elementwise_op_function.h 98.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#pragma once
16

17
#include <glog/logging.h>
18

19
#include <algorithm>
20
#include <functional>  // for multiplies
D
dzhwinter 已提交
21
#include <iterator>
22
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
27
#include "paddle/fluid/memory/malloc.h"
28
#include "paddle/fluid/operators/elementwise/elementwise_functor.h"
29
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
Y
Yi Wang 已提交
30
#include "paddle/fluid/platform/transform.h"
31

32 33
// only can include the headers in paddle/pten/include dirs
#include "paddle/pten/api/lib/utils/tensor_utils.h"
34
#include "paddle/pten/kernels/cpu/elementwise_impl.h"
35

36
#if defined(__NVCC__) || defined(__HIPCC__)
C
chengduoZH 已提交
37
#ifdef __NVCC__
38
#include <cuda.h>
39 40 41
#elif defined(__HIPCC__)
#include <hip/hip_runtime.h>
#endif
C
chengduoZH 已提交
42
#include <thrust/iterator/iterator_adaptor.h>
43

44
#include "paddle/fluid/operators/elementwise/elementwise_op_broadcast.cu.h"
45
#include "paddle/fluid/operators/reduce_ops/reduce_op.cu.h"
46 47
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
48

R
ronnywang 已提交
49 50 51
#ifdef __HIPCC__
constexpr int ELEMWISE_MAX_BLOCK_DIM = 256;
#else
Y
Yu Yang 已提交
52
constexpr int ELEMWISE_MAX_BLOCK_DIM = 1024;
R
ronnywang 已提交
53
#endif
54 55
#define BLOCK_X 32
#define BLOCK_Y 32
C
chengduoZH 已提交
56 57
#endif

Y
Yi Wang 已提交
58
#include "paddle/fluid/operators/math/math_function.h"
Y
Yu Yang 已提交
59
#include "paddle/fluid/platform/for_range.h"
60 61 62 63 64 65
#define GetDivMod(dividend, divisor, div, mod) \
  do {                                         \
    const auto dividend_copy = dividend;       \
    *div = dividend_copy / divisor;            \
    *mod = dividend_copy % divisor;            \
  } while (0)
66

67 68 69 70
#define DIVUP(x, y) (((x) + (y)-1) / (y))

#define ROUNDUP(x, y) (DIVUP((x), (y)) * (y))

71 72 73
namespace paddle {
namespace operators {

74
/*
75 76 77 78 79 80 81
*  Pack input and output tensors into respective vectors with
*  consideration of varible X`s class type.
*  Input variable X is supported to be whether LoDTensor or
*  SelectedRows class type in this package function, once X
*  was SelectedRows type, a valid pointer x_for_selectedrows
*  is excepted to be passed in from op kernel for acquisition
*  of the valid address of LoDTensor created ahead in the function.
82
*/
83 84 85
template <typename OutT>
int PackTensorsIntoVector(const framework::ExecutionContext &ctx,
                          std::vector<const framework::Tensor *> *ins,
86 87
                          std::vector<framework::Tensor *> *outs,
                          framework::Tensor *x_for_selectedrows = nullptr) {
88
  int axis = -1;
89 90 91 92 93
  auto x_var = ctx.InputVar("X");
  PADDLE_ENFORCE_NOT_NULL(
      x_var, platform::errors::InvalidArgument(
                 "Unable to get input Variable X, Variable name is %s.\n",
                 ctx.InputName("X")));
94
  auto *y = ctx.Input<framework::LoDTensor>("Y");
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
  framework::Tensor *z;

  if (x_var->IsType<framework::LoDTensor>()) {
    auto *x = ctx.Input<framework::LoDTensor>("X");
    z = ctx.Output<framework::LoDTensor>("Out");
    ins->emplace_back(x);
  } else if (x_var->IsType<framework::SelectedRows>()) {
    PADDLE_ENFORCE_EQ(y->dims().size() == 1 && y->dims()[0] == 1, true,
                      platform::errors::InvalidArgument(
                          "For elementwise_op, if X is Sparse, Y must be "
                          "scalar. But reveived the size of Y = %d.",
                          y->dims().size()));
    PADDLE_ENFORCE_NOT_NULL(
        x_for_selectedrows,
        platform::errors::InvalidArgument(
            "The parameter x_for_selectedrows is excepted to "
            "be valid, once input varible X`s class type is "
            "SelectedRows.\n"));
    auto &x_sele = x_var->Get<framework::SelectedRows>();
    auto out_sele = ctx.Output<framework::SelectedRows>("Out");
    *x_for_selectedrows = x_sele.value();
    out_sele->set_rows(x_sele.rows());
    out_sele->set_height(x_sele.height());
    out_sele->mutable_value()->Resize(x_sele.value().dims());
    out_sele->mutable_value()->mutable_data(ctx.GetPlace(),
                                            x_for_selectedrows->type());
    z = ctx.Output<framework::SelectedRows>("Out")->mutable_value();
    ins->emplace_back(x_for_selectedrows);
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "X's type[%s] is not supported by elementwise_op. X's type should be "
        "LoDTensor or SelectedRows.",
        framework::ToTypeName(x_var->Type())));
  }
129
  z->mutable_data<OutT>(ctx.GetPlace());
130 131 132 133
  outs->emplace_back(z);

  if (y != nullptr) {
    ins->emplace_back(y);
134
    axis = ctx.HasAttr("axis") ? ctx.Attr<int>("axis") : -1;
135
  }
136
  return axis;
137 138
}

139 140
inline int GetElementwiseIndex(const int *x_dims_array, const int max_dim,
                               const int *index_array) {
141
  return pten::GetElementwiseIndex(x_dims_array, max_dim, index_array);
142 143 144 145
}

inline void UpdateElementwiseIndexArray(const int *out_dims_array,
                                        const int max_dim, int *index_array) {
146
  pten::UpdateElementwiseIndexArray(out_dims_array, max_dim, index_array);
147 148 149 150 151 152 153
}

inline void GetBroadcastDimsArrays(const framework::DDim &x_dims,
                                   const framework::DDim &y_dims,
                                   int *x_dims_array, int *y_dims_array,
                                   int *out_dims_array, const int max_dim,
                                   const int axis) {
154 155 156
  pten::funcs::GetBroadcastDimsArrays(x_dims, y_dims, x_dims_array,
                                      y_dims_array, out_dims_array, max_dim,
                                      axis);
157
}
158

159 160 161 162 163 164 165 166
template <typename Functor, typename T, typename OutType = T>
void CommonForwardBroadcastCPU(const framework::Tensor *x,
                               const framework::Tensor *y, framework::Tensor *z,
                               int *x_dims_array, int *y_dims_array,
                               int *out_dims_array, int max_dim,
                               const platform::CPUDeviceContext &ctx,
                               Functor func,
                               const bool is_xsize_larger = true) {
167 168 169
  pten::CommonForwardBroadcastCPU(x, y, z, x_dims_array, y_dims_array,
                                  out_dims_array, max_dim, ctx, func,
                                  is_xsize_larger);
170 171
}

F
Feiyu Chan 已提交
172
template <typename T, typename DX_OP, typename DY_OP, typename Tout = T>
173 174 175 176 177 178 179 180 181
void CommonGradBroadcastCPU(
    const framework::Tensor &x, const framework::Tensor &y,
    const framework::Tensor &out, const framework::Tensor &dout,
    framework::Tensor *dx, framework::Tensor *dy, int *x_dims_array,
    int *y_dims_array, int *out_dims_array, int max_dim,
    const platform::CPUDeviceContext &ctx, DX_OP dx_op, DY_OP dy_op) {
  std::vector<int> index_array(max_dim, 0);
  const T *x_data = x.data<T>();
  const T *y_data = y.data<T>();
F
Feiyu Chan 已提交
182 183
  const Tout *out_data = out.data<Tout>();
  const Tout *dout_data = dout.data<Tout>();
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
  T *dx_data = dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace());
  T *dy_data = dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace());
  if (dx_data != nullptr) {
    memset(dx_data, 0, dx->numel() * sizeof(T));
  }
  if (dy_data != nullptr) {
    memset(dy_data, 0, dy->numel() * sizeof(T));
  }
  const int out_size = std::accumulate(out_dims_array, out_dims_array + max_dim,
                                       1, std::multiplies<int>());
  int x_index, y_index;
  for (int out_index = 0; out_index < out_size; ++out_index) {
    x_index = GetElementwiseIndex(x_dims_array, max_dim, index_array.data());
    y_index = GetElementwiseIndex(y_dims_array, max_dim, index_array.data());
    if (dx_data != nullptr) {
      dx_data[x_index] += dx_op(x_data[x_index], y_data[y_index],
                                out_data[out_index], dout_data[out_index]);
    }
    if (dy_data != nullptr) {
      dy_data[y_index] += dy_op(x_data[x_index], y_data[y_index],
                                out_data[out_index], dout_data[out_index]);
    }

    UpdateElementwiseIndexArray(out_dims_array, max_dim, index_array.data());
  }
}

inline void ComputeBroadcastKernelSize(int *x_dims_array, int *out_dims_array,
                                       int *x_blocks, int *x_threads,
                                       int max_dim) {
  *x_blocks = 1;
  *x_threads = 1;
  for (int i = 0; i < max_dim; i++) {
    if (x_dims_array[i] == out_dims_array[i]) {
      *x_blocks *= x_dims_array[i];
    } else {
      *x_threads *= out_dims_array[i];
    }
  }
}

inline void ComputeBroadcastTranspositionArray(const int *x_one_indexs,
                                               int *x_trans_indexs,
                                               const int max_dim,
                                               const int x_one_size) {
  int diff = max_dim - x_one_size;
  std::copy_n(x_one_indexs, x_one_size, x_trans_indexs + diff);
  int p = 0;
  int q = diff;
  for (int i = 0; i < max_dim; ++i) {
    if (q < max_dim && i == x_trans_indexs[q]) {
      ++q;
    } else {
      x_trans_indexs[p++] = i;
    }
  }
}

242
#if defined(__NVCC__) || defined(__HIPCC__)
F
Feiyu Chan 已提交
243
template <typename T, typename DX_OP, typename DY_OP, typename Tout = T>
244
static __global__ void ElemwiseGradBroadcast1CUDAKernel(
F
Feiyu Chan 已提交
245
    const T *x, const T *y, const Tout *out, const Tout *dout, int h, int w,
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
    bool is_xsize_larger, DX_OP dx_op, DY_OP dy_op, T *dx, T *dy) {
  int j = blockIdx.x;
  int i = threadIdx.x;
  int tid = threadIdx.x;
  T val(0);
  if (is_xsize_larger) {
    do {
      int x_offset = i * w + j;
      if (dx) {
        dx[x_offset] = dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
      }
      if (dy) {
        val += dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
      }
      i += ELEMWISE_MAX_BLOCK_DIM;
    } while (i < h);

    if (dy) {
      h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dy[j] = val;
      }
    }
  } else {  // x.dims < y.dims, broadcast for x.
    do {
      int y_offset = i * w + j;
      if (dy) {
        dy[y_offset] = dy_op(x[j], y[y_offset], out[y_offset], dout[y_offset]);
      }
      if (dx) {
        val += dx_op(x[j], y[y_offset], out[y_offset], dout[y_offset]);
      }
      i += ELEMWISE_MAX_BLOCK_DIM;
    } while (i < h);

    if (dx) {
      h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dx[j] = val;
      }
    }
  }
}

// suppose use 2D block is fast because more parallel
// and memory coalesced
F
Feiyu Chan 已提交
294
template <typename T, typename DX_OP, typename DY_OP, typename Tout = T>
295
static __global__ void FastElemwiseGradBroadcast1CUDAKernel(
F
Feiyu Chan 已提交
296
    const T *x, const T *y, const Tout *out, const Tout *dout, int h, int w,
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
    bool is_xsize_larger, DX_OP dx_op, DY_OP dy_op, T *dx, T *dy) {
  __shared__ T sdata[BLOCK_Y][BLOCK_X + 1];

  T val(0);
  size_t width_stride = gridDim.x * blockDim.x;
  size_t idx = threadIdx.x + blockDim.x * blockIdx.x;
  size_t full_width =
      (w & (~((uint64_t)(BLOCK_X - 1)))) + ((w & (BLOCK_X - 1)) ? BLOCK_X : 0);
  size_t full_height =
      (h & (~((uint64_t)(BLOCK_Y - 1)))) + ((h & (BLOCK_Y - 1)) ? BLOCK_Y : 0);
  if (is_xsize_larger) {
    for (int m = idx; m < full_width; m += width_stride) {
      sdata[threadIdx.y][threadIdx.x] = 0;
      for (int n = threadIdx.y; n < full_height; n += BLOCK_Y) {
        int x_offset = n * w + m;
        if (dx && m < w && n < h) {
          dx[x_offset] =
              dx_op(x[x_offset], y[m], out[x_offset], dout[x_offset]);
        }
        if (dy) {
          if (m < w && n < h) {
            T val = dy_op(x[x_offset], y[m], out[x_offset], dout[x_offset]);
            sdata[threadIdx.y][threadIdx.x] += val;
          }
          __syncthreads();
        }
      }
      if (dy) {
        T my_val = sdata[threadIdx.x][threadIdx.y];
        for (int i = warpSize >> 1; i > 0; i >>= 1)
          my_val += platform::CudaShuffleXorSync(0xFFFFFFFF, my_val, i);
        __syncthreads();
        if ((threadIdx.x == 0)) {
          sdata[0][threadIdx.y] = my_val;
        }
        __syncthreads();
        if (threadIdx.y == 0 && m < w) {
          dy[m] = sdata[0][threadIdx.x];
        }
      }
    }
  } else {  // x.dims < y.dims, broadcast for x.
    for (int m = idx; m < full_width; m += width_stride) {
      sdata[threadIdx.y][threadIdx.x] = 0;
      for (int n = threadIdx.y; n < full_height; n += BLOCK_Y) {
        int y_offset = n * w + m;
        if (dy && m < w && n < h) {
          dy[y_offset] =
              dy_op(x[m], y[y_offset], out[y_offset], dout[y_offset]);
        }
        if (dx) {
          if (m < w && n < h) {
            T val = dx_op(x[m], y[y_offset], out[y_offset], dout[y_offset]);
            sdata[threadIdx.y][threadIdx.x] += val;
          }
          __syncthreads();
        }
      }
      if (dx) {
        T my_val = sdata[threadIdx.x][threadIdx.y];
        for (int i = warpSize >> 1; i > 0; i >>= 1)
          my_val += platform::CudaShuffleXorSync(0xFFFFFFFF, my_val, i);
        __syncthreads();
        if ((threadIdx.x == 0)) {
          sdata[0][threadIdx.y] = my_val;
        }
        __syncthreads();
        if (threadIdx.y == 0 && m < w) {
          dx[m] = sdata[0][threadIdx.x];
        }
      }
    }
  }
}

F
Feiyu Chan 已提交
372
template <typename T, typename DX_OP, typename Tout = T>
373 374 375
__global__ void CommonGradBroadcastCUDAKernel(
    const int *x_strides_array, const int *y_strides_array,
    const int *out_dims_array, const int *y_strides_order,
F
Feiyu Chan 已提交
376 377
    const int *y_dims_order, const T *x, const T *y, const Tout *out,
    const Tout *dout, T *dx, int out_size, int max_dim, int thread_num,
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
    DX_OP dx_op) {
  T val(0);
  int i = blockIdx.x;
  int tid = threadIdx.x;
  for (int j = tid; j < thread_num; j += blockDim.x) {
    const int X_index = i * thread_num + j;
    int out_index = X_index;
    int C_index = 0;
    int B_index = i * thread_num + j;
    int remainder = 0;
#pragma unroll
    for (int d = max_dim - 1; d >= 0; --d) {
      GetDivMod(B_index, y_dims_order[d], &B_index, &remainder);
      C_index += remainder * y_strides_order[d];
    }
    int x_index = 0;
    int y_index = 0;
    int C_index_val = C_index;
#pragma unroll
    for (int d = max_dim - 1; d >= 0; --d) {
      GetDivMod(C_index_val, out_dims_array[d], &C_index_val, &remainder);
      x_index += remainder * x_strides_array[d];
      y_index += remainder * y_strides_array[d];
    }
    out_index = C_index;
    val += dx_op(x[x_index], y[y_index], out[out_index], dout[out_index]);
  }
  val = paddle::platform::reduceSum(val, tid, thread_num);
  if (threadIdx.x == 0) {
    dx[i] = val;
  }
}

F
Feiyu Chan 已提交
411
template <typename T, typename DY_OP, typename Tout = T>
412
static __global__ void CommonGradBroadcast1CUDAKernelHeight(
F
Feiyu Chan 已提交
413
    const T *x, const T *y, const Tout *out, const Tout *dout, int h, int w,
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
    DY_OP dy_op, T *dy, int x_h, int x_w, bool is_y) {
  int j = blockIdx.x;
  int i = threadIdx.x;
  int tid = threadIdx.x;
  T val(0);

  if (is_y) {
    do {
      int out_offset = i * w + j;
      int x_offset = (i % x_h) * x_w + j % x_w;
      if (dy) {
        val += dy_op(x[x_offset], y[j], out[out_offset], dout[out_offset]);
      }
      i += ELEMWISE_MAX_BLOCK_DIM;
    } while (i < h);

    if (dy) {
      h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dy[j] = val;
      }
    }
  } else {
    do {
      int out_offset = i * w + j;
      int y_offset = (i % x_h) * x_w + j % x_w;
      if (dy) {
        val += dy_op(x[j], y[y_offset], out[out_offset], dout[out_offset]);
      }
      i += ELEMWISE_MAX_BLOCK_DIM;
    } while (i < h);

    if (dy) {
      h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dy[j] = val;
      }
    }
  }
}

F
Feiyu Chan 已提交
457
template <typename T, typename DY_OP, typename Tout = T>
458
static __global__ void FastCommonGradBroadcastCUDAKernelHeight(
F
Feiyu Chan 已提交
459
    const T *x, const T *y, const Tout *out, const Tout *dout, int h, int w,
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
    DY_OP dy_op, T *dy, int x_h, int x_w, bool is_y) {
  __shared__ T sdata[BLOCK_Y][BLOCK_X + 1];

  T val(0);
  size_t width_stride = gridDim.x * blockDim.x;
  size_t idx = threadIdx.x + blockDim.x * blockIdx.x;
  size_t full_width =
      (w & (~((uint64_t)(BLOCK_X - 1)))) + ((w & (BLOCK_X - 1)) ? BLOCK_X : 0);
  size_t full_height =
      (h & (~((uint64_t)(BLOCK_Y - 1)))) + ((h & (BLOCK_Y - 1)) ? BLOCK_Y : 0);
  if (is_y) {
    for (int m = idx; m < full_width; m += width_stride) {
      sdata[threadIdx.y][threadIdx.x] = 0;
      for (int n = threadIdx.y; n < full_height; n += BLOCK_Y) {
        int out_offset = n * w + m;
        int x_offset = (n % x_h) * x_w + m % x_w;
        if (dy) {
          if (m < w && n < h) {
            T val = dy_op(x[x_offset], y[m], out[out_offset], dout[out_offset]);
            sdata[threadIdx.y][threadIdx.x] += val;
          }
          __syncthreads();
        }
      }
      if (dy) {
        T my_val = sdata[threadIdx.x][threadIdx.y];
        for (int i = warpSize >> 1; i > 0; i >>= 1) {
          my_val += platform::CudaShuffleXorSync(0xFFFFFFFF, my_val, i);
        }
        __syncthreads();
        if ((threadIdx.x == 0)) {
          sdata[0][threadIdx.y] = my_val;
        }
        __syncthreads();
        if (threadIdx.y == 0 && m < w) {
          dy[m] = sdata[0][threadIdx.x];
        }
      }
    }
  } else {
    for (int m = idx; m < full_width; m += width_stride) {
      sdata[threadIdx.y][threadIdx.x] = 0;
      for (int n = threadIdx.y; n < full_height; n += BLOCK_Y) {
        int out_offset = n * w + m;
        int y_offset = (n % x_h) * x_w + m % x_w;
        if (dy) {
          if (m < w && n < h) {
            T val = dy_op(x[m], y[y_offset], out[out_offset], dout[out_offset]);
            sdata[threadIdx.y][threadIdx.x] += val;
          }
          __syncthreads();
        }
      }
      if (dy) {
        T my_val = sdata[threadIdx.x][threadIdx.y];
        for (int i = warpSize >> 1; i > 0; i >>= 1) {
          my_val += platform::CudaShuffleXorSync(0xFFFFFFFF, my_val, i);
        }
        __syncthreads();
        if ((threadIdx.x == 0)) {
          sdata[0][threadIdx.y] = my_val;
        }
        __syncthreads();
        if (threadIdx.y == 0 && m < w) {
          dy[m] = sdata[0][threadIdx.x];
        }
      }
    }
  }
}

F
Feiyu Chan 已提交
531
template <typename T, typename DY_OP, typename DX_OP, typename Tout = T>
532
static __global__ void FastCommonGradBroadcastAllCUDAKernel(
F
Feiyu Chan 已提交
533
    const T *x, const T *y, const Tout *out, const Tout *dout, int pre, int n,
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
    int post, bool is_xsize_larger, DX_OP dx_op, DY_OP dy_op, T *dx, T *dy) {
  int tid = threadIdx.x;
  int bid = blockIdx.x;

  T val(0);
  if (is_xsize_larger) {
    for (int i = tid; i < n; i += ELEMWISE_MAX_BLOCK_DIM) {
      int b_i = bid / post;
      int b_j = bid % post;
      int x_offset = b_i * n * post + i * post + b_j;
      int y_offset = b_i * post + b_j;
      if (dx) {
        dx[x_offset] =
            dx_op(x[x_offset], y[y_offset], out[x_offset], dout[x_offset]);
      }
      if (dy) {
        val += dy_op(x[x_offset], y[y_offset], out[x_offset], dout[x_offset]);
      }
    }
    if (dy) {
      int h = n > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : n;
      val = paddle::platform::reduceSum(val, tid, h);
      if (tid == 0) {
        dy[bid] = val;
      }
    }
  } else {
    for (int i = tid; i < n; i += ELEMWISE_MAX_BLOCK_DIM) {
      int b_i = bid / post;
      int b_j = bid % post;
      int y_offset = b_i * n * post + i * post + b_j;
      int x_offset = b_i * post + b_j;
      if (dy) {
        dy[y_offset] =
568
            dy_op(x[x_offset], y[y_offset], out[y_offset], dout[y_offset]);
569 570
      }
      if (dx) {
571
        val += dx_op(x[x_offset], y[y_offset], out[y_offset], dout[y_offset]);
572 573 574 575 576 577 578 579 580 581 582 583
      }
    }
    if (dx) {
      int h = n > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : n;
      val = paddle::platform::reduceSum(val, tid, h);
      if (tid == 0) {
        dx[bid] = val;
      }
    }
  }
}

F
Feiyu Chan 已提交
584
template <typename T, typename OP, typename Tout = T>
585
static __global__ void FastCommonGradBroadcastOneCUDAKernel(
F
Feiyu Chan 已提交
586
    const T *x, const T *y, const Tout *out, const Tout *dout, int pre, int n,
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
    int post, int y_pre, int y_n, int y_post, bool is_xsize, OP op, T *dd) {
  int tid = threadIdx.x;
  int bid = blockIdx.x;

  T val(0);
  if (is_xsize) {
    // do reduce for x
    for (int i = tid; i < n; i += ELEMWISE_MAX_BLOCK_DIM) {
      int b_i = bid / post;
      int b_j = bid % post;
      int x_offset = b_i * n * post + b_j;
      int out_offset = b_i * n * post + i * post + b_j;

      // Get y pre rows id with x post and y_pre.
      int b_yi = bid / (post * y_pre);
      int b_yj = bid % y_post;
      int y_offset = b_yi * y_n + i * y_post + b_yj;

      if (dd) {
        val += op(x[x_offset], y[y_offset], out[out_offset], dout[out_offset]);
      }
    }
    if (dd) {
      int h = n > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : n;
      val = paddle::platform::reduceSum(val, tid, h);
      if (tid == 0) {
        dd[bid] = val;
      }
    }
  } else {
    // do reduce for y
    for (int i = tid; i < n; i += ELEMWISE_MAX_BLOCK_DIM) {
      int b_i = bid / post;
      int b_j = bid % post;
      int y_offset = b_i * n * post + b_j;
      int out_offset = b_i * n * post + i * post + b_j;

      int b_yi = bid / (post * y_pre);
      int b_yj = bid % y_post;
      int x_offset = b_yi * y_n + i * y_post + b_yj;

      if (dd) {
        val += op(x[x_offset], y[y_offset], out[out_offset], dout[out_offset]);
      }
    }
    if (dd) {
      int h = n > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : n;
      val = paddle::platform::reduceSum(val, tid, h);
      if (tid == 0) {
        dd[bid] = val;
      }
    }
  }
}

642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
// Check input can be split into 2 parts
static inline bool SplitDims(const std::vector<int> &y_broadcast_pos,
                             int max_dim) {
  bool can_split_dim2 = true;
  // must at start or end.
  if (y_broadcast_pos[0] != 0 &&
      y_broadcast_pos[y_broadcast_pos.size() - 1] != max_dim - 1) {
    can_split_dim2 = false;
  } else {
    for (int i = 1; i < y_broadcast_pos.size(); ++i) {
      // dim must be continue
      if (y_broadcast_pos[i] != y_broadcast_pos[i - 1] + 1) {
        can_split_dim2 = false;
        break;
      }
    }
  }
  return can_split_dim2;
}

662 663 664 665 666 667 668 669 670 671
// Suppose only has contiguous dims
static inline bool CheckContiguousDims(const std::vector<int> &broadcast_pos) {
  for (int i = 1; i < broadcast_pos.size(); ++i) {
    if (broadcast_pos[i] != broadcast_pos[i - 1] + 1) {
      return false;
    }
  }
  return true;
}

F
Feiyu Chan 已提交
672
template <typename T, typename DX_OP, typename DY_OP, typename Tout = T>
673 674 675 676 677 678
void CommonGradBroadcastCUDA(
    const framework::Tensor &x, const framework::Tensor &y,
    const framework::Tensor &out, const framework::Tensor &dout,
    framework::Tensor *dx, framework::Tensor *dy, int *x_dims_array,
    int *y_dims_array, int *out_dims_array, int max_dim,
    const platform::CUDADeviceContext &ctx, DX_OP dx_op, DY_OP dy_op) {
679
  const auto gplace = BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace());
680 681 682
  auto cplace = platform::CPUPlace();
  const T *x_data = x.data<T>();
  const T *y_data = y.data<T>();
F
Feiyu Chan 已提交
683 684
  const Tout *out_data = out.data<Tout>();
  const Tout *dout_data = dout.data<Tout>();
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
  T *dx_data = dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace());
  T *dy_data = dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace());

  std::vector<int> x_one_indexs;
  std::vector<int> y_one_indexs;
  for (int i = 0; i < max_dim; i++) {
    if (x_dims_array[i] != y_dims_array[i]) {
      if (x_dims_array[i] == 1) {
        x_one_indexs.push_back(i);
      }
      if (y_dims_array[i] == 1) {
        y_one_indexs.push_back(i);
      }
    }
  }

  std::vector<int> x_trans_indexs(max_dim);
  std::vector<int> y_trans_indexs(max_dim);
  ComputeBroadcastTranspositionArray(x_one_indexs.data(), x_trans_indexs.data(),
                                     max_dim, x_one_indexs.size());
  ComputeBroadcastTranspositionArray(y_one_indexs.data(), y_trans_indexs.data(),
                                     max_dim, y_one_indexs.size());

  // compute array stride for cuda kernel;
  // e.g. x.dims=[2,3,4], x_stride=[12,4,1]
  std::vector<int> x_strides_array(max_dim);
  std::vector<int> y_strides_array(max_dim);
  std::vector<int> out_strides_array(max_dim);
  int x_stride = 1;
  int y_stride = 1;
  int z_stride = 1;
  for (int i = max_dim - 1; i >= 0; i--) {
    x_strides_array[i] = x_dims_array[i] == 1 ? 0 : x_stride;
    y_strides_array[i] = y_dims_array[i] == 1 ? 0 : y_stride;
    out_strides_array[i] = z_stride;
    x_stride *= x_dims_array[i];
    y_stride *= y_dims_array[i];
    z_stride *= out_dims_array[i];
  }

  std::vector<int> x_strides_order(max_dim);
  std::vector<int> y_strides_order(max_dim);
  std::vector<int> x_dims_order(max_dim);
  std::vector<int> y_dims_order(max_dim);
  for (int i = 0; i < max_dim; ++i) {
    x_strides_order[i] = out_strides_array[x_trans_indexs[i]];
    y_strides_order[i] = out_strides_array[y_trans_indexs[i]];
    x_dims_order[i] = out_dims_array[x_trans_indexs[i]];
    y_dims_order[i] = out_dims_array[y_trans_indexs[i]];
  }
735 736 737 738 739 740 741 742 743 744 745 746 747
  std::vector<int> x_broadcast_pos;
  std::vector<int> y_broadcast_pos;

  int bytes = max_dim * sizeof(int);

  for (int i = 0; i < max_dim; ++i) {
    if (x_dims_array[i] != out_dims_array[i] && x_dims_array[i] == 1) {
      x_broadcast_pos.emplace_back(i);
    }
    if (y_dims_array[i] != out_dims_array[i] && y_dims_array[i] == 1) {
      y_broadcast_pos.emplace_back(i);
    }
  }
748

749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
  auto stream = ctx.stream();
  bool can_split_x = false;
  bool can_split_y = false;

  auto FastCommonCUDAF = [&](const std::vector<int> &broadcast_pos, bool is_y) {
    int h =
        std::accumulate(out_dims_array, out_dims_array + broadcast_pos.size(),
                        1, std::multiplies<int>());
    int w =
        std::accumulate(out_dims_array + broadcast_pos.size(),
                        out_dims_array + max_dim, 1, std::multiplies<int>());

    VLOG(3) << "FastCommonCUDAF elementwise w:" << w << " h:" << h
            << " is_y:" << is_y;

    int split_h;
    int split_w;
    int kh = h;
    int kw = w;

    if (is_y) {
      split_h =
          std::accumulate(x_dims_array, x_dims_array + broadcast_pos.size(), 1,
                          std::multiplies<int>());
      split_w =
          std::accumulate(x_dims_array + broadcast_pos.size(),
                          x_dims_array + max_dim, 1, std::multiplies<int>());

    } else {
      split_h =
          std::accumulate(y_dims_array, y_dims_array + broadcast_pos.size(), 1,
                          std::multiplies<int>());
      split_w =
          std::accumulate(y_dims_array + broadcast_pos.size(),
                          y_dims_array + max_dim, 1, std::multiplies<int>());
    }

    if (h > split_h) kh = split_h;
    if (w > split_w) kw = split_w;

    if (is_y) {
      if (w < 16 || h < 16) {
        int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, h);
        int grid_size = w;
        CommonGradBroadcast1CUDAKernelHeight<<<grid_size, block_size, 0,
                                               stream>>>(
            x_data, y_data, out_data, dout_data, h, w, dy_op, dy_data, kh, kw,
            is_y);
      } else {
        dim3 block_size = dim3(BLOCK_X, BLOCK_Y);
        int grid_size = (w + BLOCK_X - 1) / BLOCK_X;
        FastCommonGradBroadcastCUDAKernelHeight<<<grid_size, block_size, 0,
                                                  stream>>>(
            x_data, y_data, out_data, dout_data, h, w, dy_op, dy_data, kh, kw,
            is_y);
      }
    } else {
      if (w < 16 || h < 16) {
        int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, h);
        int grid_size = w;
        CommonGradBroadcast1CUDAKernelHeight<<<grid_size, block_size, 0,
                                               stream>>>(
            x_data, y_data, out_data, dout_data, h, w, dx_op, dx_data, kh, kw,
            is_y);
      } else {
        dim3 block_size = dim3(BLOCK_X, BLOCK_Y);
        int grid_size = (w + BLOCK_X - 1) / BLOCK_X;
        FastCommonGradBroadcastCUDAKernelHeight<<<grid_size, block_size, 0,
                                                  stream>>>(
            x_data, y_data, out_data, dout_data, h, w, dx_op, dx_data, kh, kw,
            is_y);
      }
    }
  };

  auto FastBroadCastHeightCUDAF = [&](const std::vector<int> &broadcast_pos,
                                      bool x_large) {
    int h =
        std::accumulate(out_dims_array, out_dims_array + broadcast_pos.size(),
                        1, std::multiplies<int>());
    int w =
        std::accumulate(out_dims_array + broadcast_pos.size(),
                        out_dims_array + max_dim, 1, std::multiplies<int>());

    VLOG(3) << "FastBroadCastHeightCUDAF w:" << w << " h:" << h;

    if (w < 16 || h < 16) {
      int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, h);
      int grid_size = w;
      ElemwiseGradBroadcast1CUDAKernel<<<grid_size, block_size, 0, stream>>>(
          x_data, y_data, out_data, dout_data, h, w, x_large, dx_op, dy_op,
          dx_data, dy_data);
    } else {
      dim3 block_size = dim3(BLOCK_X, BLOCK_Y);
      int grid_size = (w + BLOCK_X - 1) / BLOCK_X;
      FastElemwiseGradBroadcast1CUDAKernel<<<grid_size, block_size, 0,
                                             stream>>>(
          x_data, y_data, out_data, dout_data, h, w, x_large, dx_op, dy_op,
          dx_data, dy_data);
    }
  };

  auto FastBroadCastAllCUDAF = [&](const std::vector<int> &broadcast_pos,
                                   int max_dim, bool is_x_large) {
    int axis = broadcast_pos[0];
    int pre = std::accumulate(out_dims_array, out_dims_array + axis, 1,
                              std::multiplies<int>());
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
    int mid = 1;
    int post = 1;

    if (broadcast_pos.size() == 1) {
      mid = out_dims_array[axis];
      post =
          std::accumulate(out_dims_array + axis + 1, out_dims_array + max_dim,
                          1, std::multiplies<int>());
    } else {
      mid = std::accumulate(out_dims_array + axis,
                            out_dims_array + broadcast_pos.back() + 1, 1,
                            std::multiplies<int>());
      post =
          std::accumulate(out_dims_array + broadcast_pos.back() + 1,
                          out_dims_array + max_dim, 1, std::multiplies<int>());
    }
872 873 874 875 876 877 878 879 880 881 882 883

    VLOG(3) << "FastBroadCastAllCUDAF pre:" << pre << " mid:" << mid
            << " post:" << post;

    int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, mid);
    int grid_size = pre * post;

    FastCommonGradBroadcastAllCUDAKernel<<<grid_size, block_size, 0, stream>>>(
        x_data, y_data, out_data, dout_data, pre, mid, post, is_x_large, dx_op,
        dy_op, dx_data, dy_data);
  };

884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
  auto FastBroadCastOneCUDAF = [&](const std::vector<int> &broadcast_pos,
                                   int max_dim, bool is_x) {
    int axis = broadcast_pos[0];
    int pre = std::accumulate(out_dims_array, out_dims_array + axis, 1,
                              std::multiplies<int>());
    int mid = out_dims_array[axis];
    int post =
        std::accumulate(out_dims_array + axis + 1, out_dims_array + max_dim, 1,
                        std::multiplies<int>());

    int k_pre;
    int k_mid;
    int k_post;

    if (is_x) {
      k_pre = std::accumulate(y_dims_array, y_dims_array + axis, 1,
                              std::multiplies<int>());
      k_mid = y_dims_array[axis];
      k_post = std::accumulate(y_dims_array + axis + 1, y_dims_array + max_dim,
                               1, std::multiplies<int>());
      int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, mid);
      int grid_size = pre * post;
      // we need to calc y offset with blockid, so do x_pre/y_pre to get left
      // size.
      if (k_pre != pre) k_pre = pre / k_pre;

      FastCommonGradBroadcastOneCUDAKernel<<<grid_size, block_size, 0,
                                             stream>>>(
          x_data, y_data, out_data, dout_data, pre, mid, post, k_pre, k_mid,
          k_post, true, dx_op, dx_data);
    } else {
      k_pre = std::accumulate(x_dims_array, x_dims_array + axis, 1,
                              std::multiplies<int>());
      k_mid = x_dims_array[axis];
      k_post = std::accumulate(x_dims_array + axis + 1, x_dims_array + max_dim,
                               1, std::multiplies<int>());
      int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, mid);
      int grid_size = pre * post;
      if (k_pre != pre) k_pre = pre / k_pre;

      FastCommonGradBroadcastOneCUDAKernel<<<grid_size, block_size, 0,
                                             stream>>>(
          x_data, y_data, out_data, dout_data, pre, mid, post, k_pre, k_mid,
          k_post, false, dy_op, dy_data);
    }
    VLOG(3) << "FastBroadCastOneCUDAF pre:" << pre << " mid:" << mid
            << " post:" << post;
  };

933 934 935 936
  // do fast elementwise if: 1. only one input need to do broadcast, we can
  // fallback
  // to old fast path.
  // 2. if both x and y need broadcast, then do it one by one.
937
  bool fast_broadcast = false;
938 939 940 941 942 943
  if (x_broadcast_pos.empty() && !y_broadcast_pos.empty()) {
    can_split_y = SplitDims(y_broadcast_pos, max_dim);
    if (can_split_y) {
      // only y need to do broadcast on h
      if (y_broadcast_pos[0] == 0) {
        FastBroadCastHeightCUDAF(y_broadcast_pos, true);
944
        fast_broadcast = true;
945
      }
946 947 948
    } else if (y_broadcast_pos.size() == 1 ||
               CheckContiguousDims(y_broadcast_pos)) {  // for only one dim and
                                                        // contiguous broadcast.
949 950
      // If cannot split,  which means input has 3 parts
      FastBroadCastAllCUDAF(y_broadcast_pos, max_dim, true);
951
      fast_broadcast = true;
952 953 954 955 956 957 958
    }
  } else if (y_broadcast_pos.empty() && !x_broadcast_pos.empty()) {
    // only x need broadcast
    can_split_x = SplitDims(x_broadcast_pos, max_dim);
    if (can_split_x) {
      if (x_broadcast_pos[0] == 0) {
        FastBroadCastHeightCUDAF(x_broadcast_pos, false);
959
        fast_broadcast = true;
960
      }
961 962
    } else if (x_broadcast_pos.size() == 1 ||
               CheckContiguousDims(x_broadcast_pos)) {
963
      FastBroadCastAllCUDAF(x_broadcast_pos, max_dim, false);
964
      fast_broadcast = true;
965 966 967 968
    }
  } else if (!x_broadcast_pos.empty() && !y_broadcast_pos.empty()) {
    // do x and y broadcast each.
    can_split_y = SplitDims(y_broadcast_pos, max_dim);
969 970
    bool fast_broadcast_x = false;
    bool fast_broadcast_y = false;
971 972 973 974
    if (can_split_y) {
      // begin at start.
      if (y_broadcast_pos[0] == 0) {
        FastCommonCUDAF(y_broadcast_pos, true);
975
        fast_broadcast_y = true;
976
      }
977 978 979
    } else if (y_broadcast_pos.size() == 1) {
      FastBroadCastOneCUDAF(y_broadcast_pos, max_dim, false);
      can_split_y = true;
980
      fast_broadcast_y = true;
981 982 983 984 985
    }
    can_split_x = SplitDims(x_broadcast_pos, max_dim);
    if (can_split_x) {
      if (x_broadcast_pos[0] == 0) {
        FastCommonCUDAF(x_broadcast_pos, false);
986
        fast_broadcast_x = true;
987
      }
988 989 990
    } else if (x_broadcast_pos.size() == 1) {
      FastBroadCastOneCUDAF(x_broadcast_pos, max_dim, true);
      can_split_x = true;
991
      fast_broadcast_x = true;
992 993 994 995
    }
    VLOG(3) << "CommonBroadcast can_split_y:" << can_split_y
            << " can_split_x:" << can_split_x;
    // if both x and y into fast path then return
996 997 998 999
    if (fast_broadcast_x && fast_broadcast_y) {
      fast_broadcast = true;
    }
    if (can_split_y && can_split_x && fast_broadcast) return;
1000
  }
1001

1002
  // Should remove memory copy, use reg instead.
1003 1004 1005
  if (fast_broadcast) {
    return;
  }
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
  int x_blocks = 0;
  int x_threads = 0;
  ComputeBroadcastKernelSize(x_dims_array, out_dims_array, &x_blocks,
                             &x_threads, max_dim);
  int y_blocks = 0;
  int y_threads = 0;
  ComputeBroadcastKernelSize(y_dims_array, out_dims_array, &y_blocks,
                             &y_threads, max_dim);

  auto x_strides_array_tmp = memory::Alloc(ctx, bytes);
  int *x_strides_array_gpu =
      reinterpret_cast<int *>(x_strides_array_tmp->ptr());
  memory::Copy(gplace, x_strides_array_gpu, cplace, x_strides_array.data(),
               bytes, ctx.stream());

  auto y_strides_array_tmp = memory::Alloc(ctx, bytes);
  int *y_strides_array_gpu =
      reinterpret_cast<int *>(y_strides_array_tmp->ptr());
  memory::Copy(gplace, y_strides_array_gpu, cplace, y_strides_array.data(),
               bytes, ctx.stream());

  auto out_dims_array_tmp = memory::Alloc(ctx, bytes);
  int *out_dims_array_gpu = reinterpret_cast<int *>(out_dims_array_tmp->ptr());
  memory::Copy(gplace, out_dims_array_gpu, cplace, out_dims_array, bytes,
               ctx.stream());

  const int out_size = std::accumulate(out_dims_array, out_dims_array + max_dim,
                                       1, std::multiplies<int>());
  int x_block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, x_threads);
  int y_block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, y_threads);
1036
  if (dx) {
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
    auto x_strides_order_tmp = memory::Alloc(ctx, bytes);
    int *x_strides_order_gpu =
        reinterpret_cast<int *>(x_strides_order_tmp->ptr());
    memory::Copy(gplace, x_strides_order_gpu, cplace, x_strides_order.data(),
                 bytes, ctx.stream());

    auto x_dims_order_tmp = memory::Alloc(ctx, bytes);
    int *x_dims_order_gpu = reinterpret_cast<int *>(x_dims_order_tmp->ptr());
    memory::Copy(gplace, x_dims_order_gpu, cplace, x_dims_order.data(), bytes,
                 ctx.stream());
    CommonGradBroadcastCUDAKernel<
F
Feiyu Chan 已提交
1048
        T, DX_OP, Tout><<<x_blocks, x_block_size, 0, ctx.stream()>>>(
1049 1050 1051 1052
        x_strides_array_gpu, y_strides_array_gpu, out_dims_array_gpu,
        x_strides_order_gpu, x_dims_order_gpu, x_data, y_data, out_data,
        dout_data, dx_data, out_size, max_dim, x_threads, dx_op);
  }
1053
  if (dy) {
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
    auto y_strides_order_tmp = memory::Alloc(ctx, bytes);
    int *y_strides_order_gpu =
        reinterpret_cast<int *>(y_strides_order_tmp->ptr());
    memory::Copy(gplace, y_strides_order_gpu, cplace, y_strides_order.data(),
                 bytes, ctx.stream());

    auto y_dims_order_tmp = memory::Alloc(ctx, bytes);
    int *y_dims_order_gpu = reinterpret_cast<int *>(y_dims_order_tmp->ptr());
    memory::Copy(gplace, y_dims_order_gpu, cplace, y_dims_order.data(), bytes,
                 ctx.stream());
    CommonGradBroadcastCUDAKernel<
F
Feiyu Chan 已提交
1065
        T, DY_OP, Tout><<<y_blocks, y_block_size, 0, ctx.stream()>>>(
1066 1067 1068 1069 1070 1071
        x_strides_array_gpu, y_strides_array_gpu, out_dims_array_gpu,
        y_strides_order_gpu, y_dims_order_gpu, x_data, y_data, out_data,
        dout_data, dy_data, out_size, max_dim, y_threads, dy_op);
  }
}

1072
#endif  // __NVCC__ or __HIPCC__
1073

1074
inline framework::DDim trim_trailing_singular_dims(
1075
    const framework::DDim &dims) {
1076
  return pten::funcs::trim_trailing_singular_dims(dims);
1077 1078
}

F
Feiyu Chan 已提交
1079
template <typename T, typename DX_OP, typename DY_OP, typename Tout = T>
Y
Yu Yang 已提交
1080
struct ElemwiseGradNoBroadcast {
1081 1082
  const T *x_;
  const T *y_;
F
Feiyu Chan 已提交
1083 1084
  const Tout *out_;
  const Tout *dout_;
Y
Yu Yang 已提交
1085 1086 1087 1088 1089 1090

  HOSTDEVICE void operator()(size_t i) {
    if (dx_ != nullptr) {
      dx_[i] = dx_op_(x_[i], y_[i], out_[i], dout_[i]);
    }
    if (dy_ != nullptr) {
C
chengduoZH 已提交
1091
      dy_[i] = dy_op_(x_[i], y_[i], out_[i], dout_[i]);
Y
Yu Yang 已提交
1092 1093 1094 1095 1096
    }
  }

  DX_OP dx_op_;
  DY_OP dy_op_;
1097 1098
  T *dx_;
  T *dy_;
Y
Yu Yang 已提交
1099 1100
};

F
Feiyu Chan 已提交
1101 1102 1103
template <typename T, typename DX_OP, typename DY_OP, typename Tout = T>
static void ElemwiseGradBroadcast1CPU(const T *x, const T *y, const Tout *out,
                                      const Tout *dout, int h, int w,
1104
                                      bool is_xsize_larger, DX_OP dx_op,
1105
                                      DY_OP dy_op, T *dx, T *dy) {
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
  if (is_xsize_larger) {
    for (int i = 0; i < h; ++i) {
      for (int j = 0; j < w; ++j) {
        int x_offset = i * w + j;
        if (dx != nullptr) {
          dx[x_offset] =
              dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
        }
        if (dy != nullptr) {
          T tmp = dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
          if (i == 0) {
            dy[j] = tmp;
          } else {
            dy[j] += tmp;
          }
        }
Y
Yu Yang 已提交
1122
      }
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
    }
  } else {  // x.dims < y.dims, broadcast for x.
    for (int i = 0; i < h; ++i) {
      for (int j = 0; j < w; ++j) {
        int y_offset = i * w + j;
        if (dy != nullptr) {
          dy[y_offset] =
              dy_op(x[j], y[y_offset], out[y_offset], dout[y_offset]);
        }
        if (dx != nullptr) {
          T tmp = dx_op(x[j], y[y_offset], out[y_offset], dout[y_offset]);
          if (i == 0) {
            dx[j] = tmp;
          } else {
            dx[j] += tmp;
          }
Y
Yu Yang 已提交
1139 1140 1141 1142 1143
        }
      }
    }
  }
}
1144

1145
#if defined(__NVCC__) || defined(__HIPCC__)
1146

F
Feiyu Chan 已提交
1147
template <typename T, typename DX_OP, typename DY_OP, typename Tout = T>
1148
static void ElemwiseGradBroadcast1CUDA(gpuStream_t stream, const T *x,
F
Feiyu Chan 已提交
1149 1150 1151 1152
                                       const T *y, const Tout *out,
                                       const Tout *dout, int h, int w,
                                       bool is_xsize_larger, DX_OP dx_op,
                                       DY_OP dy_op, T *dx, T *dy) {
1153 1154 1155 1156 1157 1158
  // For small case use 1D block
  constexpr int half_walf = 16;
  if (w < half_walf || h < half_walf) {
    int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, h);
    int gird_size = w;
    ElemwiseGradBroadcast1CUDAKernel<<<gird_size, block_size, 0, stream>>>(
1159
        x, y, out, dout, h, w, is_xsize_larger, dx_op, dy_op, dx, dy);
1160 1161 1162 1163 1164
  } else {
    // suppose perfoemance improves with h increased.
    dim3 block_size = dim3(BLOCK_X, BLOCK_Y);
    int grid_size = (w + BLOCK_X - 1) / BLOCK_X;
    FastElemwiseGradBroadcast1CUDAKernel<<<grid_size, block_size, 0, stream>>>(
1165
        x, y, out, dout, h, w, is_xsize_larger, dx_op, dy_op, dx, dy);
1166
  }
Y
Yu Yang 已提交
1167 1168 1169 1170
}

#endif

F
Feiyu Chan 已提交
1171 1172 1173 1174 1175
template <typename T, typename DX_OP, typename DY_OP, typename Tout = T>
static void ElemwiseGradBroadcast2CPU(const T *x, const T *y, const Tout *out,
                                      const Tout *dout, int pre, int n,
                                      int post, bool is_xsize_larger,
                                      DX_OP dx_op, DY_OP dy_op, T *dx, T *dy) {
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
  if (is_xsize_larger) {
    for (int i = 0; i < pre; ++i) {
      for (int j = 0; j < n; ++j) {
        for (int k = 0; k < post; ++k) {
          int x_offset = i * n * post + j * post + k;
          if (dx != nullptr) {
            dx[x_offset] =
                dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
          }
          if (dy != nullptr) {
            T tmp = dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
            if (i == 0 && k == 0) {
              dy[j] = tmp;
            } else {
              dy[j] += tmp;
            }
          }
Y
Yu Yang 已提交
1193
        }
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
      }
    }
  } else {  // x.dims < y.dims, broadcast for x.
    for (int i = 0; i < pre; ++i) {
      for (int j = 0; j < n; ++j) {
        for (int k = 0; k < post; ++k) {
          int y_offset = i * n * post + j * post + k;
          if (dy != nullptr) {
            dy[y_offset] =
                dy_op(x[j], y[y_offset], out[y_offset], dout[y_offset]);
          }
          if (dx != nullptr) {
            T tmp = dx_op(x[j], y[y_offset], out[y_offset], dout[y_offset]);
            if (i == 0 && k == 0) {
              dx[j] = tmp;
            } else {
              dx[j] += tmp;
            }
Y
Yu Yang 已提交
1212 1213 1214 1215 1216 1217 1218
          }
        }
      }
    }
  }
}

1219
#if defined(__NVCC__) || defined(__HIPCC__)
F
Feiyu Chan 已提交
1220
template <typename T, typename DX_OP, typename DY_OP, typename Tout = T>
Y
Yu Yang 已提交
1221
static __global__ void ElemwiseGradBroadcast2CUDAKernel(
F
Feiyu Chan 已提交
1222
    const T *x, const T *y, const Tout *out, const Tout *dout, int pre, int n,
1223
    int post, bool is_xsize_larger, DX_OP dx_op, DY_OP dy_op, T *dx, T *dy) {
Y
Yu Yang 已提交
1224 1225 1226
  int tid = threadIdx.x;
  int j = blockIdx.x;

C
chengduo 已提交
1227
  T val(0);
Y
Yu Yang 已提交
1228 1229
  int ttid = tid;

1230 1231 1232 1233 1234
  if (is_xsize_larger) {
    while (true) {
      int i = ttid / post;
      int k = ttid % post;
      if (i >= pre) break;
Y
Yu Yang 已提交
1235

1236
      int x_offset = i * n * post + j * post + k;
Y
Yu Yang 已提交
1237

1238 1239 1240 1241 1242 1243 1244 1245 1246
      if (dx != nullptr) {
        dx[x_offset] = dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
      }

      if (dy != nullptr) {
        val += dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
      }

      ttid += ELEMWISE_MAX_BLOCK_DIM;
Y
Yu Yang 已提交
1247 1248
    }

1249 1250 1251 1252 1253 1254 1255
    if (dy) {
      int h = pre * post;
      h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dy[j] = val;
      }
Y
Yu Yang 已提交
1256
    }
1257 1258 1259 1260 1261
  } else {  // x.dims < y.dims, broadcast for x.
    while (true) {
      int i = ttid / post;
      int k = ttid % post;
      if (i >= pre) break;
Y
Yu Yang 已提交
1262

1263
      int y_offset = i * n * post + j * post + k;
Y
Yu Yang 已提交
1264

1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
      if (dy != nullptr) {
        dy[y_offset] = dy_op(x[j], y[y_offset], out[y_offset], dout[y_offset]);
      }

      if (dx != nullptr) {
        val += dx_op(x[j], y[y_offset], out[y_offset], dout[y_offset]);
      }

      ttid += ELEMWISE_MAX_BLOCK_DIM;
    }

    if (dx) {
      int h = pre * post;
      h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dx[j] = val;
      }
Y
Yu Yang 已提交
1283 1284 1285 1286
    }
  }
}

F
Feiyu Chan 已提交
1287
template <typename T, typename DX_OP, typename DY_OP, typename Tout = T>
1288
static void ElemwiseGradBroadcast2CUDA(gpuStream_t stream, const T *x,
F
Feiyu Chan 已提交
1289 1290 1291 1292
                                       const T *y, const Tout *out,
                                       const Tout *dout, int pre, int n,
                                       int post, bool is_xsize_larger,
                                       DX_OP dx_op, DY_OP dy_op, T *dx, T *dy) {
Y
Yu Yang 已提交
1293 1294
  int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, pre * post);
  int gird_size = n;
C
chengduoZH 已提交
1295
  ElemwiseGradBroadcast2CUDAKernel<<<gird_size, block_size, 0, stream>>>(
1296
      x, y, out, dout, pre, n, post, is_xsize_larger, dx_op, dy_op, dx, dy);
Y
Yu Yang 已提交
1297 1298 1299 1300
}

#endif

F
Feiyu Chan 已提交
1301 1302
template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP,
          typename Tout = T>
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
void CommonElementwiseBroadcastBackward(
    const framework::ExecutionContext &ctx, const framework::DDim &x_dims,
    const framework::DDim &y_dims, const framework::Tensor &x,
    const framework::Tensor &y, const framework::Tensor &out,
    const framework::Tensor &dout, int axis, framework::Tensor *dx,
    framework::Tensor *dy, DX_OP dx_op, DY_OP dy_op) {
  int max_dim = std::max(x_dims.size(), y_dims.size());
  axis = (axis == -1 ? std::abs(x_dims.size() - y_dims.size()) : axis);
  std::vector<int> x_dims_array(max_dim);
  std::vector<int> y_dims_array(max_dim);
  std::vector<int> out_dims_array(max_dim);
  GetBroadcastDimsArrays(x_dims, y_dims, x_dims_array.data(),
                         y_dims_array.data(), out_dims_array.data(), max_dim,
                         axis);
  // for inplace strategy. memset will make dx and dout clear and get wrong
  // result.
1319
  if (dx && dx->IsSharedBufferWith(dout)) {
1320 1321
    dx->clear();
    dx->mutable_data<T>(x_dims, ctx.GetPlace());
1322 1323
  }

1324 1325 1326 1327
  VLOG(3) << "CommonElementwiseBroadcastBackward xdims:"
          << framework::make_ddim(x_dims_array)
          << " ydim:" << framework::make_ddim(y_dims_array);

1328
  if (platform::is_gpu_place(ctx.GetPlace())) {
1329
#if defined(__NVCC__) || defined(__HIPCC__)
F
Feiyu Chan 已提交
1330
    CommonGradBroadcastCUDA<T, DX_OP, DY_OP, Tout>(
1331 1332 1333 1334 1335 1336
        x, y, out, dout, dx, dy, x_dims_array.data(), y_dims_array.data(),
        out_dims_array.data(), max_dim,
        ctx.template device_context<platform::CUDADeviceContext>(), dx_op,
        dy_op);
#endif
  } else {
F
Feiyu Chan 已提交
1337
    CommonGradBroadcastCPU<T, DX_OP, DY_OP, Tout>(
1338 1339 1340 1341
        x, y, out, dout, dx, dy, x_dims_array.data(), y_dims_array.data(),
        out_dims_array.data(), max_dim,
        ctx.template device_context<platform::CPUDeviceContext>(), dx_op,
        dy_op);
1342 1343 1344
  }
}

F
Feiyu Chan 已提交
1345 1346
template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP,
          typename Tout = T>
1347
void ElemwiseGradComputeNoBroadcast(
1348 1349 1350 1351 1352
    const framework::ExecutionContext &ctx, const framework::DDim &x_dim,
    const framework::DDim &y_dim, const framework::Tensor &x,
    const framework::Tensor &y, const framework::Tensor &out,
    const framework::Tensor &dout, int axis, framework::Tensor *dx,
    framework::Tensor *dy, DX_OP dx_op, DY_OP dy_op) {
1353
  size_t N = static_cast<size_t>(framework::product(x_dim));
D
dzhwinter 已提交
1354
#if !defined(_WIN32)
1355 1356
  platform::ForRange<DeviceContext> for_range(
      ctx.template device_context<DeviceContext>(), N);
D
dzhwinter 已提交
1357 1358 1359 1360
#else
  platform::ForRange<DeviceContext> for_range(
      ctx.device_context<DeviceContext>(), N);
#endif  // !_WIN32
F
Feiyu Chan 已提交
1361 1362 1363
  for_range(ElemwiseGradNoBroadcast<T, DX_OP, DY_OP, Tout>{
      x.data<T>(), y.data<T>(), out.data<Tout>(), dout.data<Tout>(), dx_op,
      dy_op, dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
1364 1365 1366
      dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace())});
}

F
Feiyu Chan 已提交
1367 1368
template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP,
          typename Tout = T>
1369
void ElemwiseGradComputeWithBroadcast(
1370 1371
    const framework::ExecutionContext &ctx, const framework::DDim &x_dims,
    const framework::DDim &y_dims, const framework::Tensor &x,
1372 1373 1374
    const framework::Tensor &y, const framework::Tensor &out,
    const framework::Tensor &dout, int axis, framework::Tensor *dx,
    framework::Tensor *dy, DX_OP dx_op, DY_OP dy_op) {
1375
  bool is_xsize_larger = true;
1376

1377 1378 1379 1380 1381
  int max_dim = x_dims.size();
  if (x_dims.size() < y_dims.size()) {
    is_xsize_larger = false;
    max_dim = y_dims.size();
  }
1382

1383
  axis = (axis == -1 ? std::abs(x_dims.size() - y_dims.size()) : axis);
1384 1385 1386 1387 1388 1389 1390 1391 1392
  PADDLE_ENFORCE_GE(
      axis, 0,
      platform::errors::InvalidArgument(
          "Axis should be great than or equal to 0, but received axis is %d.",
          axis));
  PADDLE_ENFORCE_LT(axis, max_dim,
                    platform::errors::InvalidArgument(
                        "Axis should be less than %d, but received axis is %d.",
                        max_dim, axis));
1393 1394 1395 1396 1397

  int pre, n, post, is_run_common_broadcast, axis_trim = 0;
  if (is_xsize_larger) {
    auto y_dims_trimed = trim_trailing_singular_dims(y_dims);
    axis_trim = (y_dims_trimed.size() == 0) ? x_dims.size() : axis;
1398 1399
    pten::funcs::get_mid_dims(x_dims, y_dims_trimed, axis_trim, &pre, &n, &post,
                              &is_run_common_broadcast);
1400 1401 1402
  } else {
    auto x_dims_trimed = trim_trailing_singular_dims(x_dims);
    axis_trim = (x_dims_trimed.size() == 0) ? y_dims.size() : axis;
1403 1404
    pten::funcs::get_mid_dims(y_dims, x_dims_trimed, axis_trim, &pre, &n, &post,
                              &is_run_common_broadcast);
1405 1406 1407
  }
  // special case for common backward implementation.
  if (is_run_common_broadcast) {
F
Feiyu Chan 已提交
1408
    CommonElementwiseBroadcastBackward<DeviceContext, T, DX_OP, DY_OP, Tout>(
1409 1410 1411 1412
        ctx, x_dims, y_dims, x, y, out, dout, axis, dx, dy, dx_op, dy_op);
    return;
  }
  if (post == 1) {
1413
    if (platform::is_gpu_place(ctx.GetPlace())) {
1414
#if defined(__NVCC__) || defined(__HIPCC__)
1415 1416
      ElemwiseGradBroadcast1CUDA(
          ctx.template device_context<DeviceContext>().stream(), x.data<T>(),
F
Feiyu Chan 已提交
1417 1418
          y.data<T>(), out.data<Tout>(), dout.data<Tout>(), pre, n,
          is_xsize_larger, dx_op, dy_op,
1419 1420 1421 1422 1423
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()));
#endif
    } else {
      ElemwiseGradBroadcast1CPU(
F
Feiyu Chan 已提交
1424
          x.data<T>(), y.data<T>(), out.data<Tout>(), dout.data<Tout>(), pre, n,
1425
          is_xsize_larger, dx_op, dy_op,
1426
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
1427 1428 1429 1430
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()));
    }
  } else {
    if (platform::is_gpu_place(ctx.GetPlace())) {
1431
#if defined(__NVCC__) || defined(__HIPCC__)
1432 1433
      ElemwiseGradBroadcast2CUDA(
          ctx.template device_context<DeviceContext>().stream(), x.data<T>(),
F
Feiyu Chan 已提交
1434
          y.data<T>(), out.data<Tout>(), dout.data<Tout>(), pre, n, post,
1435 1436
          is_xsize_larger, dx_op, dy_op,
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
1437 1438 1439 1440
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()));
#endif
    } else {
      ElemwiseGradBroadcast2CPU(
F
Feiyu Chan 已提交
1441 1442
          x.data<T>(), y.data<T>(), out.data<Tout>(), dout.data<Tout>(), pre, n,
          post, is_xsize_larger, dx_op, dy_op,
1443 1444 1445 1446 1447 1448
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()));
    }
  }
}

1449 1450 1451 1452 1453 1454 1455
template <typename Functor, typename DeviceContext, typename T,
          typename OutType = T>
void CommonElementwiseBroadcastForward(
    const framework::ExecutionContext &ctx, const framework::Tensor *x,
    const framework::Tensor *y, framework::Tensor *z,
    const framework::DDim &x_dims, const framework::DDim &y_dims, Functor func,
    int axis, const bool is_xsize_larger = true) {
1456 1457 1458 1459 1460 1461 1462 1463
  z->mutable_data<OutType>(ctx.GetPlace());
  auto pt_x = paddle::experimental::MakePtenDenseTensor(*x);
  auto pt_y = paddle::experimental::MakePtenDenseTensor(*y);
  auto pt_z = paddle::experimental::MakePtenDenseTensor(*z);
  const auto &dev_ctx = ctx.template device_context<DeviceContext>();
  pten::CommonElementwiseBroadcastForward(dev_ctx, *pt_x.get(), *pt_y.get(),
                                          pt_z.get(), x_dims, y_dims, func,
                                          axis, is_xsize_larger);
1464 1465
}

F
Feiyu Chan 已提交
1466 1467
template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP,
          typename Tout = T>
1468 1469 1470 1471 1472
void ElemwiseGradCompute(const framework::ExecutionContext &ctx,
                         const framework::Tensor &x, const framework::Tensor &y,
                         const framework::Tensor &out,
                         const framework::Tensor &dout, int axis,
                         framework::Tensor *dx, framework::Tensor *dy,
Y
Yu Yang 已提交
1473
                         DX_OP dx_op, DY_OP dy_op) {
1474 1475
  const framework::DDim &x_dim = x.dims();
  const framework::DDim &y_dim = y.dims();
Y
Yu Yang 已提交
1476
  if (x.dims() == y.dims()) {
F
Feiyu Chan 已提交
1477
    ElemwiseGradComputeNoBroadcast<DeviceContext, T, DX_OP, DY_OP, Tout>(
1478
        ctx, x_dim, y_dim, x, y, out, dout, axis, dx, dy, dx_op, dy_op);
1479
  } else {
F
Feiyu Chan 已提交
1480
    ElemwiseGradComputeWithBroadcast<DeviceContext, T, DX_OP, DY_OP, Tout>(
1481 1482 1483 1484 1485 1486 1487 1488 1489
        ctx, x_dim, y_dim, x, y, out, dout, axis, dx, dy, dx_op, dy_op);
  }
}

// NOTE(dzhwinter): Only used in elementwise_add, elementwise_sub.
// explicit gradient can cut off X, Y, Out from gradient op
// In elementwise_add, elementwise_sub, we use dout as fake X, Y, Out to reuse
// elementwise code.
template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP>
1490 1491 1492 1493 1494 1495
void ElemwiseExplicitGradCompute(const framework::ExecutionContext &ctx,
                                 const framework::Tensor &x,
                                 const framework::Tensor &y,
                                 const framework::Tensor &out,
                                 const framework::Tensor &dout, int axis,
                                 framework::Tensor *dx, framework::Tensor *dy,
1496
                                 DX_OP dx_op, DY_OP dy_op) {
1497 1498 1499
  const framework::DDim &x_dim = x.dims();
  const framework::DDim &y_dim = y.dims();
  if (x.dims() == y.dims()) {
1500
    ElemwiseGradComputeNoBroadcast<DeviceContext, T, DX_OP, DY_OP>(
1501
        ctx, x_dim, y_dim, dout, dout, out, dout, axis, dx, dy, dx_op, dy_op);
1502
  } else {
1503 1504
    ElemwiseGradComputeWithBroadcast<DeviceContext, T, DX_OP, DY_OP>(
        ctx, x_dim, y_dim, dout, dout, out, dout, axis, dx, dy, dx_op, dy_op);
1505 1506
  }
}
F
fengjiayi 已提交
1507

1508 1509 1510 1511
// It is a common implementation to compute binary calculation with the support
// of broadcast, supporting both CPU and GPU.
// - CPU implementation cannot support the case when x needs broadcast, thus
//   this function need to be called with XxxFunctor and XxxInverseFunctor,
1512
//   like AddFunctor and InverseAddFunctor.
1513 1514 1515 1516
// - GPU implementation supports all the broadcast cases, thus there is no need
//   to define and call with XxxInverseFunctor.
// TODO(liuyiqun): optimize the CPU implementation to support all broadcast
// cases and avoid the need of XxxInverseFunctor.
1517 1518
template <typename Functor, typename DeviceContext, typename T,
          typename OutType = T>
1519 1520 1521 1522
void ElementwiseComputeEx(const framework::ExecutionContext &ctx,
                          const framework::Tensor *x,
                          const framework::Tensor *y, int axis, Functor func,
                          framework::Tensor *z) {
1523 1524 1525 1526
  z->mutable_data<OutType>(ctx.GetPlace());
  auto pt_x = paddle::experimental::MakePtenDenseTensor(*x);
  auto pt_y = paddle::experimental::MakePtenDenseTensor(*y);
  auto pt_z = paddle::experimental::MakePtenDenseTensor(*z);
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
  if (platform::is_gpu_place(ctx.GetPlace())) {
#if defined(__NVCC__) || defined(__HIPCC__)
    std::vector<const framework::Tensor *> ins = {x, y};
    std::vector<framework::Tensor *> outs = {z};
    z->mutable_data<OutType>(ctx.GetPlace());

    const auto &dev_ctx =
        ctx.template device_context<platform::CUDADeviceContext>();
    LaunchElementwiseCudaKernel<ElementwiseType::kBinary, T, OutType>(
        dev_ctx, ins, &outs, axis, func);
#endif
    return;
  }

1541 1542 1543 1544
  const auto &dev_ctx =
      ctx.template device_context<platform::CPUDeviceContext>();
  pten::ElementwiseCompute<Functor, T, OutType>(
      dev_ctx, *pt_x.get(), *pt_y.get(), axis, func, pt_z.get());
F
fengjiayi 已提交
1545 1546
}

1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
// FusedElemwiseAndAct
// --- forward
template <typename T, typename CompoundFunctor, bool KeepIntermediateOut>
struct FusedElemwiseAndActNoBroadcast {
  HOSTDEVICE void operator()(size_t i) {
    T y_val = y_[i];
    T x_val = x_[i];
    if (KeepIntermediateOut) {
      T intermeidiate_out = compound_functor_.GetIntermediateOut(x_val, y_val);
      intermediate_out_[i] = intermeidiate_out;
      out_[i] =
          compound_functor_.GetOutUseIntermediateOut(x_val, intermeidiate_out);
    } else {
      out_[i] = compound_functor_.GetOut(x_val, y_val);
    }
  }

  const T *x_;
  const T *y_;
  CompoundFunctor compound_functor_;
  T *out_;
  T *intermediate_out_;
};

// FusedElemwiseAndActBroadcast1:
// In this case, X and Y can be reshaped to a matrix.
// For example shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5) and axis = -1 or 2,
// X can be reshaped to (6, 20) and Y can be reshaped to (1, 20)
template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActBroadcast1CPU(const T *x, const T *y,
                                             CompoundFunctor compound_functor,
                                             int h, int w, T *out,
                                             T *intermediate_out) {
  for (int i = 0; i < h; ++i) {
    for (int j = 0; j < w; ++j) {
      int offset = i * w + j;

      T y_val = BcastY ? y[j] : y[offset];
      T x_val = BcastY ? x[offset] : x[j];
      int64_t intermediate_out_offset;
      if (KeepIntermediateOut) {
        T intermeidiate_out = compound_functor.GetIntermediateOut(x_val, y_val);

        if (SameShapeOfIntermediateOutAndOut) {
          // for the case of f1(f2(x, y))
          intermediate_out_offset = offset;
        } else if (BcastY) {
          intermediate_out_offset = j;
        } else {
          intermediate_out_offset = offset;
        }

        intermediate_out[intermediate_out_offset] = intermeidiate_out;
        out[offset] =
            compound_functor.GetOutUseIntermediateOut(x_val, intermeidiate_out);
      } else {
        out[offset] = compound_functor.GetOut(x_val, y_val);
      }
    }
  }
}

// FusedElemwiseAndActBroadcast2
// In this case, X and Y can be reshaped to a matrix.
// For example shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4) and axis = 1,
// X can be reshaped to (2, 12, 5) and Y can be reshaped to (1, 12, 1)
// pre = 2, n = 12, post = 5
template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActBroadcast2CPU(const T *x, const T *y, int pre,
                                             int n, int post,
                                             CompoundFunctor compound_functor,
                                             T *out, T *intermediate_out) {
  for (int i = 0; i < pre; ++i) {
    for (int j = 0; j < n; ++j) {
      for (int k = 0; k < post; ++k) {
        int offset = i * n * post + j * post + k;

        T y_val = BcastY ? y[j] : y[offset];
        T x_val = BcastY ? x[offset] : x[j];
        int64_t intermediate_out_offset;

        if (KeepIntermediateOut) {
          T intermeidiate_out =
              compound_functor.GetIntermediateOut(x_val, y_val);

          if (SameShapeOfIntermediateOutAndOut) {
            // for the case of f1(f2(x, y))
            intermediate_out_offset = offset;
          } else if (BcastY) {
            intermediate_out_offset = j;
          } else {
            intermediate_out_offset = offset;
          }

          intermediate_out[intermediate_out_offset] = intermeidiate_out;
          out[offset] = compound_functor.GetOutUseIntermediateOut(
              x_val, intermeidiate_out);
        } else {
          out[offset] = compound_functor.GetOut(x_val, y_val);
        }
      }
    }
  }
}

1654
#if defined(__NVCC__) || defined(__HIPCC__)
1655 1656 1657 1658 1659
template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
static __global__ void FusedElemwiseAndActBroadcast1CUDAKernel(
    const T *x, const T *y, int h, int w, CompoundFunctor compound_functor,
    T *out, T *intermediate_out) {
1660 1661
  int i = blockIdx.x;
  int j = threadIdx.x;
1662

1663
  while (j < w) {
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
    int offset = i * w + j;

    T y_val = BcastY ? y[j] : y[offset];
    T x_val = BcastY ? x[offset] : x[j];
    int64_t intermediate_out_offset;

    if (KeepIntermediateOut) {
      T intermeidiate_out = compound_functor.GetIntermediateOut(x_val, y_val);

      if (SameShapeOfIntermediateOutAndOut) {
        // for the case of f1(f2(x, y))
        intermediate_out_offset = offset;
      } else if (BcastY) {
        intermediate_out_offset = j;
      } else {
        intermediate_out_offset = offset;
      }

      intermediate_out[intermediate_out_offset] = intermeidiate_out;
      out[offset] =
          compound_functor.GetOutUseIntermediateOut(x_val, intermeidiate_out);
    } else {
      out[offset] = compound_functor.GetOut(x_val, y_val);
    }

1689
    j += ELEMWISE_MAX_BLOCK_DIM;
1690 1691 1692 1693 1694
  }
}

template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
1695
static void FusedElemwiseAndActBroadcast1CUDA(gpuStream_t stream, const T *x,
1696 1697 1698 1699
                                              const T *y,
                                              CompoundFunctor compound_functor,
                                              int h, int w, T *out,
                                              T *intermediate_out) {
1700 1701
  int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, w);
  int gird_size = h;
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
  FusedElemwiseAndActBroadcast1CUDAKernel<
      T, CompoundFunctor, BcastY, KeepIntermediateOut,
      SameShapeOfIntermediateOutAndOut><<<gird_size, block_size, 0, stream>>>(
      x, y, h, w, compound_functor, out, intermediate_out);
}

template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
static __global__ void FusedElemwiseAndActBroadcast2CUDAKernel(
    const T *x, const T *y, CompoundFunctor compound_functor, int pre, int n,
    int post, T *out, T *intermediate_out) {
  int tid = threadIdx.x;
  int j = blockIdx.x;

  while (true) {
    int i = tid / post;
    int k = tid % post;
    if (i >= pre) break;

    int offset = i * n * post + j * post + k;

    T y_val = BcastY ? y[j] : y[offset];
    T x_val = BcastY ? x[offset] : x[j];
    int64_t intermediate_out_offset;

    if (KeepIntermediateOut) {
      T intermeidiate_out = compound_functor.GetIntermediateOut(x_val, y_val);

      if (SameShapeOfIntermediateOutAndOut) {
        // for the case of f1(f2(x, y))
        intermediate_out_offset = offset;
      } else if (BcastY) {
        intermediate_out_offset = j;
      } else {
        intermediate_out_offset = offset;
      }

      intermediate_out[intermediate_out_offset] = intermeidiate_out;
      out[offset] =
          compound_functor.GetOutUseIntermediateOut(x_val, intermeidiate_out);
    } else {
      out[offset] = compound_functor.GetOut(x_val, y_val);
    }

    tid += ELEMWISE_MAX_BLOCK_DIM;
  }
}

template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
1752
static void FusedElemwiseAndActBroadcast2CUDA(gpuStream_t stream, const T *x,
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
                                              const T *y, int pre, int n,
                                              int post,
                                              CompoundFunctor compound_functor,
                                              T *out, T *intermediate_out) {
  int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, pre * post);
  int gird_size = n;

  FusedElemwiseAndActBroadcast2CUDAKernel<
      T, CompoundFunctor, BcastY, KeepIntermediateOut,
      SameShapeOfIntermediateOutAndOut><<<gird_size, block_size, 0, stream>>>(
      x, y, compound_functor, pre, n, post, out, intermediate_out);
}

#endif

template <typename DeviceContext, typename T, typename CompoundFunctor,
          bool KeepIntermediateOut>
void FusedElemwiseAndActComputeNoBroadcast(
    const framework::ExecutionContext &ctx, const framework::DDim &x_dim,
    const framework::Tensor &x, const framework::Tensor &y,
    CompoundFunctor compound_functor, framework::Tensor *out,
    framework::Tensor *intermediate_out) {
  size_t N = static_cast<size_t>(framework::product(x_dim));

  platform::ForRange<DeviceContext> for_range(
      ctx.template device_context<DeviceContext>(), N);

  for_range(
      FusedElemwiseAndActNoBroadcast<T, CompoundFunctor, KeepIntermediateOut>{
          x.data<T>(), y.data<T>(), compound_functor,
          out->mutable_data<T>(ctx.GetPlace()),
          intermediate_out == nullptr
              ? nullptr
              : intermediate_out->mutable_data<T>(ctx.GetPlace())});
}

template <typename DeviceContext, typename T, typename CompoundFunctor,
          bool BcastY, bool KeepIntermediateOut,
          bool SameShapeOfIntermediateOutAndOut>
void FusedElemwiseAndActComputeWithBroadcast(
    const framework::ExecutionContext &ctx, const framework::DDim &x_dim,
    const framework::DDim &y_dim_untrimed, const framework::Tensor &x,
    const framework::Tensor &y, CompoundFunctor compound_functor, int axis,
    framework::Tensor *out, framework::Tensor *intermediate_out) {
  axis = (axis == -1 ? x_dim.size() - y_dim_untrimed.size() : axis);
  auto y_dim = trim_trailing_singular_dims(y_dim_untrimed);
  axis = (y_dim.size() == 0) ? x_dim.size() : axis;

1801
  int pre, n, post, is_run_common_broadcast;
1802 1803
  pten::funcs::get_mid_dims(x_dim, y_dim, axis, &pre, &n, &post,
                            &is_run_common_broadcast);
1804 1805 1806 1807
  if (post == 1) {
    int h = pre;
    int w = n;
    if (platform::is_gpu_place(ctx.GetPlace())) {
1808
#if defined(__NVCC__) || defined(__HIPCC__)
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
      FusedElemwiseAndActBroadcast1CUDA<T, CompoundFunctor, BcastY,
                                        KeepIntermediateOut,
                                        SameShapeOfIntermediateOutAndOut>(
          ctx.template device_context<DeviceContext>().stream(), x.data<T>(),
          y.data<T>(), compound_functor, h, w,
          out->mutable_data<T>(ctx.GetPlace()),
          intermediate_out == nullptr
              ? nullptr
              : intermediate_out->mutable_data<T>(ctx.GetPlace()));
#endif
    } else {
      FusedElemwiseAndActBroadcast1CPU<T, CompoundFunctor, BcastY,
                                       KeepIntermediateOut,
                                       SameShapeOfIntermediateOutAndOut>(
          x.data<T>(), y.data<T>(), compound_functor, h, w,
          out->mutable_data<T>(ctx.GetPlace()),
          intermediate_out == nullptr
              ? nullptr
              : intermediate_out->mutable_data<T>(ctx.GetPlace()));
    }
  } else {
    if (platform::is_gpu_place(ctx.GetPlace())) {
1831
#if defined(__NVCC__) || defined(__HIPCC__)
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
      FusedElemwiseAndActBroadcast2CUDA<T, CompoundFunctor, BcastY,
                                        KeepIntermediateOut,
                                        SameShapeOfIntermediateOutAndOut>(
          ctx.template device_context<DeviceContext>().stream(), x.data<T>(),
          y.data<T>(), pre, n, post, compound_functor,
          out->mutable_data<T>(ctx.GetPlace()),
          intermediate_out == nullptr
              ? nullptr
              : intermediate_out->mutable_data<T>(ctx.GetPlace()));
#endif
    } else {
      FusedElemwiseAndActBroadcast2CPU<T, CompoundFunctor, BcastY,
                                       KeepIntermediateOut,
                                       SameShapeOfIntermediateOutAndOut>(
          x.data<T>(), y.data<T>(), pre, n, post, compound_functor,
          out->mutable_data<T>(ctx.GetPlace()),
          intermediate_out == nullptr
              ? nullptr
              : intermediate_out->mutable_data<T>(ctx.GetPlace()));
    }
  }
}

// --- backward
C
chengduo 已提交
1856 1857
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut>
1858 1859
struct FusedElemwiseAndActGradNoBroadcast {
  HOSTDEVICE void operator()(size_t i) {
1860 1861 1862
    T zero = static_cast<T>(0);
    T x_val = (x_ == nullptr) ? zero : x_[i];
    T y_val = (y_ == nullptr) ? zero : y_[i];
1863 1864 1865 1866 1867
    T out_val = out_[i];
    T dout_val = dout_[i];
    T intermediate_out_val = UseIntermediateOut
                                 ? intermediate_out_[i]
                                 : dx_op_.GetIntermediateOut(x_val, y_val);
1868
    if (dx_ != nullptr) {
1869 1870
      dx_[i] = dx_op_.UseIntermediateOut(x_val, y_val, intermediate_out_val,
                                         out_val, dout_val);
1871 1872
    }
    if (dy_ != nullptr) {
1873 1874
      dy_[i] = dy_op_.UseIntermediateOut(x_val, y_val, intermediate_out_val,
                                         out_val, dout_val);
C
chengduo 已提交
1875 1876
    }
    if (dintermediate_ != nullptr) {
1877 1878
      dintermediate_[i] = dintermediate_op_.UseIntermediateOut(
          x_val, intermediate_out_val, out_val, dout_val);
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
    }
  }

  const T *x_;
  const T *y_;
  const T *intermediate_out_;
  const T *out_;
  const T *dout_;
  DX_OP dx_op_;
  DY_OP dy_op_;
C
chengduo 已提交
1889
  DIntermediate_OP dintermediate_op_;
1890 1891
  T *dx_;
  T *dy_;
C
chengduo 已提交
1892
  T *dintermediate_;
1893 1894 1895
};

template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP,
C
chengduo 已提交
1896
          typename DIntermediate_OP, bool UseIntermediateOut>
1897 1898 1899 1900 1901
void FusedElemwiseAndActGradComputeNoBroadcast(
    const framework::ExecutionContext &ctx, const framework::DDim &x_dim,
    const framework::DDim &y_dim, const framework::Tensor *x,
    const framework::Tensor *y, const framework::Tensor *intermediate_out,
    const framework::Tensor *out, const framework::Tensor *dout, int axis,
C
chengduo 已提交
1902 1903 1904
    framework::Tensor *dx, framework::Tensor *dy,
    framework::Tensor *dintermediate, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op) {
1905 1906 1907
  size_t N = static_cast<size_t>(framework::product(x_dim));
  platform::ForRange<DeviceContext> for_range(
      ctx.template device_context<DeviceContext>(), N);
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
  const T *x_data = nullptr;
  const T *y_data = nullptr;
  if (x->IsInitialized()) x_data = x->data<T>();
  if (y->IsInitialized()) y_data = y->data<T>();

  for_range(FusedElemwiseAndActGradNoBroadcast<
            T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut>{
      x_data, y_data, intermediate_out ? intermediate_out->data<T>() : nullptr,
      out->data<T>(), dout->data<T>(), dx_op, dy_op, dintermediate_op,
      dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
      dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()),
      dintermediate == nullptr ? nullptr : dintermediate->mutable_data<T>(
                                               ctx.GetPlace())});
1921 1922
}

C
chengduo 已提交
1923 1924 1925 1926 1927 1928 1929
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut, bool BcastY,
          bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActGradBroadcast1CPU(
    const T *x, const T *y, const T *intermediate_out, const T *out,
    const T *dout, int h, int w, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op, T *dx, T *dy, T *d_intermediate) {
1930
  int64_t tmp_out_idx, x_idx, y_idx;
1931
  T zero = static_cast<T>(0);
1932 1933 1934 1935 1936 1937 1938
  for (int i = 0; i < h; ++i) {
    for (int j = 0; j < w; ++j) {
      int offset = i * w + j;

      tmp_out_idx = BcastY ? j : offset;
      y_idx = BcastY ? j : offset;
      x_idx = BcastY ? offset : j;
1939 1940
      T x_val = (x == nullptr) ? zero : x[x_idx];
      T y_val = (y == nullptr) ? zero : y[y_idx];
1941 1942 1943 1944 1945 1946 1947

      if (SameShapeOfIntermediateOutAndOut) {
        tmp_out_idx = offset;
      }

      if (dx != nullptr) {
        T tmp = UseIntermediateOut
1948
                    ? dx_op.UseIntermediateOut(x_val, y_val,
C
chengduo 已提交
1949 1950
                                               intermediate_out[tmp_out_idx],
                                               out[offset], dout[offset])
1951
                    : dx_op.Recompute(x_val, y_val, out[offset], dout[offset]);
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964

        if (BcastY) {
          dx[x_idx] = tmp;
        } else {
          if (i == 0) {
            dx[x_idx] = tmp;
          } else {
            dx[x_idx] += tmp;
          }
        }
      }
      if (dy != nullptr) {
        T tmp = UseIntermediateOut
1965
                    ? dy_op.UseIntermediateOut(x_val, y_val,
C
chengduo 已提交
1966 1967
                                               intermediate_out[tmp_out_idx],
                                               out[offset], dout[offset])
1968
                    : dy_op.Recompute(x_val, y_val, out[offset], dout[offset]);
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
        if (BcastY) {
          if (i == 0) {
            dy[y_idx] = tmp;
          } else {
            dy[y_idx] += tmp;
          }
        } else {
          dy[y_idx] = tmp;
        }
      }
C
chengduo 已提交
1979 1980 1981
      if (d_intermediate != nullptr) {
        T tmp = UseIntermediateOut
                    ? dintermediate_op.UseIntermediateOut(
1982
                          x_val, intermediate_out[tmp_out_idx], out[offset],
C
chengduo 已提交
1983
                          dout[offset])
1984 1985
                    : dintermediate_op.Recompute(x_val, y_val, out[offset],
                                                 dout[i]);
C
chengduo 已提交
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
        if (SameShapeOfIntermediateOutAndOut) {
          d_intermediate[tmp_out_idx] = tmp;
        } else {
          if (i == 0) {
            d_intermediate[tmp_out_idx] = tmp;
          } else {
            d_intermediate[tmp_out_idx] += tmp;
          }
        }
      }
1996 1997 1998 1999
    }
  }
}

C
chengduo 已提交
2000 2001 2002 2003 2004 2005 2006
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut, bool BcastY,
          bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActGradBroadcast2CPU(
    const T *x, const T *y, const T *intermediate_out, const T *out,
    const T *dout, int pre, int n, int post, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op, T *dx, T *dy, T *d_intermediate) {
2007
  int64_t tmp_out_idx, x_idx, y_idx;
2008
  T zero = static_cast<T>(0);
2009 2010 2011 2012 2013 2014 2015 2016 2017
  for (int i = 0; i < pre; ++i) {
    for (int j = 0; j < n; ++j) {
      for (int k = 0; k < post; ++k) {
        int offset = i * n * post + j * post + k;

        tmp_out_idx = BcastY ? j : offset;
        y_idx = BcastY ? j : offset;
        x_idx = BcastY ? offset : j;

2018 2019 2020
        T x_val = (x == nullptr) ? zero : x[x_idx];
        T y_val = (y == nullptr) ? zero : y[y_idx];

2021 2022 2023 2024 2025
        if (SameShapeOfIntermediateOutAndOut) {
          tmp_out_idx = offset;
        }

        if (dx != nullptr) {
2026 2027 2028 2029 2030 2031
          T tmp =
              UseIntermediateOut
                  ? dx_op.UseIntermediateOut(x_val, y_val,
                                             intermediate_out[tmp_out_idx],
                                             out[offset], dout[offset])
                  : dx_op.Recompute(x_val, y_val, out[offset], dout[offset]);
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043

          if (BcastY) {
            dx[x_idx] = tmp;
          } else {
            if (i == 0 && k == 0) {
              dx[x_idx] = tmp;
            } else {
              dx[x_idx] += tmp;
            }
          }
        }
        if (dy != nullptr) {
2044 2045 2046 2047 2048 2049
          T tmp =
              UseIntermediateOut
                  ? dy_op.UseIntermediateOut(x_val, y_val,
                                             intermediate_out[tmp_out_idx],
                                             out[offset], dout[offset])
                  : dy_op.Recompute(x_val, y_val, out[offset], dout[offset]);
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
          if (BcastY) {
            if (i == 0 && k == 0) {
              dy[y_idx] = tmp;
            } else {
              dy[y_idx] += tmp;
            }
          } else {
            dy[y_idx] = tmp;
          }
        }
C
chengduo 已提交
2060 2061 2062
        if (d_intermediate != nullptr) {
          T tmp = UseIntermediateOut
                      ? dintermediate_op.UseIntermediateOut(
2063 2064 2065 2066
                            x_val, intermediate_out[tmp_out_idx], out[offset],
                            dout[offset])
                      : dintermediate_op.Recompute(x_val, y_val, out[offset],
                                                   dout[i]);
C
chengduo 已提交
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
          if (SameShapeOfIntermediateOutAndOut) {
            d_intermediate[tmp_out_idx] = tmp;
          } else {
            if (i == 0) {
              d_intermediate[tmp_out_idx] = tmp;
            } else {
              d_intermediate[tmp_out_idx] += tmp;
            }
          }
        }
2077 2078 2079 2080 2081
      }
    }
  }
}

2082
#if defined(__NVCC__) || defined(__HIPCC__)
C
chengduo 已提交
2083 2084 2085
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut, bool BcastY,
          bool SameShapeOfIntermediateOutAndOut>
2086 2087
static __global__ void FusedElemwiseAndActGradBroadcast1CUDAKernel(
    const T *x, const T *y, const T *intermediate_out, const T *out,
C
chengduo 已提交
2088 2089
    const T *dout, int h, int w, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op, T *dx, T *dy, T *d_intermediate) {
2090 2091 2092 2093 2094 2095
  __shared__ T sdata[BLOCK_Y][BLOCK_X];
  size_t idx = threadIdx.x + BLOCK_X * blockIdx.x;
  size_t width_stride = gridDim.x * BLOCK_X;

  size_t full_w = ROUNDUP(w, BLOCK_X);

2096
  T zero = static_cast<T>(0);
2097

2098 2099 2100 2101 2102
  for (size_t j = idx; j < full_w; j += width_stride) {
    T val(0), inter_val(0);
    if (j < w) {
      for (size_t i = threadIdx.y; i < h; i += BLOCK_Y) {
        size_t offset = i * w + j;
2103

2104 2105 2106 2107 2108
        size_t tmp_out_idx = BcastY ? j : offset;
        size_t y_idx = BcastY ? j : offset;
        size_t x_idx = BcastY ? offset : j;
        T x_val = (x == nullptr) ? zero : x[x_idx];
        T y_val = (y == nullptr) ? zero : y[y_idx];
2109

2110 2111 2112
        if (SameShapeOfIntermediateOutAndOut) {
          tmp_out_idx = offset;
        }
2113

2114 2115 2116
        if (dx != nullptr) {
          T tmp =
              UseIntermediateOut
2117 2118 2119 2120
                  ? dx_op.UseIntermediateOut(x_val, y_val,
                                             intermediate_out[tmp_out_idx],
                                             out[offset], dout[offset])
                  : dx_op.Recompute(x_val, y_val, out[offset], dout[offset]);
2121

2122 2123 2124 2125 2126 2127 2128 2129 2130
          if (BcastY) {
            dx[x_idx] = tmp;
          } else {
            val += tmp;
          }
        }
        if (dy != nullptr) {
          T tmp =
              UseIntermediateOut
2131 2132 2133 2134
                  ? dy_op.UseIntermediateOut(x_val, y_val,
                                             intermediate_out[tmp_out_idx],
                                             out[offset], dout[offset])
                  : dy_op.Recompute(x_val, y_val, out[offset], dout[offset]);
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
          if (BcastY) {
            val += tmp;
          } else {
            dy[y_idx] = tmp;
          }
        }
        if (d_intermediate != nullptr) {
          T tmp = UseIntermediateOut
                      ? dintermediate_op.UseIntermediateOut(
                            y[y_idx], intermediate_out[tmp_out_idx],
                            out[offset], dout[offset])
                      : dintermediate_op.Recompute(x_val, y_val, out[offset],
                                                   dout[offset]);
          if (SameShapeOfIntermediateOutAndOut) {
            d_intermediate[tmp_out_idx] = tmp;
          } else {
            inter_val += tmp;
          }
        }
C
chengduo 已提交
2154 2155
      }
    }
2156

2157 2158 2159 2160 2161 2162 2163 2164 2165
    // transpose, for ReduceSum with wrap
    sdata[threadIdx.y][threadIdx.x] = val;
    __syncthreads();
    val = sdata[threadIdx.x][threadIdx.y];
#pragma unroll
    for (int i = BLOCK_X >> 1; i > 0; i >>= 1) {
      // reduce sum with wrap
      val += platform::CudaShuffleXorSync(0xFFFFFFFF, val, i);
    }
2166

2167 2168 2169 2170
    size_t idx_j = j + threadIdx.y;
    if (BcastY) {
      if (dy) {
        if (threadIdx.x == 0 && (idx_j < w)) dy[idx_j] = val;
2171
      }
2172 2173 2174
    } else {
      if (dx) {
        if (threadIdx.x == 0 && (idx_j < w)) dx[idx_j] = val;
2175 2176
      }
    }
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188

    if (!SameShapeOfIntermediateOutAndOut) {
      if (d_intermediate) {
        sdata[threadIdx.y][threadIdx.x] = inter_val;
        __syncthreads();
        inter_val = sdata[threadIdx.x][threadIdx.y];
#pragma unroll
        for (int i = BLOCK_X >> 1; i > 0; i >>= 1) {
          // reduce sum with wrap
          inter_val += platform::CudaShuffleXorSync(0xFFFFFFFF, inter_val, i);
        }
        if (threadIdx.x == 0 && (idx_j < w)) d_intermediate[idx_j] = inter_val;
C
chengduo 已提交
2189 2190
      }
    }
2191
  }  // end for
2192 2193
}

C
chengduo 已提交
2194 2195 2196 2197
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut, bool BcastY,
          bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActGradBroadcast1CUDA(
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
    const framework::ExecutionContext &ctx, const T *x, const T *y,
    const T *intermediate_out, const T *out, const T *dout, int h, int w,
    DX_OP dx_op, DY_OP dy_op, DIntermediate_OP dintermediate_op, T *dx, T *dy,
    T *d_intermediate) {
  gpuStream_t stream = ctx.cuda_device_context().stream();

  dim3 blocks(BLOCK_X, BLOCK_Y);
  int max_gpu_threads = ctx.cuda_device_context().GetMaxPhysicalThreadCount();
  int max_blocks = std::max(max_gpu_threads / (BLOCK_X * BLOCK_Y), 1);
  int theory_block = (w + BLOCK_X - 1) / BLOCK_X;
  dim3 grids(std::min(theory_block, max_blocks));

2210
  FusedElemwiseAndActGradBroadcast1CUDAKernel<
C
chengduo 已提交
2211
      T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut, BcastY,
2212
      SameShapeOfIntermediateOutAndOut><<<grids, blocks, 0, stream>>>(
C
chengduo 已提交
2213 2214
      x, y, intermediate_out, out, dout, h, w, dx_op, dy_op, dintermediate_op,
      dx, dy, d_intermediate);
2215 2216
}

C
chengduo 已提交
2217 2218 2219
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut, bool BcastY,
          bool SameShapeOfIntermediateOutAndOut>
2220 2221
static __global__ void FusedElemwiseAndActGradBroadcast2CUDAKernel(
    const T *x, const T *y, const T *intermediate_out, const T *out,
C
chengduo 已提交
2222 2223
    const T *dout, int pre, int n, int post, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op, T *dx, T *dy, T *d_intermediate) {
2224 2225 2226
  int tid = threadIdx.x;
  int j = blockIdx.x;

C
chengduo 已提交
2227
  T val(0), inter_val(0);
2228 2229
  int ttid = tid;
  int64_t tmp_out_idx, x_idx, y_idx;
2230
  T zero = static_cast<T>(0);
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
  while (true) {
    int i = ttid / post;
    int k = ttid % post;
    if (i >= pre) break;

    int offset = i * n * post + j * post + k;

    tmp_out_idx = BcastY ? j : offset;
    y_idx = BcastY ? j : offset;
    x_idx = BcastY ? offset : j;
2241 2242
    T x_val = (x == nullptr) ? zero : x[x_idx];
    T y_val = (y == nullptr) ? zero : y[y_idx];
2243 2244 2245 2246 2247 2248

    if (SameShapeOfIntermediateOutAndOut) {
      tmp_out_idx = offset;
    }

    if (dx != nullptr) {
2249 2250 2251 2252 2253
      T tmp = UseIntermediateOut
                  ? dx_op.UseIntermediateOut(x_val, y_val,
                                             intermediate_out[tmp_out_idx],
                                             out[offset], dout[offset])
                  : dx_op.Recompute(x_val, y_val, out[offset], dout[offset]);
2254 2255 2256 2257 2258 2259 2260 2261

      if (BcastY) {
        dx[x_idx] = tmp;
      } else {
        val += tmp;
      }
    }
    if (dy != nullptr) {
2262 2263 2264 2265 2266
      T tmp = UseIntermediateOut
                  ? dy_op.UseIntermediateOut(x_val, y_val,
                                             intermediate_out[tmp_out_idx],
                                             out[offset], dout[offset])
                  : dy_op.Recompute(x_val, y_val, out[offset], dout[offset]);
2267 2268 2269 2270 2271 2272
      if (BcastY) {
        val += tmp;
      } else {
        dy[y_idx] = tmp;
      }
    }
C
chengduo 已提交
2273 2274 2275
    if (d_intermediate != nullptr) {
      T tmp = UseIntermediateOut
                  ? dintermediate_op.UseIntermediateOut(
2276
                        y_val, intermediate_out[tmp_out_idx], out[offset],
C
chengduo 已提交
2277
                        dout[offset])
2278
                  : dintermediate_op.Recompute(x_val, y_val, out[offset],
C
chengduo 已提交
2279 2280 2281 2282 2283 2284 2285
                                               dout[offset]);
      if (SameShapeOfIntermediateOutAndOut) {
        d_intermediate[tmp_out_idx] = tmp;
      } else {
        inter_val += tmp;
      }
    }
2286 2287 2288
    ttid += ELEMWISE_MAX_BLOCK_DIM;
  }

C
chengduo 已提交
2289 2290
  int h = pre * post;
  h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
  if (BcastY) {
    if (dy) {
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dy[j] = val;
      }
    }
  } else {
    if (dx) {
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dx[j] = val;
      }
    }
  }
C
chengduo 已提交
2306 2307 2308 2309 2310 2311 2312 2313
  if (!SameShapeOfIntermediateOutAndOut) {
    if (d_intermediate) {
      inter_val = paddle::platform::reduceSum(inter_val, tid, h);
      if (threadIdx.x == 0) {
        d_intermediate[j] = inter_val;
      }
    }
  }
2314 2315
}

C
chengduo 已提交
2316 2317 2318
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut, bool BcastY,
          bool SameShapeOfIntermediateOutAndOut>
2319
static void FusedElemwiseAndActGradBroadcast2CUDA(
2320
    gpuStream_t stream, const T *x, const T *y, const T *intermediate_out,
2321
    const T *out, const T *dout, int pre, int n, int post, DX_OP dx_op,
C
chengduo 已提交
2322 2323
    DY_OP dy_op, DIntermediate_OP dintermediate_op, T *dx, T *dy,
    T *dintermediate) {
2324 2325 2326
  int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, pre * post);
  int gird_size = n;
  FusedElemwiseAndActGradBroadcast2CUDAKernel<
C
chengduo 已提交
2327
      T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut, BcastY,
2328
      SameShapeOfIntermediateOutAndOut><<<gird_size, block_size, 0, stream>>>(
C
chengduo 已提交
2329 2330
      x, y, intermediate_out, out, dout, pre, n, post, dx_op, dy_op,
      dintermediate_op, dx, dy, dintermediate);
2331 2332 2333 2334
}
#endif

template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP,
C
chengduo 已提交
2335
          typename DIntermediate_OP, bool UseIntermediateOut, bool BcastY,
2336 2337 2338 2339 2340 2341
          bool SameShapeOfIntermediateOutAndOut>
void FusedElemwiseAndActGradComputeWithBroadcast(
    const framework::ExecutionContext &ctx, const framework::DDim &x_dim,
    const framework::DDim &y_dim_untrimed, const framework::Tensor *x,
    const framework::Tensor *y, const framework::Tensor *intermediate_out,
    const framework::Tensor *out, const framework::Tensor *dout, int axis,
C
chengduo 已提交
2342 2343 2344
    framework::Tensor *dx, framework::Tensor *dy,
    framework::Tensor *dintermediate, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op) {
2345 2346 2347 2348
  axis = (axis == -1 ? x_dim.size() - y_dim_untrimed.size() : axis);
  auto y_dim = trim_trailing_singular_dims(y_dim_untrimed);
  axis = (y_dim.size() == 0) ? x_dim.size() : axis;

2349
  int pre, n, post, is_run_common_broadcast;
2350 2351
  pten::funcs::get_mid_dims(x_dim, y_dim, axis, &pre, &n, &post,
                            &is_run_common_broadcast);
2352 2353 2354 2355
  const T *x_data = nullptr;
  const T *y_data = nullptr;
  if (x->IsInitialized()) x_data = x->data<T>();
  if (y->IsInitialized()) y_data = y->data<T>();
2356 2357 2358
  if (post == 1) {
    int h = pre;
    int w = n;
2359

2360
    if (platform::is_gpu_place(ctx.GetPlace())) {
2361
#if defined(__NVCC__) || defined(__HIPCC__)
C
chengduo 已提交
2362 2363
      FusedElemwiseAndActGradBroadcast1CUDA<T, DX_OP, DY_OP, DIntermediate_OP,
                                            UseIntermediateOut, BcastY,
2364
                                            SameShapeOfIntermediateOutAndOut>(
2365
          ctx, x_data, y_data,
2366
          intermediate_out == nullptr ? nullptr : intermediate_out->data<T>(),
C
chengduo 已提交
2367
          out->data<T>(), dout->data<T>(), h, w, dx_op, dy_op, dintermediate_op,
2368
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
C
chengduo 已提交
2369 2370 2371
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()),
          dintermediate == nullptr ? nullptr : dintermediate->mutable_data<T>(
                                                   ctx.GetPlace()));
2372 2373
#endif
    } else {
C
chengduo 已提交
2374 2375
      FusedElemwiseAndActGradBroadcast1CPU<T, DX_OP, DY_OP, DIntermediate_OP,
                                           UseIntermediateOut, BcastY,
2376
                                           SameShapeOfIntermediateOutAndOut>(
2377
          x_data, y_data,
2378
          intermediate_out == nullptr ? nullptr : intermediate_out->data<T>(),
C
chengduo 已提交
2379
          out->data<T>(), dout->data<T>(), h, w, dx_op, dy_op, dintermediate_op,
2380
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
C
chengduo 已提交
2381 2382 2383
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()),
          dintermediate == nullptr ? nullptr : dintermediate->mutable_data<T>(
                                                   ctx.GetPlace()));
2384 2385 2386
    }
  } else {
    if (platform::is_gpu_place(ctx.GetPlace())) {
2387
#if defined(__NVCC__) || defined(__HIPCC__)
C
chengduo 已提交
2388 2389
      FusedElemwiseAndActGradBroadcast2CUDA<T, DX_OP, DY_OP, DIntermediate_OP,
                                            UseIntermediateOut, BcastY,
2390
                                            SameShapeOfIntermediateOutAndOut>(
2391
          ctx.template device_context<DeviceContext>().stream(), x_data, y_data,
2392 2393
          intermediate_out == nullptr ? nullptr : intermediate_out->data<T>(),
          out->data<T>(), dout->data<T>(), pre, n, post, dx_op, dy_op,
C
chengduo 已提交
2394
          dintermediate_op,
2395
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
C
chengduo 已提交
2396 2397 2398
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()),
          dintermediate == nullptr ? nullptr : dintermediate->mutable_data<T>(
                                                   ctx.GetPlace()));
2399 2400
#endif
    } else {
C
chengduo 已提交
2401 2402
      FusedElemwiseAndActGradBroadcast2CPU<T, DX_OP, DY_OP, DIntermediate_OP,
                                           UseIntermediateOut, BcastY,
2403
                                           SameShapeOfIntermediateOutAndOut>(
2404
          x_data, y_data,
2405 2406
          intermediate_out == nullptr ? nullptr : intermediate_out->data<T>(),
          out->data<T>(), dout->data<T>(), pre, n, post, dx_op, dy_op,
C
chengduo 已提交
2407
          dintermediate_op,
2408
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
C
chengduo 已提交
2409 2410 2411
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()),
          dintermediate == nullptr ? nullptr : dintermediate->mutable_data<T>(
                                                   ctx.GetPlace()));
2412 2413 2414 2415 2416
    }
  }
}

template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP,
C
chengduo 已提交
2417 2418
          typename DIntermediate_OP, bool UseIntermediateOut,
          bool SameShapeOfIntermediateOutAndOut>
2419 2420 2421 2422
void FusedElemwiseAndActGradComputeEx(
    const framework::ExecutionContext &ctx, const framework::Tensor *x,
    const framework::Tensor *y, const framework::Tensor *out,
    const framework::Tensor *intermediate_out, const framework::Tensor *dout,
C
chengduo 已提交
2423 2424 2425
    int axis, framework::Tensor *dx, framework::Tensor *dy,
    framework::Tensor *dintermediate, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op) {
2426 2427 2428
  const framework::DDim &x_dim = x->dims();
  const framework::DDim &y_dim = y->dims();
  if (UseIntermediateOut) {
2429 2430 2431
    PADDLE_ENFORCE_NOT_NULL(
        intermediate_out,
        platform::errors::InvalidArgument("Intermediate out is null pointer."));
2432 2433
  }
  if (x_dim == y_dim) {
C
chengduo 已提交
2434 2435
    FusedElemwiseAndActGradComputeNoBroadcast<
        DeviceContext, T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut>(
2436
        ctx, x_dim, y_dim, x, y, intermediate_out, out, dout, axis, dx, dy,
C
chengduo 已提交
2437
        dintermediate, dx_op, dy_op, dintermediate_op);
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
  } else {  // Y is a scalar
    bool bcast_y = x_dim.size() >= y_dim.size();
    if (x_dim.size() == y_dim.size()) {
      for (int i = 0; i < x_dim.size(); ++i) {
        if (x_dim[i] < y_dim[i]) {
          bcast_y = false;
          break;
        }
      }
    }

    // z = f1(x, f2(y))
    // z = f1(f2(x, y))
    if (bcast_y) {  // Y should be broadcast.
      FusedElemwiseAndActGradComputeWithBroadcast<
C
chengduo 已提交
2453 2454 2455 2456
          DeviceContext, T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut,
          true /*BcastY*/, SameShapeOfIntermediateOutAndOut>(
          ctx, x_dim, y_dim, x, y, intermediate_out, out, dout, axis, dx, dy,
          dintermediate, dx_op, dy_op, dintermediate_op);
2457 2458
    } else {
      FusedElemwiseAndActGradComputeWithBroadcast<
C
chengduo 已提交
2459 2460 2461 2462
          DeviceContext, T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut,
          false /*BcastY*/, SameShapeOfIntermediateOutAndOut>(
          ctx, y_dim, x_dim, x, y, intermediate_out, out, dout, axis, dx, dy,
          dintermediate, dx_op, dy_op, dintermediate_op);
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
    }
  }
}

template <typename DeviceContext, typename T, typename CompoundFunctor,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
void FusedElemwiseAndActComputeEx(const framework::ExecutionContext &ctx,
                                  const framework::Tensor &x,
                                  const framework::Tensor &y, int axis,
                                  CompoundFunctor compound_functor,
                                  framework::Tensor *out,
                                  framework::Tensor *intermediate_out) {
  if (KeepIntermediateOut) {
2476 2477 2478 2479 2480
    PADDLE_ENFORCE_NOT_NULL(
        intermediate_out,
        platform::errors::InvalidArgument(
            "The save_intermediate_out is opened, intermediate "
            "out is null pointer."));
2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
  }

  const framework::DDim &x_dim = x.dims();
  const framework::DDim &y_dim = y.dims();
  if (x.dims() == y.dims()) {
    FusedElemwiseAndActComputeNoBroadcast<DeviceContext, T, CompoundFunctor,
                                          KeepIntermediateOut>(
        ctx, x_dim, x, y, compound_functor, out, intermediate_out);
  } else {
    // Whether the shape of Y is a continuous subsequence of X,
    // For more information please refer to the op's introduction.
2492
    bool bcast_y = x.numel() >= y.numel();
2493 2494 2495 2496
    // z = f1(x, f2(y))
    // z = f1(f2(x, y))
    if (bcast_y) {  // Y should be broadcast.
      // In this case,
2497 2498
      // for 'f2(y)', the shape of intermediate_out should be equal to the
      // shape
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
      // of Y.
      // for 'f2(x, y)', the shape of intermediate_out should be equal to the
      // shape of Out.
      // the shape of Out should be equal to the shape of X.
      FusedElemwiseAndActComputeWithBroadcast<
          DeviceContext, T, CompoundFunctor, true /*BcastY*/,
          KeepIntermediateOut, SameShapeOfIntermediateOutAndOut>(
          ctx, x_dim /*OutShape*/, y_dim, x, y, compound_functor, axis, out,
          intermediate_out);
    } else {
      // In this case,
2510 2511
      // for 'f2(y)', the shape of intermediate_out should be equal to the
      // shape
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
      // of Out.
      // for 'f2(x, y)', the shape of intermediate_out should be equal to the
      // shape of Out.
      // the shape of Out should be equal to the shape of Y.
      FusedElemwiseAndActComputeWithBroadcast<
          DeviceContext, T, CompoundFunctor, false /*BcastY*/,
          KeepIntermediateOut, SameShapeOfIntermediateOutAndOut>(
          ctx, y_dim /*OutShape*/, x_dim, x, y, compound_functor, axis, out,
          intermediate_out);
    }
  }
}
2524 2525 2526 2527 2528 2529 2530 2531

template <typename DeviceContext, typename T>
static inline void GetDoubleGradSafeTensor(
    const framework::ExecutionContext &ctx, const framework::Tensor *x,
    const framework::Tensor *ddx, framework::Tensor *ddx_safe) {
  if (ddx) {
    *ddx_safe = *ddx;
  } else {
2532 2533
    auto &dev_ctx = ctx.template device_context<DeviceContext>();
    *ddx_safe = ctx.AllocateTmpTensor<T, DeviceContext>(x->dims(), dev_ctx);
2534 2535 2536 2537 2538 2539
    math::SetConstant<DeviceContext, T> set_zero;
    set_zero(ctx.template device_context<DeviceContext>(), ddx_safe,
             static_cast<T>(0));
  }
}

2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
// for broadcast backwards
static inline std::vector<int> GetReduceDim(const framework::DDim &in,
                                            const framework::DDim &out,
                                            int axis) {
  axis =
      (axis == -1 ? std::abs(static_cast<int>(out.size() - in.size())) : axis);
  std::vector<int> dims;
  for (int i = 0; i < axis; ++i) {
    dims.push_back(i);
  }
  for (int i = 0; i < in.size(); ++i) {
    if (out[i + axis] != in[i]) {
      dims.push_back(i + axis);
    }
  }
  for (int i = axis + in.size(); i < out.size(); ++i) {
    dims.push_back(i);
  }
  return dims;
}
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631

#if defined(__NVCC__) || defined(__HIPCC__)
template <typename T>
void ReduceWrapper(const platform::CUDADeviceContext &dev_ctx, int axis,
                   framework::Tensor *src, framework::Tensor *dst) {
  std::vector<int> reduce_dims = GetReduceDim(dst->dims(), src->dims(), axis);
  TensorReduceFunctorImpl<T, T, kps::AddFunctor, kps::IdentityFunctor<T>>(
      *src, dst, kps::IdentityFunctor<T>(), reduce_dims, dev_ctx.stream());
}

template <ElementwiseType ET, typename T, typename Functor>
void GetGradXAndYOut(const platform::CUDADeviceContext &dev_ctx,
                     const platform::Place &place, int axis,
                     std::vector<const framework::Tensor *> ins,
                     const framework::Tensor *dout, framework::Tensor *dx,
                     framework::Tensor *dy, Functor func) {
  framework::Tensor tmp_dx;
  framework::Tensor tmp_dy;
  dy->mutable_data<T>(place);
  std::vector<framework::Tensor *> outs;
  if (dx->dims() == dout->dims() && dy->dims() == dout->dims()) {
    outs = {dx, dy};
  } else if (dx->dims() != dout->dims() && dy->dims() == dout->dims()) {
    tmp_dx.mutable_data<T>(dout->dims(), place);
    outs = {&tmp_dx, dy};
  } else if (dx->dims() == dout->dims() && dy->dims() != dout->dims()) {
    tmp_dy.mutable_data<T>(dout->dims(), place);
    outs = {dx, &tmp_dy};
  } else if (dx->dims() != dout->dims() && dy->dims() != dout->dims()) {
    tmp_dy.mutable_data<T>(dout->dims(), place);
    tmp_dx.mutable_data<T>(dout->dims(), place);
    outs = {&tmp_dx, &tmp_dy};
  }

  LaunchElementwiseCudaKernel<ET, T, T, decltype(func), 2>(dev_ctx, ins, &outs,
                                                           axis, func);

  if (dx->dims() != dout->dims() && dy->dims() == dout->dims()) {
    ReduceWrapper<T>(dev_ctx, axis, &tmp_dx, dx);
  } else if (dx->dims() == dout->dims() && dy->dims() != dout->dims()) {
    ReduceWrapper<T>(dev_ctx, axis, &tmp_dy, dy);
  } else if (dx->dims() != dout->dims() && dy->dims() != dout->dims()) {
    ReduceWrapper<T>(dev_ctx, axis, &tmp_dx, dx);
    ReduceWrapper<T>(dev_ctx, axis, &tmp_dy, dy);
  }
}

template <ElementwiseType ET, typename T, typename Functor>
void GetGradXOrYOut(const platform::CUDADeviceContext &dev_ctx,
                    const platform::Place &place, int axis,
                    std::vector<const framework::Tensor *> ins,
                    const framework::Tensor *dout, framework::Tensor *dxy,
                    Functor func) {
  framework::Tensor tmp_dxy;
  dxy->mutable_data<T>(place);

  std::vector<framework::Tensor *> outs;
  if (dxy->dims() != dout->dims()) {
    tmp_dxy.mutable_data<T>(dout->dims(), place);
    outs = {&tmp_dxy};
  } else {
    outs = {dxy};
  }

  LaunchElementwiseCudaKernel<ET, T, T>(dev_ctx, ins, &outs, axis, func);
  if (dxy->dims() != dout->dims()) {
    ReduceWrapper<T>(dev_ctx, axis, &tmp_dxy, dxy);
  }
}

#endif

2632 2633
}  // namespace operators
}  // namespace paddle