan being executed by different threads is
    // generally not safe (for now).
89
    std::lock_guard<std::mutex> lock(*cache_mutex_);
90 91 92
    auto &local_map = map_[hasher(std::this_thread::get_id())];

    auto it = local_map.find(GetExtendedFeature(feature, handle));
93 94 95 96 97
    PADDLE_ENFORCE_NE(it,
                      local_map.end(),
                      phi::errors::InvalidArgument(
                          "[cudnn_frontend] Cached Plan Not Found."));

98 99 100 101
    *plan = &(it->second);
    *workspace_size = (*plan)->getWorkspaceSize();
    VLOG(4) << "Cached execution plan found." << (*plan)->getTag()
            << "; Require workspace: " << *workspace_size;
102 103
  }

104 105 106 107
  void InsertPlan(const cudnn_frontend::feature_vector_t &feature,
                  const cudnn_frontend::ExecutionPlan &plan,
                  cudnnHandle_t handle) {
    VLOG(4) << "[cudnn_frontend] cache: Insert plan: " << plan.getTag();
108
    std::lock_guard<std::mutex> lock(*cache_mutex_);
109 110
    auto &local_map = map_[hasher(std::this_thread::get_id())];
    local_map.insert(std::make_pair(GetExtendedFeature(feature, handle), plan));
111 112
  }

113 114 115
  bool IsStable(const cudnn_frontend::feature_vector_t &feature,
                const std::string &tag,
                cudnnHandle_t handle) {
116 117 118 119
    if (saturation_count_ == 1) {
      return true;
    }
    std::lock_guard<std::mutex> lock(*cache_mutex_);
120 121 122 123
    auto &local_map = map_[hasher(std::this_thread::get_id())];
    auto &local_tracker = tracker_[hasher(std::this_thread::get_id())];
    auto ext_feature = GetExtendedFeature(feature, handle);
    if (local_map.count(ext_feature)) {
124 125
      return false;
    }
126 127
    int cnt = local_tracker[std::make_pair(ext_feature, tag)] += 1;
    VLOG(4) << "[cudnn_frontend] SaturationTracker: " << tag << " " << cnt;
128 129 130
    return cnt >= saturation_count_;
  }

131 132 133 134 135
  bool FindPlan(const cudnn_frontend::OperationGraph &op_graph,
                cudnnHandle_t handle) {
    return FindPlan(op_graph.getFeatureVector(), handle);
  }

136 137 138 139 140 141
  void GetPlanAndWorkspaceSize(const cudnn_frontend::OperationGraph &op_graph,
                               const cudnn_frontend::ExecutionPlan **plan,
                               int64_t *workspace_size,
                               cudnnHandle_t handle) {
    GetPlanAndWorkspaceSize(
        op_graph.getFeatureVector(), plan, workspace_size, handle);
142 143 144 145 146 147 148 149 150 151 152 153 154 155
  }

  void InsertPlan(const cudnn_frontend::OperationGraph &op_graph,
                  const cudnn_frontend::ExecutionPlan &plan,
                  cudnnHandle_t handle) {
    InsertPlan(op_graph.getFeatureVector(), plan, handle);
  }

  bool IsStable(const cudnn_frontend::OperationGraph &op_graph,
                const std::string &tag,
                cudnnHandle_t handle) {
    return IsStable(op_graph.getFeatureVector(), tag, handle);
  }

156
 private:
157 158 159 160 161 162
  cudnn_frontend::feature_vector_t GetExtendedFeature(
      cudnn_frontend::feature_vector_t feat, cudnnHandle_t handle) {
    int64_t val = 0;
    memcpy(&val, &handle, sizeof(int64_t));
    feat.push_back(val);
    return feat;
163
  }
164 165 166 167
  using FeatureVectorToPlanMap =
      std::map<cudnn_frontend::feature_vector_t, cudnn_frontend::ExecutionPlan>;
  std::map<std::size_t, FeatureVectorToPlanMap> map_;
  std::hash<std::thread::id> hasher;
168 169 170 171 172 173

  std::shared_ptr<std::mutex> cache_mutex_;
  int saturation_count_;

  using SaturationTracker =
      std::map<std::pair<cudnn_frontend::feature_vector_t, std::string>, int>;
174
  std::map<std::size_t, SaturationTracker> tracker_;
175 176 177 178 179

  int64_t cache_hits_{0};
  int64_t cache_misses_{0};
};  // class CudnnFrontendPlanCache

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
template <typename T>
inline void BuildFeatureVectorSingle(cudnn_frontend::feature_vector_t *v,
                                     const T &value) {
  v->push_back(static_cast<int64_t>(value));
}

template <>
inline void BuildFeatureVectorSingle(cudnn_frontend::feature_vector_t *v,
                                     const float &value) {
  int64_t val = 0;
  memcpy(&val, &value, sizeof(float));
  v->push_back(val);
}

template <>
inline void BuildFeatureVectorSingle<std::vector<int64_t>>(
    cudnn_frontend::feature_vector_t *v, const std::vector<int64_t> &value) {
  v->insert(v->end(), value.begin(), value.end());
}

template <>
inline void BuildFeatureVectorSingle<std::vector<int>>(
    cudnn_frontend::feature_vector_t *v, const std::vector<int> &value) {
  for (auto &val : value) {
    v->push_back(static_cast<int64_t>(val));
  }
}

template <>
inline void BuildFeatureVectorSingle<std::string>(
    cudnn_frontend::feature_vector_t *v, const std::string &value) {
  v->push_back(std::hash<std::string>()(value));
}

inline void BuildFeatureVector(cudnn_frontend::feature_vector_t *v) { return; }

template <typename T, typename... Args>
inline void BuildFeatureVector(cudnn_frontend::feature_vector_t *v,
                               const T &value,
                               Args... args) {
  BuildFeatureVectorSingle(v, value);
  BuildFeatureVector(v, args...);
}

224 225
}  // namespace autotune
}  // namespace phi