pool_mkldnn_op.cc 8.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

X
xiaoli.liu@intel.com 已提交
15
#include "paddle/fluid/framework/data_layout_transform.h"
16 17
#include "paddle/fluid/operators/pool_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
18
#include "paddle/fluid/platform/mkldnn_reuse.h"
19 20 21 22

namespace paddle {
namespace operators {

23 24
using framework::DataLayout;
using mkldnn::memory;
25
using mkldnn::pooling_backward;
26 27 28 29 30
using mkldnn::pooling_forward;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
31

32 33 34 35 36 37 38 39 40 41 42 43 44
template <typename T>
class PoolMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("X");
    Tensor* output = ctx.Output<Tensor>("Out");

45 46 47
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
48 49 50 51 52

    std::string pooling_type = ctx.Attr<std::string>("pooling_type");
    std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
53

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
    if (ctx.Attr<bool>("global_pooling")) {
      for (size_t i = 0; i < ksize.size(); ++i) {
        paddings[i] = 0;
        ksize[i] = static_cast<int>(input->dims()[i + 2]);
      }
    }

    // Only 2D pooling is supported now
    PADDLE_ENFORCE(ksize.size() == 2, "ksize must be 2D, i.e. 2D pooling");
    PADDLE_ENFORCE(pooling_type == "max" || pooling_type == "avg",
                   "pooling_type must be 'max' or 'avg'");
    PADDLE_ENFORCE(input->dims().size() == 4,
                   "Input dim must be with 4, i.e. NCHW");

    const T* input_data = input->data<T>();
    T* output_data = output->mutable_data<T>(ctx.GetPlace());

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

74 75 76
    auto input_format = input->format();
    memory::format output_format{memory::format::format_undef};

77 78
    mkldnn::memory::data_type dt =
        paddle::framework::ToMKLDNNDataType(input->type());
79
    auto fmt = input->format();
X
xiaoli.liu@intel.com 已提交
80

81 82 83
    const std::string key = platform::PoolingMKLDNNHandler::GetHash(
        src_tz, pooling_type, ksize, strides, paddings, dt, fmt,
        ctx.op().Output("Out"));
84

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
    platform::PoolingMKLDNNHandler handler(pooling_type, dt,
                                           ctx.Attr<bool>("is_test"), dev_ctx,
                                           mkldnn_engine, key);

    auto src_md = platform::MKLDNNMemDesc(src_tz, dt, input_format);

    auto src_memory =
        handler.AcquireSrcMemory(src_md, to_void_cast<T>(input_data));

    /* create memory descriptor for pooling without specified format
     * ('any') which lets a primitive (pooling in this case) choose
     * the memory format preferred for best performance
     */
    auto dst_md =
        platform::MKLDNNMemDesc(dst_tz, dt, mkldnn::memory::format::any);

    auto pooling_pd = handler.AcquirePoolingPrimitiveDescriptor(
        src_tz, dst_tz, src_md, dst_md, ksize, strides, paddings,
        ctx.Attr<bool>("ceil_mode"));

    auto dst_memory =
        handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));

    auto pool_p = handler.AcquirePooling(dst_memory, src_memory);
109 110

    // push primitive to stream and wait until it's executed
111
    std::vector<mkldnn::primitive> pipeline{*pool_p};
112 113
    stream(stream::kind::eager).submit(pipeline).wait();

114 115 116
    output_format =
        (memory::format)dst_memory->get_primitive_desc().desc().data.format;

117 118
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(output_format);
119 120 121 122 123 124 125 126 127 128 129 130 131 132
  }
};

template <typename T>
class PoolMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

    const Tensor* in_x = ctx.Input<Tensor>("X");
    const Tensor* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    Tensor* in_x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));

133 134 135 136 137 138 139
    PADDLE_ENFORCE(in_x->layout() == DataLayout::kMKLDNN &&
                       in_x->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input X tensor");
    PADDLE_ENFORCE(out_grad->layout() == DataLayout::kMKLDNN &&
                       out_grad->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input output_grad tensor");

140 141 142 143
    PADDLE_ENFORCE(
        !ctx.Attr<bool>("is_test"),
        "is_test attribute should be set to False in training phase.");

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
    std::string pooling_type = ctx.Attr<std::string>("pooling_type");
    std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");

    if (ctx.Attr<bool>("global_pooling")) {
      for (size_t i = 0; i < ksize.size(); ++i) {
        paddings[i] = 0;
        ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
      }
    }

    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const mkldnn::engine& mkldnn_engine = dev_ctx.GetEngine();

160 161
    std::vector<mkldnn::primitive> pipeline;

162 163
    const T* out_grad_data = out_grad->data<T>();
    T* in_x_grad_data = in_x_grad->mutable_data<T>(ctx.GetPlace());
164
    memory::format in_x_grad_format{memory::format::format_undef};
165 166 167 168 169 170

    std::vector<int> diff_src_tz =
        paddle::framework::vectorize2int(in_x_grad->dims());
    std::vector<int> diff_dst_tz =
        paddle::framework::vectorize2int(out_grad->dims());

171 172
    // Get an unique name from "argument" name of "Out" variable
    // This name will be used as key when referring info from device context
173 174 175
    const std::string key = platform::PoolingMKLDNNHandler::GetHash(
        diff_src_tz, pooling_type, ksize, strides, paddings,
        memory::data_type::f32, in_x->format(), ctx.op().Input("Out"));
176

177 178 179
    platform::PoolingMKLDNNHandler handler(
        pooling_type, paddle::framework::ToMKLDNNDataType(in_x_grad->type()),
        false, dev_ctx, mkldnn_engine, key);
180

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
    auto workspace = handler.AcquireWorkspaceMemory();

    auto diff_dst_md = platform::MKLDNNMemDesc(
        {diff_dst_tz}, platform::MKLDNNGetDataType<T>(), out_grad->format());

    auto diff_dst_memory = handler.AcquireDiffDstMemory(
        diff_dst_md, to_void_cast<T>(out_grad_data));

    auto diff_src_md =
        platform::MKLDNNMemDesc(diff_src_tz, platform::MKLDNNGetDataType<T>(),
                                mkldnn::memory::format::any);

    auto bwd_pd = handler.AcquirePoolingBackwardPrimitiveDescriptor(
        diff_dst_md, diff_src_md, ksize, strides, paddings);

    auto diff_src_memory = handler.AcquireDiffSrcMemoryFromPrimitive(
        reinterpret_cast<void*>(in_x_grad_data));

    auto pool_bwd_p = handler.AcquirePoolingBackward(diff_dst_memory, workspace,
                                                     diff_src_memory);
201

202
    pipeline.push_back(*pool_bwd_p);
203
    mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
204

205 206 207
    in_x_grad_format = (memory::format)diff_src_memory->get_primitive_desc()
                           .desc()
                           .data.format;
208 209
    in_x_grad->set_layout(DataLayout::kMKLDNN);
    in_x_grad->set_format(in_x_grad_format);
210 211 212 213 214 215
  }  // Compute()
};

}  // namespace operators
}  // namespace paddle

216 217
namespace ops = paddle::operators;

218
REGISTER_OP_KERNEL(pool2d, MKLDNN, ::paddle::platform::CPUPlace,
X
xiaoli.liu@intel.com 已提交
219 220 221 222
                   ops::PoolMKLDNNOpKernel<float>,
                   ops::PoolMKLDNNOpKernel<int8_t>,
                   ops::PoolMKLDNNOpKernel<uint8_t>);

223
REGISTER_OP_KERNEL(pool2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
224
                   ops::PoolMKLDNNGradOpKernel<float>);