adagrad.py 7.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .optimizer import Optimizer
from ..fluid import framework

18 19
__all__ = []

20 21

class Adagrad(Optimizer):
22
    r"""
23
    The Adaptive Gradient optimizer (Adagrad for short) use an optimization described
24 25 26 27 28 29 30 31 32
    in paper: `Adaptive Subgradient Methods for Online Learning and
    Stochastic Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The parameter ``param_out`` update rule with gradient ``grad``:

    .. math::

        moment\_out &= moment + grad * grad

33
        param\_out &= param - \frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}
34 35 36 37 38 39 40 41 42 43 44 45


    The original paper does not have the ``epsilon`` attribute. It is added here
    in our implementation as also proposed `Per-parameter adaptive learning rate
    methods <http://cs231n.github.io/neural-networks-3/#ada>`_
    for numerical stability to avoid the division by zero error.

    Args:
        learning_rate (float|Tensor): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
46 47 48 49 50 51 52 53 54 55 56 57 58
        parameters (list|tuple, optional): List/Tuple of ``Tensor`` to update to minimize ``loss``.
            This parameter is required in dygraph mode. And you can specify different options for
            different parameter groups such as the learning rate, weight decay, etc,
            then the parameters are list of dict. Note that the learning_rate in paramter groups
            represents the scale of base learning_rate.
            The default value is None in static mode, at this time all parameters will be updated.
        weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization.
            It canbe a float value as coeff of L2 regularization or
            :ref:`api_paddle_regularizer_L1Decay`, :ref:`api_paddle_regularizer_L2Decay`.
            If a parameter has set regularizer using :ref:`api_paddle_fluid_param_attr_aramAttr` already,
            the regularization setting here in optimizer will be ignored for this parameter.
            Otherwise, the regularization setting here in optimizer will take effect.
            Default None, meaning there is no regularization.
59 60 61
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies,
            ClipGradByGlobalNorm, ClipGradByNorm and ClipGradByValue. Default None,
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
            meaning there is no gradient clipping.
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        initial_accumulator_value (float, optional): Initial value for moment accumulator.
            The default value is 0.0.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            inp = paddle.rand(shape=[10, 10])
            linear = paddle.nn.Linear(10, 10)
            out = linear(inp)
            loss = paddle.mean(out)
            adagrad = paddle.optimizer.Adagrad(learning_rate=0.1,
                    parameters=linear.parameters())
            out.backward()
            adagrad.step()
            adagrad.clear_grad()

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
            #Note that the learning_rate of linear_2 is 0.01.
            linear_1 = paddle.nn.Linear(10, 10)
            linear_2 = paddle.nn.Linear(10, 10)
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
            out = linear_1(inp)
            out = linear_2(out)
            loss = paddle.mean(out)
            adagrad = paddle.optimizer.Adagrad(
                learning_rate=0.1,
                parameters=[{
                    'params': linear_1.parameters()
                }, {
                    'params': linear_2.parameters(),
                    'weight_decay': 0.001,
                    'learning_rate': 0.1,
                }],
101
                weight_decay=0.01)
102 103 104 105
            out.backward()
            adagrad.step()
            adagrad.clear_grad()

106 107 108
    """
    _moment_acc_str = "moment"

109 110 111 112 113 114 115 116 117 118
    def __init__(
        self,
        learning_rate,
        epsilon=1.0e-6,
        parameters=None,
        weight_decay=None,
        grad_clip=None,
        name=None,
        initial_accumulator_value=0.0,
    ):
119 120
        assert learning_rate is not None
        assert epsilon is not None
121 122 123 124 125 126 127
        super(Adagrad, self).__init__(
            learning_rate=learning_rate,
            parameters=parameters,
            weight_decay=weight_decay,
            grad_clip=grad_clip,
            name=name,
        )
128 129 130
        self.type = "adagrad"
        self._epsilon = epsilon
        self.initial_accumulator_value = initial_accumulator_value
131 132 133 134
        self._default_dict = {
            'epsilon': epsilon,
            'initial_accumulator_value': initial_accumulator_value,
        }
135 136 137 138

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

139 140 141
        if isinstance(parameters, dict):
            parameters = self._update_param_group(parameters)

142
        for p in parameters:
143 144 145 146 147
            self._add_accumulator(
                self._moment_acc_str,
                p,
                fill_value=self.initial_accumulator_value,
            )
148 149 150 151

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

152 153 154
        if isinstance(param_and_grad, dict):
            param_and_grad = self._update_param_group(param_and_grad)

155 156 157
        moment_acc = self._get_accumulator(
            self._moment_acc_str, param_and_grad[0]
        )
158
        # Create the adagrad optimizer op
159 160 161 162 163 164 165 166 167 168 169 170
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={"ParamOut": param_and_grad[0], "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon},
            stop_gradient=True,
        )
171 172

        return adagrad_op
173 174 175 176 177

    def _update_param_group(self, parameters):
        self._epsilon = parameters.get('epsilon', self._default_dict['epsilon'])
        self.initial_accumulator_value = parameters.get(
            'initial_accumulator_value',
178 179
            self._default_dict['initial_accumulator_value'],
        )
180 181
        parameters = parameters.get('params')
        return parameters