stat.py 29.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define statistical functions of a tensor
16

Z
zhiboniu 已提交
17
from ..static import Variable
18
from ..framework import LayerHelper
Z
zhiboniu 已提交
19
from ..framework import core
20
from paddle.fluid.framework import _in_legacy_dygraph, in_dygraph_mode
21
from .search import where
22
from ..fluid.data_feeder import check_type, check_variable_and_dtype
23
from ..fluid.layers import utils
24
import paddle
25
from paddle import _C_ops, _legacy_C_ops
26

27 28
__all__ = []

29 30 31 32 33 34

def mean(x, axis=None, keepdim=False, name=None):
    """
    Computes the mean of the input tensor's elements along ``axis``.

    Args:
35
        x (Tensor): The input Tensor with data type float32, float64.
36 37 38 39 40 41 42
        axis (int|list|tuple, optional): The axis along which to perform mean
            calculations. ``axis`` should be int, list(int) or tuple(int). If
            ``axis`` is a list/tuple of dimension(s), mean is calculated along
            all element(s) of ``axis`` . ``axis`` or element(s) of ``axis``
            should be in range [-D, D), where D is the dimensions of ``x`` . If
            ``axis`` or element(s) of ``axis`` is less than 0, it works the
            same way as :math:`axis + D` . If ``axis`` is None, mean is
43
            calculated over all elements of ``x``. Default is None.
44
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
45
            in the output Tensor. If ``keepdim`` is True, the dimensions of
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of average along ``axis`` of ``x``, with the same data
        type as ``x``.

    Examples:
        .. code-block:: python

            import paddle

Z
zhupengyang 已提交
61 62 63 64 65 66
            x = paddle.to_tensor([[[1., 2., 3., 4.],
                                   [5., 6., 7., 8.],
                                   [9., 10., 11., 12.]],
                                  [[13., 14., 15., 16.],
                                   [17., 18., 19., 20.],
                                   [21., 22., 23., 24.]]])
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
            out1 = paddle.mean(x)
            # [12.5]
            out2 = paddle.mean(x, axis=-1)
            # [[ 2.5  6.5 10.5]
            #  [14.5 18.5 22.5]]
            out3 = paddle.mean(x, axis=-1, keepdim=True)
            # [[[ 2.5]
            #   [ 6.5]
            #   [10.5]]
            #  [[14.5]
            #   [18.5]
            #   [22.5]]]
            out4 = paddle.mean(x, axis=[0, 2])
            # [ 8.5 12.5 16.5]
    """

83 84 85 86 87
    if isinstance(axis, Variable):
        reduce_all = True if axis.shape[0] == len(x.shape) else False
    else:
        if isinstance(axis, int):
            axis = [axis]
88 89 90 91 92
        reduce_all = (
            True
            if axis is None or len(axis) == 0 or len(axis) == len(x.shape)
            else False
        )
93 94
        if axis is None or len(axis) == 0:
            axis = [0]
95

96 97
    if in_dygraph_mode():
        if reduce_all:
98
            axis = list(range(len(x.shape)))
99
        return _C_ops.mean(x, axis, keepdim)
100
    if _in_legacy_dygraph():
101 102 103 104 105 106 107 108 109 110 111 112 113
        return _legacy_C_ops.reduce_mean(
            x, 'dim', axis, 'keep_dim', keepdim, 'reduce_all', reduce_all
        )

    check_variable_and_dtype(
        x,
        'x/input',
        ['uint16', 'float16', 'float32', 'float64'],
        'mean/reduce_mean',
    )
    check_type(
        axis, 'axis/dim', (int, list, tuple, Variable), 'mean/reduce_mean'
    )
114 115
    if isinstance(axis, (list, tuple)):
        for item in axis:
116 117 118 119 120 121
            check_type(
                item,
                'elements of axis/dim',
                (int, Variable),
                'mean/reduce_mean',
            )
122 123

    helper = LayerHelper('mean', **locals())
124 125 126

    if not isinstance(axis, Variable) and utils._contain_var(axis):
        axis = utils._convert_to_tensor_list(axis)
127 128
    attrs = {'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}
    out = helper.create_variable_for_type_inference(x.dtype)
129 130 131
    helper.append_op(
        type='reduce_mean', inputs={'X': x}, outputs={'Out': out}, attrs=attrs
    )
132
    return out
133 134


135
def var(x, axis=None, unbiased=True, keepdim=False, name=None):
136
    """
137
    Computes the variance of ``x`` along ``axis`` .
138 139

    Args:
140
        x (Tensor): The input Tensor with data type float32, float64.
141 142 143 144
        axis (int|list|tuple, optional): The axis along which to perform variance calculations. ``axis`` should be int, list(int) or tuple(int).

            - If ``axis`` is a list/tuple of dimension(s), variance is calculated along all element(s) of ``axis`` . ``axis`` or element(s) of ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` .
            - If ``axis`` or element(s) of ``axis`` is less than 0, it works the same way as :math:`axis + D` .
145 146 147 148 149
            - If ``axis`` is None, variance is calculated over all elements of ``x``. Default is None.

        unbiased (bool, optional): Whether to use the unbiased estimation. If ``unbiased`` is True, the divisor used in the computation is :math:`N - 1`, where :math:`N` represents the number of elements along ``axis`` , otherwise the divisor is :math:`N`. Default is True.
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result tensor will have one fewer dimension than the input unless keep_dim is true. Default is False.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
150 151

    Returns:
152
        Tensor, results of variance along ``axis`` of ``x``, with the same data type as ``x``.
153 154 155 156 157

    Examples:
        .. code-block:: python

            import paddle
158

Z
zhupengyang 已提交
159
            x = paddle.to_tensor([[1.0, 2.0, 3.0], [1.0, 4.0, 5.0]])
160 161 162 163
            out1 = paddle.var(x)
            # [2.66666667]
            out2 = paddle.var(x, axis=1)
            # [1.         4.33333333]
164
    """
Z
zhiboniu 已提交
165
    if not paddle.in_dynamic_mode():
166 167 168
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'var')

    u = mean(x, axis, True, name)
169
    out = paddle.sum((x - u) ** 2, axis, keepdim=keepdim, name=name)
170

171
    dtype = x.dtype
172 173 174
    n = paddle.cast(paddle.numel(x), paddle.int64) / paddle.cast(
        paddle.numel(out), paddle.int64
    )
175
    n = n.astype(dtype)
176
    if unbiased:
177
        one_const = paddle.ones([1], x.dtype)
178
        n = where(n > one_const, n - 1.0, one_const)
179 180 181
    out /= n
    return out

S
swtkiwi 已提交
182

183 184 185
def std(x, axis=None, unbiased=True, keepdim=False, name=None):
    """
    Computes the standard-deviation of ``x`` along ``axis`` .
L
Liufang Sang 已提交
186 187

    Args:
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int|list|tuple, optional): The axis along which to perform
            standard-deviation calculations. ``axis`` should be int, list(int)
            or tuple(int). If ``axis`` is a list/tuple of dimension(s),
            standard-deviation is calculated along all element(s) of ``axis`` .
            ``axis`` or element(s) of ``axis`` should be in range [-D, D),
            where D is the dimensions of ``x`` . If ``axis`` or element(s) of
            ``axis`` is less than 0, it works the same way as :math:`axis + D` .
            If ``axis`` is None, standard-deviation is calculated over all
            elements of ``x``. Default is None.
        unbiased (bool, optional): Whether to use the unbiased estimation. If
            ``unbiased`` is True, the standard-deviation is calculated via the
            unbiased estimator. If ``unbiased`` is True,  the divisor used in
            the computation is :math:`N - 1`, where :math:`N` represents the
            number of elements along ``axis`` , otherwise the divisor is
            :math:`N`. Default is True.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
L
Liufang Sang 已提交
211 212

    Returns:
213 214 215
        Tensor, results of standard-deviation along ``axis`` of ``x``, with the
        same data type as ``x``.

L
Liufang Sang 已提交
216 217 218 219
    Examples:
        .. code-block:: python

            import paddle
220

Z
zhupengyang 已提交
221
            x = paddle.to_tensor([[1.0, 2.0, 3.0], [1.0, 4.0, 5.0]])
222 223 224 225
            out1 = paddle.std(x)
            # [1.63299316]
            out2 = paddle.std(x, axis=1)
            # [1.       2.081666]
L
Liufang Sang 已提交
226
    """
Z
zhiboniu 已提交
227
    if not paddle.in_dynamic_mode():
228 229 230 231
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'std')

    out = var(**locals())
    return paddle.sqrt(out)
232 233 234 235 236


def numel(x, name=None):
    """
    Returns the number of elements for a tensor, which is a int64 Tensor with shape [1] in static mode
237
    or a scalar value in imperative mode.
238 239 240

    Args:
        x (Tensor): The input Tensor, it's data type can be bool, float16, float32, float64, int32, int64.
241 242
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
243 244 245 246 247 248 249

    Returns:
        Tensor: The number of elements for the input Tensor.

    Examples:
        .. code-block:: python

250
            import paddle
251

252 253
            x = paddle.full(shape=[4, 5, 7], fill_value=0, dtype='int32')
            numel = paddle.numel(x) # 140
254 255 256


    """
257
    if in_dygraph_mode():
258
        return _C_ops.numel(x)
259 260
    elif _in_legacy_dygraph():
        return _legacy_C_ops.size(x)
261 262 263 264 265

    if not isinstance(x, Variable):
        raise TypeError("x must be a Tensor in numel")
    helper = LayerHelper('numel', **locals())
    out = helper.create_variable_for_type_inference(
266 267
        dtype=core.VarDesc.VarType.INT64
    )
268 269
    helper.append_op(type='size', inputs={'Input': x}, outputs={'Out': out})
    return out
Z
zhulei 已提交
270 271


272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
def nanmedian(x, axis=None, keepdim=True, name=None):
    r"""
    Compute the median along the specified axis, while ignoring NaNs.

    If the valid count of elements is a even number,
    the average value of both elements in the middle is calculated as the median.

    Args:
        x (Tensor): The input Tensor, it's data type can be int32, int64, float16, float32, float64.
        axis (None|int|list|tuple, optional):
            The axis along which to perform median calculations ``axis`` should be int or list of int.
            ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` .
            If ``axis`` is less than 0, it works the same way as :math:`axis + D`.
            If ``axis`` is None, median is calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is True.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of median along ``axis`` of ``x``. The output dtype is the same as `x`.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([[float('nan'), 2. , 3. ], [0. , 1. , 2. ]])

            y1 = x.nanmedian()
            # y1 is [[2.]]

            y2 = x.nanmedian(0)
            # y2 is [[0.,  1.5, 2.5]]

            y3 = x.nanmedian(0, keepdim=False)
            # y3 is [0.,  1.5, 2.5]

            y4 = x.nanmedian((0, 1))
            # y4 is [[2.]]
    """
    if not isinstance(x, Variable):
        raise TypeError("In median, the input x should be a Tensor.")

    if isinstance(axis, (list, tuple)) and len(axis) == 0:
        raise ValueError("Axis list should not be empty.")

    dims = len(x.shape)
    if axis is None:
        axis = []
    elif isinstance(axis, tuple):
        axis = list(axis)
    elif isinstance(axis, int):
        axis = [axis]

    if not isinstance(axis, list):
        raise ValueError(
            "Axis should be None, int, or a list, element should in range [-rank(x), rank(x))."
        )

    for i in range(len(axis)):
335 336 337
        if not isinstance(axis[i], int) or not (
            axis[i] < dims and axis[i] >= -dims
        ):
338 339 340 341 342 343 344 345 346 347
            raise ValueError(
                "Axis should be None, int, or a list, element should in range [-rank(x), rank(x))."
            )
        if axis[i] < 0:
            axis[i] += dims

    if len(axis) != len(set(axis)):
        raise ValueError("Axis has duplicated elements.")

    if _in_legacy_dygraph():
348 349 350
        median_index, out = _legacy_C_ops.nanmedian(
            x, 'axis', axis, 'keepdim', keepdim
        )
351 352 353
        return out

    check_variable_and_dtype(
354 355
        x, 'X', ['int32', 'int64', 'float16', 'float32', 'float64'], 'nanmedian'
    )
356 357 358 359 360

    helper = LayerHelper('nanmedian', **locals())
    attrs = {'axis': axis, 'keepdim': keepdim}
    out = helper.create_variable_for_type_inference(x.dtype)
    medians = helper.create_variable_for_type_inference(x.dtype)
361 362 363 364 365 366
    helper.append_op(
        type='nanmedian',
        inputs={'X': x},
        outputs={'Out': out, 'MedianIndex': medians},
        attrs=attrs,
    )
367 368 369
    return out


Z
zhulei 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
def median(x, axis=None, keepdim=False, name=None):
    """
    Compute the median along the specified axis.

    Args:
        x (Tensor): The input Tensor, it's data type can be bool, float16, float32, float64, int32, int64.
        axis (int, optional): The axis along which to perform median calculations ``axis`` should be int.
            ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` .
            If ``axis`` is less than 0, it works the same way as :math:`axis + D`.
            If ``axis`` is None, median is calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of median along ``axis`` of ``x``. If data type of ``x`` is float64, data type of results will be float64, otherwise data type will be float32.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.arange(12).reshape([3, 4])
397 398 399 400
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0 , 1 , 2 , 3 ],
            #         [4 , 5 , 6 , 7 ],
            #         [8 , 9 , 10, 11]])
Z
zhulei 已提交
401 402

            y1 = paddle.median(x)
403 404
            # Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [5.50000000])
Z
zhulei 已提交
405 406

            y2 = paddle.median(x, axis=0)
407 408
            # Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [4., 5., 6., 7.])
Z
zhulei 已提交
409 410

            y3 = paddle.median(x, axis=1)
411 412
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1.50000000, 5.50000000, 9.50000000])
Z
zhulei 已提交
413 414

            y4 = paddle.median(x, axis=0, keepdim=True)
415 416
            # Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[4., 5., 6., 7.]])
Z
zhulei 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438

    """
    if not isinstance(x, Variable):
        raise TypeError("In median, the input x should be a Tensor.")
    is_flatten = axis is None
    dims = len(x.shape)
    if is_flatten:
        x = paddle.flatten(x)
        axis = 0
    else:
        if not isinstance(axis, int) or not (axis < dims and axis >= -dims):
            raise ValueError(
                "In median, axis should be none or an integer in range [-rank(x), rank(x))."
            )
        if axis < 0:
            axis += dims
    sz = x.shape[axis]
    kth = sz >> 1
    tensor_topk, idx = paddle.topk(x, kth + 1, axis=axis, largest=False)
    dtype = 'float64' if x.dtype == core.VarDesc.VarType.FP64 else 'float32'
    if sz & 1 == 0:
        out_tensor = paddle.slice(
439 440
            tensor_topk, axes=[axis], starts=[kth - 1], ends=[kth]
        ) + paddle.slice(tensor_topk, axes=[axis], starts=[kth], ends=[kth + 1])
Z
zhulei 已提交
441 442
        out_tensor = paddle.cast(out_tensor, dtype=dtype) / 2
    else:
443 444 445 446 447 448
        out_tensor = paddle.cast(
            paddle.slice(
                tensor_topk, axes=[axis], starts=[kth], ends=[kth + 1]
            ),
            dtype=dtype,
        )
449
    out_tensor = out_tensor + paddle.sum(
450 451
        paddle.cast(paddle.isnan(x), dtype=dtype) * x, axis=axis, keepdim=True
    )
Z
zhulei 已提交
452 453
    if not keepdim or is_flatten:
        if not is_flatten:
454
            newshape = x.shape[:axis] + x.shape[axis + 1 :]
Z
zhulei 已提交
455 456 457 458 459 460 461 462
        elif not keepdim:
            newshape = [1]
        else:
            newshape = [1] * dims
    else:
        newshape = out_tensor.shape
    out_tensor = out_tensor.reshape(newshape, name=name)
    return out_tensor
463 464


465
def _compute_quantile(x, q, axis=None, keepdim=False, ignore_nan=False):
466 467 468
    """
    Compute the quantile of the input along the specified axis.

469
    Args:
470
        x (Tensor): The input Tensor, it's data type can be float32, float64, int32, int64.
471
        q (int|float|list): The q for calculate quantile, which should be in range [0, 1]. If q is a list,
472 473 474 475 476 477 478 479 480 481 482
            each q will be calculated and the first dimension of output is same to the number of ``q`` .
        axis (int|list, optional): The axis along which to calculate quantile. ``axis`` should be int or list of int.
            ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` .
            If ``axis`` is less than 0, it works the same way as :math:`axis + D`.
            If ``axis`` is a list, quantile is calculated over all elements of given axises.
            If ``axis`` is None, quantile is calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
483 484 485
        ignore_nan: (bool, optional): Whether to ignore NaN of input Tensor.
            If ``ignore_nan`` is True, it will calculate nanquantile.
            Otherwise it will calculate quantile. Default is False.
486 487

    Returns:
488 489
        Tensor, results of quantile along ``axis`` of ``x``.
        In order to obtain higher precision, data type of results will be float64.
490
    """
491
    # Validate x
492 493
    if not isinstance(x, Variable):
        raise TypeError("input x should be a Tensor.")
494 495 496 497 498 499 500 501 502 503 504

    # Validate q
    if isinstance(q, (int, float)):
        q = [q]
    elif isinstance(q, (list, tuple)):
        if len(q) <= 0:
            raise ValueError("q should not be empty")
    else:
        raise TypeError("Type of q should be int, float, list or tuple.")

    # Validate axis
505
    dims = len(x.shape)
506
    out_shape = list(x.shape)
507 508 509 510 511 512
    if axis is None:
        x = paddle.flatten(x)
        axis = 0
        out_shape = [1] * dims
    else:
        if isinstance(axis, list):
513
            if len(axis) <= 0:
514 515 516 517
                raise ValueError("axis should not be empty")
            axis_src, axis_dst = [], []
            for axis_single in axis:
                if not isinstance(axis_single, int) or not (
518 519
                    axis_single < dims and axis_single >= -dims
                ):
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
                    raise ValueError(
                        "Axis should be None, int, or a list, element should in range [-rank(x), rank(x))."
                    )
                if axis_single < 0:
                    axis_single = axis_single + dims
                axis_src.append(axis_single)
                out_shape[axis_single] = 1
            axis_dst = list(range(-len(axis), 0))
            x = paddle.moveaxis(x, axis_src, axis_dst)
            x = paddle.flatten(x, axis_dst[0], axis_dst[-1])
            axis = axis_dst[0]
        else:
            if not isinstance(axis, int) or not (axis < dims and axis >= -dims):
                raise ValueError(
                    "Axis should be None, int, or a list, element should in range [-rank(x), rank(x))."
                )
            if axis < 0:
                axis += dims
            out_shape[axis] = 1
539 540

    mask = x.isnan()
541 542 543
    valid_counts = mask.logical_not().sum(
        axis=axis, keepdim=True, dtype='float64'
    )
544

545
    indices = []
546 547 548

    for q_num in q:
        if q_num < 0 or q_num > 1:
549
            raise ValueError("q should be in range [0, 1]")
550 551 552 553 554
        if paddle.in_dynamic_mode():
            q_num = paddle.to_tensor(q_num, dtype='float64')
        if ignore_nan:
            indices.append(q_num * (valid_counts - 1))
        else:
555
            # TODO: Use paddle.index_fill instead of where
556 557 558 559 560 561
            index = q_num * (valid_counts - 1)
            last_index = x.shape[axis] - 1
            nums = paddle.full_like(index, fill_value=last_index)
            index = paddle.where(mask.any(axis=axis, keepdim=True), nums, index)
            indices.append(index)

562 563
    sorted_tensor = paddle.sort(x, axis)

564
    outputs = []
565

566
    # TODO(chenjianye): replace the for-loop to directly take elements.
567 568 569
    for index in indices:
        indices_below = paddle.floor(index).astype(paddle.int32)
        indices_upper = paddle.ceil(index).astype(paddle.int32)
570 571 572 573 574 575 576 577 578 579 580 581
        tensor_upper = paddle.take_along_axis(
            sorted_tensor, indices_upper, axis=axis
        )
        tensor_below = paddle.take_along_axis(
            sorted_tensor, indices_below, axis=axis
        )
        weights = index - indices_below.astype('float64')
        out = paddle.lerp(
            tensor_below.astype('float64'),
            tensor_upper.astype('float64'),
            weights,
        )
582 583 584 585 586
        if not keepdim:
            out = paddle.squeeze(out, axis=axis)
        else:
            out = out.reshape(out_shape)
        outputs.append(out)
587 588 589

    if len(q) > 1:
        outputs = paddle.stack(outputs, 0)
590
    else:
591 592 593 594 595 596 597 598 599 600 601
        outputs = outputs[0]

    return outputs


def quantile(x, q, axis=None, keepdim=False):
    """
    Compute the quantile of the input along the specified axis.
    If any values in a reduced row are NaN, then the quantiles for that reduction will be NaN.

    Args:
602
        x (Tensor): The input Tensor, it's data type can be float32, float64, int32, int64.
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
        q (int|float|list): The q for calculate quantile, which should be in range [0, 1]. If q is a list,
            each q will be calculated and the first dimension of output is same to the number of ``q`` .
        axis (int|list, optional): The axis along which to calculate quantile. ``axis`` should be int or list of int.
            ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` .
            If ``axis`` is less than 0, it works the same way as :math:`axis + D`.
            If ``axis`` is a list, quantile is calculated over all elements of given axises.
            If ``axis`` is None, quantile is calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of quantile along ``axis`` of ``x``.
        In order to obtain higher precision, data type of results will be float64.

    Examples:
        .. code-block:: python

            import paddle

627 628 629 630 631 632 633
            y = paddle.arange(0, 8 ,dtype="float32").reshape([4, 2])
            # Tensor(shape=[4, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[0., 1.],
            #         [2., 3.],
            #         [4., 5.],
            #         [6., 7.]])

634
            y1 = paddle.quantile(y, q=0.5, axis=[0, 1])
635 636
            # Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        3.50000000)
637 638

            y2 = paddle.quantile(y, q=0.5, axis=1)
639 640
            # Tensor(shape=[4], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [0.50000000, 2.50000000, 4.50000000, 6.50000000])
641 642

            y3 = paddle.quantile(y, q=[0.3, 0.5], axis=0)
643 644 645
            # Tensor(shape=[2, 2], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [[1.80000000, 2.80000000],
            #         [3.        , 4.        ]])
646

647
            y[0,0] = float("nan")
648
            y4 = paddle.quantile(y, q=0.8, axis=1, keepdim=True)
649 650 651 652 653
            # Tensor(shape=[4, 1], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [[nan       ],
            #         [2.80000000],
            #         [4.80000000],
            #         [6.80000000]])
654 655 656 657 658 659 660 661 662 663 664

    """
    return _compute_quantile(x, q, axis=axis, keepdim=keepdim, ignore_nan=False)


def nanquantile(x, q, axis=None, keepdim=False):
    """
    Compute the quantile of the input as if NaN values in input did not exist.
    If all values in a reduced row are NaN, then the quantiles for that reduction will be NaN.

    Args:
665
        x (Tensor): The input Tensor, it's data type can be float32, float64, int32, int64.
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
        q (int|float|list): The q for calculate quantile, which should be in range [0, 1]. If q is a list,
            each q will be calculated and the first dimension of output is same to the number of ``q`` .
        axis (int|list, optional): The axis along which to calculate quantile. ``axis`` should be int or list of int.
            ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` .
            If ``axis`` is less than 0, it works the same way as :math:`axis + D`.
            If ``axis`` is a list, quantile is calculated over all elements of given axises.
            If ``axis`` is None, quantile is calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of quantile along ``axis`` of ``x``.
        In order to obtain higher precision, data type of results will be float64.

    Examples:
        .. code-block:: python

            import paddle

690
            x = paddle.to_tensor(
691
                [[0, 1, 2, 3, 4],
692 693 694
                    [5, 6, 7, 8, 9]],
                dtype="float32")
            x[0,0] = float("nan")
695 696

            y1 = paddle.nanquantile(x, q=0.5, axis=[0, 1])
697 698
            # Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        5.)
699 700

            y2 = paddle.nanquantile(x, q=0.5, axis=1)
701 702
            # Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [2.50000000, 7.        ])
703 704

            y3 = paddle.nanquantile(x, q=[0.3, 0.5], axis=0)
705 706 707
            # Tensor(shape=[2, 5], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [[5.        , 2.50000000, 3.50000000, 4.50000000, 5.50000000],
            #         [5.        , 3.50000000, 4.50000000, 5.50000000, 6.50000000]])
708 709

            y4 = paddle.nanquantile(x, q=0.8, axis=1, keepdim=True)
710 711 712
            # Tensor(shape=[2, 1], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [[3.40000000],
            #         [8.20000000]])
713

714
            nan = paddle.full(shape=[2, 3], fill_value=float("nan"))
715
            y5 = paddle.nanquantile(nan, q=0.8, axis=1, keepdim=True)
716 717 718
            # Tensor(shape=[2, 1], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [[nan],
            #         [nan]])
719 720 721

    """
    return _compute_quantile(x, q, axis=axis, keepdim=keepdim, ignore_nan=True)