conv.py 70.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

L
LielinJiang 已提交
15
from ...device import get_cudnn_version
16
from ...static import Variable
17 18 19 20 21 22
from ...fluid.layers.utils import (
    convert_to_list,
    _is_symmetric_padding,
    _contain_var,
    _convert_to_tensor_list,
)
23
from ...fluid.data_feeder import check_variable_and_dtype, check_dtype
24
from ...fluid.layer_helper import LayerHelper
25 26
from ...tensor.manipulation import unsqueeze, squeeze
from ...fluid.layers import nn
27
from paddle import _C_ops, _legacy_C_ops
F
From00 已提交
28 29
from paddle import get_flags
from paddle import in_dynamic_mode
Z
zhiboniu 已提交
30 31
from paddle.device import is_compiled_with_cuda
from paddle.device import is_compiled_with_npu
H
hong 已提交
32 33
from paddle import in_dynamic_mode
from paddle import get_flags
F
From00 已提交
34 35 36 37
from paddle.device import is_compiled_with_rocm
from paddle.fluid.framework import _global_flags
from paddle.fluid.framework import _in_legacy_dygraph
from paddle.fluid.framework import in_dygraph_mode
38

39 40
__all__ = []

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

def _is_list_or_tuple(input):
    return isinstance(input, (list, tuple))


def _zero_padding_in_batch_and_channel(padding, channel_last):
    if channel_last:
        return list(padding[0]) == [0, 0] and list(padding[-1]) == [0, 0]
    else:
        return list(padding[0]) == [0, 0] and list(padding[1]) == [0, 0]


def _exclude_padding_in_batch_and_channel(padding, channel_last):
    padding_ = padding[1:-1] if channel_last else padding[2:]
    padding_ = [elem for pad_a_dim in padding_ for elem in pad_a_dim]
    return padding_


def _update_padding_nd(padding, channel_last, num_dims):
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
64 65 66 67
                "Unknown padding: '{}'. It can only be 'SAME' or 'VALID'.".format(
                    padding
                )
            )
68 69 70 71 72 73 74 75 76 77 78 79 80 81
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0] * num_dims
        else:
            padding_algorithm = "SAME"
            padding = [0] * num_dims
    elif _is_list_or_tuple(padding):
        # for padding like
        # [(pad_before, pad_after), (pad_before, pad_after), ...]
        # padding for batch_dim and channel_dim included
        if len(padding) == 2 + num_dims and _is_list_or_tuple(padding[0]):
            if not _zero_padding_in_batch_and_channel(padding, channel_last):
                raise ValueError(
                    "Non-zero padding({}) in the batch or channel dimensions "
82 83
                    "is not supported.".format(padding)
                )
84
            padding_algorithm = "EXPLICIT"
85
            padding = _exclude_padding_in_batch_and_channel(
86 87
                padding, channel_last
            )
88
            if _is_symmetric_padding(padding, num_dims):
89 90 91 92
                padding = padding[0::2]
        # for padding like [pad_before, pad_after, pad_before, pad_after, ...]
        elif len(padding) == 2 * num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
93 94
            padding = convert_to_list(padding, 2 * num_dims, 'padding')
            if _is_symmetric_padding(padding, num_dims):
95 96 97 98
                padding = padding[0::2]
        # for padding like [pad_d1, pad_d2, ...]
        elif len(padding) == num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
99
            padding = convert_to_list(padding, num_dims, 'padding')
100 101 102 103 104
        else:
            raise ValueError("In valid padding: {}".format(padding))
    # for integer padding
    else:
        padding_algorithm = "EXPLICIT"
105
        padding = convert_to_list(padding, num_dims, 'padding')
106 107
    if not all([p >= 0 for p in padding]):
        raise ValueError(
108 109 110 111
            "Invalid padding, all value should be larger than or equal to 0, but received: {}".format(
                padding
            )
        )
112 113 114
    return padding, padding_algorithm


115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
def _conv_nd(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    padding_algorithm=None,
    dilation=1,
    groups=1,
    data_format="NCHW",
    channel_dim=1,
    op_type="conv2d",
    use_cudnn=True,
    use_mkldnn=False,
    name=None,
):
L
LielinJiang 已提交
131

132
    # Due to the poor performance of NHWC, we transpose the input to NCHW.
H
hong 已提交
133
    if in_dygraph_mode() and op_type == "conv2d":
134 135 136 137 138 139 140 141 142 143 144 145 146
        pre_bias = _C_ops.conv2d(
            x,
            weight,
            stride,
            padding,
            padding_algorithm,
            groups,
            dilation,
            data_format,
            False,
            -1,
            False,
        )
H
hong 已提交
147
        if bias is not None:
148 149 150
            channel_dim = (
                channel_dim + len(x.shape) if channel_dim < 0 else channel_dim
            )
151 152 153 154
            if isinstance(x, tuple):
                x = x[0]
            if isinstance(bias, tuple):
                bias = bias[0]
C
Chen Weihang 已提交
155
            if len(bias.shape) < len(x.shape):
156
                tmp_bias = _C_ops.reshape(
157 158 159 160 161
                    bias,
                    [1 for i in range(channel_dim)]
                    + bias.shape
                    + [1 for i in range(len(x.shape) - channel_dim - 1)],
                )
162
                return _C_ops.add(pre_bias, tmp_bias)
C
Chen Weihang 已提交
163
            else:
164
                return _C_ops.add(pre_bias, bias)
H
hong 已提交
165 166
        else:
            return pre_bias
167 168

    if in_dygraph_mode() and op_type == "depthwise_conv2d":
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
        pre_bias = _C_ops.depthwise_conv2d(
            x,
            weight,
            stride,
            padding,
            padding_algorithm,
            groups,
            dilation,
            data_format,
            False,
            -1,
            False,
            False,
            use_cudnn,
        )
184
        if bias is not None:
185 186 187
            channel_dim = (
                channel_dim + len(x.shape) if channel_dim < 0 else channel_dim
            )
188
            tmp_bias = _C_ops.reshape(
189 190 191 192 193
                bias,
                [1 for i in range(channel_dim)]
                + bias.shape
                + [1 for i in range(len(x.shape) - channel_dim - 1)],
            )
194
            return _C_ops.add(pre_bias, tmp_bias)
195 196 197 198
        else:
            return pre_bias

    if in_dygraph_mode() and op_type == "conv3d":
199 200 201 202 203 204 205 206 207 208 209 210 211
        pre_bias = _C_ops.conv3d(
            x,
            weight,
            stride,
            padding,
            padding_algorithm,
            groups,
            dilation,
            data_format,
            False,
            -1,
            False,
        )
212
        if bias is not None:
213 214 215
            channel_dim = (
                channel_dim + len(x.shape) if channel_dim < 0 else channel_dim
            )
216
            tmp_bias = _C_ops.reshape(
217
                bias,
218 219
                bias.shape + [1 for i in range(len(x.shape) - channel_dim - 1)],
            )
220
            return _C_ops.add(pre_bias, tmp_bias)
221 222 223
        else:
            return pre_bias

Z
zhiboniu 已提交
224
    if in_dynamic_mode():
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
        attrs = (
            'strides',
            stride,
            'paddings',
            padding,
            'dilations',
            dilation,
            'groups',
            groups,
            'use_cudnn',
            use_cudnn,
            'use_mkldnn',
            use_mkldnn,
            'fuse_relu_before_depthwise_conv',
            False,
            "padding_algorithm",
            padding_algorithm,
            "data_format",
            data_format,
        )
245
        pre_bias = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
L
LielinJiang 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
        if bias is not None:
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            out = pre_bias
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
261
            "data_format": data_format,
L
LielinJiang 已提交
262
        }
263 264 265
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], op_type
        )
L
LielinJiang 已提交
266 267 268 269
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        pre_bias = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [pre_bias]}
270 271 272
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
L
LielinJiang 已提交
273 274
        if bias is not None:
            out = helper.create_variable_for_type_inference(dtype)
275 276 277 278 279 280
            helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias], 'Y': [bias]},
                outputs={'Out': [out]},
                attrs={'axis': channel_dim, 'use_mkldnn': use_mkldnn},
            )
L
LielinJiang 已提交
281 282 283 284 285
        else:
            out = pre_bias
    return out


286 287 288 289 290 291 292 293 294 295 296
def conv1d(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    dilation=1,
    groups=1,
    data_format='NCL',
    name=None,
):
297
    r"""
W
whs 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
    The convolution1D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCL format, where N is batch size, C is the number of
    channels, L is the length of the feature.
    Filter is in MCK format, where M is the number of output image channels,
    C is the number of input image channels, K is the size of the kernel.
    If the groups is greater than 1, C will equal the number of input image
    channels divided by the groups. If bias attribution and activation type
    are provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
313
        Out = \sigma (W \ast X + b)
W
whs 已提交
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339

    Where:

    * :math:`X`: Input value, a tensor with NCL format.
    * :math:`W`: Kernel value, a tensor with MCK format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

W
whs 已提交
340
            L_{out} = \frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1
W
whs 已提交
341 342

    Args:
343
        x (Tensor): The input is 3-D Tensor with shape [N, C, L], the data type
W
whs 已提交
344 345
            of input is float16 or float32 or float64.
        weight (Tensor): The convolution kernel with shape [M, C/g, K], where M is
346
            the number of output channels, g is the number of groups, K is the kernel's size.
W
whs 已提交
347
        bias (Tensor, optional): The bias with shape [M,]. Default: None.
348
        stride (int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
W
whs 已提交
349
            contain one integers, (stride_size). Default: 1.
350
        padding(int|str|tuple|list, optional): The padding size. Padding could be in one of the following forms.
W
whs 已提交
351 352 353 354 355 356
            1. a string in ['valid', 'same'].
            2. an int, which means the feature map is zero paded by size of `padding` on both sides.
            3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
            4. a list[int] or tuple[int] whose length is 2. It has the form  [pad_before, pad_after].
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
357
        dilation (int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
W
whs 已提交
358 359 360 361 362 363
            contain one integer, (dilation_size). Default: 1.
        groups (int, optional): The groups number of the conv1d function. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
364
        data_format (str, optional): Specify the data format of the input, and the data format of the output
W
whs 已提交
365 366 367
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, feature_length]`.
368 369
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
W
whs 已提交
370 371 372
           None by default.

    Returns:
373
        A tensor representing the conv1d, whose data type is the
W
whs 已提交
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
        same with input.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn.functional as F
          import numpy as np
          x = np.array([[[4, 8, 1, 9],
            [7, 2, 0, 9],
            [6, 9, 2, 6]]]).astype(np.float32)
          w=np.array(
          [[[9, 3, 4],
            [0, 0, 7],
            [2, 5, 6]],
           [[0, 3, 4],
            [2, 9, 7],
            [5, 6, 8]]]).astype(np.float32)
392

W
whs 已提交
393 394 395 396 397
          x_var = paddle.to_tensor(x)
          w_var = paddle.to_tensor(w)
          y_var = F.conv1d(x_var, w_var)
          y_np = y_var.numpy()
          print(y_np)
398

W
whs 已提交
399 400 401 402 403 404 405 406 407 408
          # [[[133. 238.]
          #   [160. 211.]]]
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ["NCL", "NLC"]:
409 410 411 412
        raise ValueError(
            "Attr(data_format) should be 'NCL' or 'NLC'. "
            "Received Attr(data_format): {}.".format(data_format)
        )
W
whs 已提交
413

414
    channel_last = data_format == "NLC"
W
whs 已提交
415 416
    channel_dim = -1 if channel_last else 1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"
417 418
    if len(x.shape) != 3:
        raise ValueError(
419 420 421 422
            "Input x should be 3D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
W
whs 已提交
423 424 425
    num_channels = x.shape[channel_dim]
    num_filters = weight.shape[0]
    if num_channels < 0:
426 427 428 429
        raise ValueError(
            "The channel dimension of the input({}) "
            "should be defined. Received: {}.".format(x.shape, num_channels)
        )
430 431
    if groups <= 0:
        raise ValueError(
432 433 434 435
            "The groups of conv1d should be greater than 0. Received groups: {}".format(
                groups
            )
        )
W
whs 已提交
436 437 438 439
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
440 441
            ", the groups is {}".format(num_channels, x.shape, groups)
        )
W
whs 已提交
442 443 444 445
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
446 447
            ", the groups is {}".format(num_filters, weight.shape, groups)
        )
W
whs 已提交
448 449 450

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)
451

W
whs 已提交
452
    if len(padding) == 2:
453
        padding = [0] * 2 + padding
W
whs 已提交
454
    elif len(padding) == 1:
455
        padding = [0] + padding
W
whs 已提交
456 457
    else:
        raise ValueError(
458 459 460 461
            "The size of padding's dimension should be 1 or 2. But got padding={}".format(
                padding
            )
        )
462 463 464
    stride = [1] + convert_to_list(stride, 1, 'stride')
    dilation = [1] + convert_to_list(dilation, 1, 'dilation')
    weight = unsqueeze(weight, axis=[-2])
W
whs 已提交
465 466

    l_type = "conv2d"
467 468

    # When "groups==num_channels and num_filters% num_channels == 0" using depthwise_conv2d has better performance
469 470 471 472 473 474
    if (
        is_compiled_with_cuda()
        and num_channels == groups
        and num_channels != 1
        and num_filters % num_channels == 0
    ):
W
whs 已提交
475 476 477
        l_type = 'depthwise_conv2d'
        use_cudnn = False

478
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
Z
zhiboniu 已提交
479
    if is_compiled_with_npu():
480
        if num_channels == groups and num_channels == num_filters:
481 482 483 484
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

485
    squeeze_aixs = -3 if channel_last else -2
486
    x = unsqueeze(x, axis=[squeeze_aixs])
487

488
    if in_dygraph_mode():
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
        out = getattr(_C_ops, l_type)(
            x,
            weight,
            stride,
            padding,
            padding_algorithm,
            groups,
            dilation,
            conv2d_data_format,
            False,
            -1,
            False,
            False,
            use_cudnn,
        )
504 505 506
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    elif _in_legacy_dygraph():
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
        attrs = (
            'strides',
            stride,
            'paddings',
            padding,
            'dilations',
            dilation,
            'groups',
            groups,
            'use_cudnn',
            use_cudnn,
            'use_mkldnn',
            False,
            'fuse_relu_before_depthwise_conv',
            False,
            "padding_algorithm",
            padding_algorithm,
            "data_format",
            conv2d_data_format,
        )
527
        out = getattr(_legacy_C_ops, l_type)(x, weight, *attrs)
W
whs 已提交
528 529 530 531 532 533 534 535 536 537 538 539 540
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': False,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
541
            "data_format": conv2d_data_format,
W
whs 已提交
542
        }
543 544 545
        check_variable_and_dtype(
            x, 'input', ['float16', 'float32', 'float64'], 'conv2d'
        )
W
whs 已提交
546
        helper = LayerHelper(l_type, **locals())
547
        dtype = helper.input_dtype(input_param_name='x')
W
whs 已提交
548 549
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
550 551 552
        helper.append_op(
            type=l_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
W
whs 已提交
553 554
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
555
    out = squeeze(out, axis=[squeeze_aixs])
W
whs 已提交
556 557 558
    return out


559 560 561 562 563 564 565 566 567 568 569
def conv2d(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    dilation=1,
    groups=1,
    data_format="NCHW",
    name=None,
):
570
    r"""
S
swtkiwi 已提交
571

572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
    channels, H is the height of the feature, and W is the width of the feature.
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

589
    ..  math::
590

591
        Out = \sigma (W \ast X + b)
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615

    Where:

    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

616
        ..  math::
617

618 619
            H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
620 621

    Args:
622
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W], the data type
623
            of input is float16 or float32 or float64.
624
        weight (Tensor): The convolution kernel with shape [M, C/g, kH, kW], where M is
625
            the number of output channels, g is the number of groups, kH is the filter's
626
            height, kW is the filter's width.
627
        bias (Tensor, optional): The bias with shape [M,].
628 629
        stride (int|list|tuple): The stride size. It means the stride in convolution.
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width).
630
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
631 632 633 634
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
            on both sides for each dimension.If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
635 636
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when
            `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0],
637
            [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
638
            when `data_format` is `"NHWC"`, `padding` can be in the form
639 640
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
641
        dilation (int|list|tuple): The dilation size. It means the spacing between the kernel
642 643
            points. If dilation is a list/tuple, it must contain two integers, (dilation_height,
            dilation_width). Otherwise, dilation_height = dilation_width = dilation.
644
            Default: dilation = 1.
C
cnn 已提交
645
        groups (int): The groups number of the Conv2D Layer. According to grouped
646 647 648 649
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
650
        data_format (str, optional): Specify the data format of the input, and the data format of the output
651 652 653
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
654 655
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
656 657 658
           None by default.

    Returns:
659
        A Tensor representing the conv2d result, whose data type is the same with input.
660 661 662 663

    Examples:
        .. code-block:: python

664
          import paddle
665 666
          import paddle.nn.functional as F

667 668
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((6, 3, 3, 3), dtype='float32')
669 670 671 672

          y_var = F.conv2d(x_var, w_var)
          y_np = y_var.numpy()

673 674 675 676 677
          print(y_np.shape)
          # (2, 6, 6, 6)
    """
    # entry checks
    if data_format not in ["NCHW", "NHWC"]:
678 679 680 681
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. "
            "Received Attr(data_format): {}.".format(data_format)
        )
682

683
    channel_last = data_format == "NHWC"
684
    channel_dim = -1 if channel_last else 1
685 686
    if len(x.shape) != 4:
        raise ValueError(
687 688 689 690
            "Input x should be 4D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
691
    num_channels = x.shape[channel_dim]
692 693
    num_filters = weight.shape[0]
    if num_channels < 0:
694 695 696 697
        raise ValueError(
            "The channel dimension of the input({}) "
            "should be defined. Received: {}.".format(x.shape, num_channels)
        )
698 699
    if groups <= 0:
        raise ValueError(
700 701 702 703
            "The groups of conv2d should be greater than 0. Received groups: {}".format(
                groups
            )
        )
704 705 706 707
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
708 709
            ", the groups is {}".format(num_channels, x.shape, groups)
        )
710 711 712 713
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
714 715
            ", the groups is {}".format(num_filters, weight.shape, groups)
        )
716

717 718
    cudnn_version = get_cudnn_version()

719 720 721 722 723
    use_cudnn = (
        True
        if (is_compiled_with_cuda() and cudnn_version is not None)
        else False
    )
724

725 726
    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
727 728
    stride = convert_to_list(stride, 2, 'stride')
    dilation = convert_to_list(dilation, 2, 'dilation')
729 730

    l_type = "conv2d"
731 732 733 734 735
    if (
        num_channels == groups
        and num_channels != 1
        and num_filters % num_channels == 0
    ):
736
        l_type = 'depthwise_conv2d'
Z
zhiboniu 已提交
737
        if is_compiled_with_rocm():
738 739 740
            use_cudnn = True
        else:
            use_cudnn = False
H
hong 已提交
741 742
    else:
        if in_dygraph_mode():
743 744 745 746 747 748 749 750 751 752 753 754 755
            pre_bias = _C_ops.conv2d(
                x,
                weight,
                stride,
                padding,
                padding_algorithm,
                groups,
                dilation,
                data_format,
                False,
                -1,
                False,
            )
H
hong 已提交
756 757 758 759 760 761 762
            if bias is not None:
                out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
                return out
            else:
                return pre_bias

    use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
763

764
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
Z
zhiboniu 已提交
765
    if is_compiled_with_npu():
766
        if num_channels == groups and num_channels == num_filters:
767 768 769 770
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

771 772 773 774 775 776
    if (
        is_compiled_with_cuda()
        and get_flags("FLAGS_conv2d_disable_cudnn")[
            "FLAGS_conv2d_disable_cudnn"
        ]
    ):
777
        use_cudnn = False
778

779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
    return _conv_nd(
        x,
        weight,
        bias,
        stride,
        padding,
        padding_algorithm,
        dilation,
        groups,
        data_format,
        channel_dim,
        l_type,
        use_cudnn,
        use_mkldnn,
        name,
    )


def conv1d_transpose(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    output_padding=0,
    groups=1,
    dilation=1,
    output_size=None,
    data_format="NCL",
    name=None,
):
810
    r"""
811 812 813 814 815 816 817 818 819 820 821 822 823 824
    The 1-D convolution transpose layer calculates the output based on the input,
    filter, and dilation, stride, padding. Input(Input) and output(Output)
    are in 'NCL' format or 'NLC' where N is batch size, C is the number of channels,
    L is the length of the feature. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
825
        Out = \sigma (W \ast X + b)
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860

    Where:

    * :math:`X`: Input value, a 3-D Tensor with 'NCL' format or 'NLC' format.
    * :math:`W`: Filter value, a 3-D Tensor with 'MCK' format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 3-D Tensor with data format 'NCL' or 'NLC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

           L^\prime_{out} &= (L_{in} - 1) * stride - pad_top - pad_bottom + dilation * (L_f - 1) + 1 + output_padding \\\\
           L_{out} &\in [ L^\prime_{out}, L^\prime_{out} + stride ]

    Note:
          The conv1d_transpose can be seen as the backward of the conv1d. For conv1d,
          when stride > 1, conv1d maps multiple input shape to the same output shape,
          so for conv1d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`L_{out} = L^\prime_{out}`;
          else, the :math:`L_{out}` of the output size must between :math:`L^\prime_{out}`
861
          and :math:`L^\prime_{out} + stride`.
862 863 864 865 866 867 868 869 870

    Args:
        x(Tensor): 3-D tensor with [N, C, L] or [N, L, C] format,
                         its data type is float32 or float64.
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, K],
            where M is the number of output channels(filters), g is the number of groups,
            K is the size of the kernel.
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
        stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
871
            If stride is a list/tuple, it must contain one integer, `(stride_size)`.
872 873 874 875 876 877 878
            Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in two forms:
             `[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
        output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
879
             If it is a list/tuple, it must contain one integer. Default: 0.
880 881 882 883 884 885 886
        groups(int, optional): The groups number of the conv1d transpose function. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
887
            If dilation is a list/tuple, it must contain one integer, `(dilation_size)`.
888 889
            Default: dilation = 1.
        output_size(int|tuple|list, optional): The output image size. If output size is a
890
            tuple/list, it must contain one integer, `(feature_length)`. None if use
891
            filter_size(shape of weight), padding, and stride to calculate output_size.
892
        data_format (str, optional): Specify the data format of the input, and the data format of the output
893 894 895
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, input_length]`.
896 897
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
           None by default.

    Returns:
        A  tensor representing the result of 1-D transpose convolution, whose
        data type is the same with input. And its shape is (num_batches, channels, length)
        when data_format is `"NCL"` and (num_batches, length, channels) when data_format is
        `"NLC"`.

    Examples:
        .. code-block:: python



          import paddle
          import paddle.nn.functional as F
          import numpy as np
914

915 916 917 918
          # shape: (1, 2, 4)
          x=np.array([[[4, 0, 9, 7],
                       [8, 0, 9, 2,]]]).astype(np.float32)
          # shape: (2, 1, 2)
W
whs 已提交
919
          w=np.array([[[7, 0]],
920 921 922
                      [[4, 2]]]).astype(np.float32)
          x_var = paddle.to_tensor(x)
          w_var = paddle.to_tensor(w)
923
          y_var = F.conv1d_transpose(x_var, w_var)
W
whs 已提交
924
          print(y_var)
925

926 927 928 929 930 931 932 933 934 935 936 937
          # [[[60. 16. 99. 75.  4.]]]
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ['NCL', 'NLC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCL' or 'NLC' are supported.".format(
938 939 940 941
                data_format
            )
        )
    channel_last = data_format == "NLC"
942
    channel_dim = -1 if channel_last else 1
943 944
    if len(x.shape) != 3:
        raise ValueError(
945 946 947 948
            "Input x should be 3D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
949 950 951

    num_channels = x.shape[channel_dim]
    if num_channels < 0:
952 953 954 955
        raise ValueError(
            "The channel dimension of the input({}) "
            "should be defined. Received: {}.".format(x.shape, num_channels)
        )
956 957
    if groups <= 0:
        raise ValueError(
958 959 960 961
            "The groups of conv1d_transpose should be greater than 0. Received groups: {}".format(
                groups
            )
        )
962 963 964 965
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
966 967
            ", the groups is {}".format(num_channels, x.shape, groups)
        )
968 969 970 971 972 973 974 975 976 977

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)

    if len(padding) == 2:
        padding = padding + [0] * 2
    elif len(padding) == 1:
        padding = padding + [0]
    else:
        raise ValueError(
978 979 980 981
            "The size of padding's dimension should 1 or 2. But got padding={}".format(
                padding
            )
        )
982

983 984
    stride = convert_to_list(stride, 1, 'stride') + [1]
    dilation = convert_to_list(dilation, 1, 'dilation') + [1]
985 986 987 988

    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
989
        if output_padding != 0:
990 991 992 993
            raise ValueError(
                'output_padding option is mutually exclusive with '
                'output_size'
            )
L
LielinJiang 已提交
994
        if isinstance(output_size, (list, tuple, int)):
995
            output_size = convert_to_list(output_size, 1, 'output_size') + [1]
L
LielinJiang 已提交
996 997
        else:
            raise ValueError(
998 999
                "output_size should be int, or list, tuple of ints"
            )
L
LielinJiang 已提交
1000 1001 1002 1003

    if output_padding == 0:
        output_padding = []
    else:
1004 1005 1006
        output_padding = convert_to_list(
            output_padding, 1, 'output_padding'
        ) + [0]
L
LielinJiang 已提交
1007 1008 1009 1010

    if len(output_padding) > 0 and output_padding[0] > stride[0]:
        raise ValueError(
            "The size of output_padding should not be greater than stride."
1011
            "But got output_padding={} and stride={}".format(
1012 1013 1014
                output_padding[0], stride[0]
            )
        )
1015 1016 1017

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
1018 1019 1020 1021 1022 1023
    if (
        num_channels == groups
        and num_channels != 1
        and num_filters == 1
        and not use_cudnn
    ):
1024 1025 1026 1027 1028 1029
        op_type = 'depthwise_conv2d_transpose'
        use_cudnn = False

    squeeze_axis = -2 if channel_last else -1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"

1030 1031
    x = unsqueeze(x, axis=[squeeze_axis])
    weight = unsqueeze(weight, axis=[-1])
1032

1033
    if in_dygraph_mode():
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
        out = getattr(_C_ops, op_type)(
            x,
            weight,
            stride,
            padding,
            output_padding,
            output_size,
            padding_algorithm,
            groups,
            dilation,
            conv2d_data_format,
        )
1046 1047 1048
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    elif _in_legacy_dygraph():
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
        attrs = (
            'output_padding',
            output_padding,
            'output_size',
            output_size,
            'strides',
            stride,
            'paddings',
            padding,
            'padding_algorithm',
            padding_algorithm,
            'dilations',
            dilation,
            'groups',
            groups,
            'use_cudnn',
            use_cudnn,
            'data_format',
            conv2d_data_format,
        )
1069
        out = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
1070 1071 1072 1073 1074
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
L
LielinJiang 已提交
1075
            'output_padding': output_padding,
1076 1077 1078 1079 1080 1081 1082
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
1083
            'data_format': conv2d_data_format,
1084
        }
1085 1086 1087
        check_variable_and_dtype(
            x, 'input', ['float16', 'float32', 'float64'], 'conv2d_transpose'
        )
1088
        helper = LayerHelper(op_type, **locals())
1089
        dtype = helper.input_dtype(input_param_name='x')
1090 1091
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
1092 1093 1094
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
1095 1096 1097
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)

1098
    out = squeeze(out, axis=[squeeze_axis])
1099 1100 1101
    return out


1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
def conv2d_transpose(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    output_padding=0,
    dilation=1,
    groups=1,
    output_size=None,
    data_format='NCHW',
    name=None,
):
1115
    r"""
S
swtkiwi 已提交
1116

1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW or NHWC format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
1128
    See more detail in :ref:`api_nn_conv_ConvTranspose2d` .
1129 1130 1131

    For each input :math:`X`, the equation is:

1132
    ..  math::
1133

1134
        Out = \sigma (W \ast X + b)
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158

    Where:

    * :math:`X`: Input value, a 4-D Tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a 4-D Tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 4-D Tensor with data format 'NCHW' or 'NHWC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

1159
        ..  math::
1160 1161 1162 1163 1164 1165 1166

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - pad_width_left - pad_width_right + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ]

    Note:
1167 1168
          The conv2d_transpose can be seen as the backward of the conv2d. For conv2d,
          when stride > 1, conv2d maps multiple input shape to the same output shape,
1169
          so for conv2d_transpose, when stride > 1, input shape maps multiple output shape.
1170 1171 1172
          If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`;
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}`
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must
1173
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`.
1174 1175

    Args:
L
LielinJiang 已提交
1176
        x(Tensor): 4-D Tensor with [N, C, H, W] or [N, H, W, C] format,
1177
            whose data type is float32 or float64.
L
LielinJiang 已提交
1178
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, kH, kW],
1179 1180
            where M is the number of output channels(filters), g is the number of groups,
            kH is the height of the kernel, and kW is the width of the kernel.
L
LielinJiang 已提交
1181
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
1182 1183
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution.
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width).
L
LielinJiang 已提交
1184
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
1185 1186
        padding(str|int|list|tuple, optional): The padding size. It means the number of zero-paddings
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
1187
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
1188
            it could be in three forms: `[pad_height, pad_width]` or
1189
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
1190
            and when `data_format` is `"NCHW"`, `padding` can be in the form
1191
            `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
1192
            when `data_format` is `"NHWC"`, `padding` can be in the form
1193 1194
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
1195 1196
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
C
cnn 已提交
1197
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
1198 1199 1200 1201 1202
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
1203 1204
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points.
            If dilation is a list/tuple, it must contain two integers, (dilation_height, dilation_width).
1205
            Otherwise, dilation_height = dilation_width = dilation. Default: dilation = 1.
L
LielinJiang 已提交
1206
        output_size(int|tuple|list, optional): The output image size. If output size is a
1207
            tuple/list, it must contain two integers, (image_height, image_width). None if use
1208
            filter_size(shape of weight), padding, and stride to calculate output_size.
1209
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1210 1211 1212
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
1213 1214
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
1215 1216 1217
           None by default.

    Returns:
1218
        A Tensor representing the conv2d_transpose, whose
1219 1220
        data type is the same with input and shape is (num_batches, channels, out_h,
        out_w) or (num_batches, out_h, out_w, channels). The tensor variable storing
L
LielinJiang 已提交
1221
        transposed convolution result.
1222 1223 1224 1225

    Examples:
        .. code-block:: python

L
LielinJiang 已提交
1226 1227
          import paddle
          import paddle.nn.functional as F
1228

1229 1230
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
1231

1232
          y_var = F.conv2d_transpose(x_var, w_var)
L
LielinJiang 已提交
1233
          y_np = y_var.numpy()
1234

1235
          print(y_np.shape)
1236 1237 1238 1239 1240 1241 1242
          # (2, 6, 10, 10)
    """

    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCHW' or 'NHWC' are supported.".format(
1243 1244 1245 1246
                data_format
            )
        )
    channel_last = data_format == "NHWC"
1247
    channel_dim = -1 if channel_last else 1
1248 1249
    if len(x.shape) != 4:
        raise ValueError(
1250 1251 1252 1253
            "Input x should be 4D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
L
LielinJiang 已提交
1254
    num_channels = x.shape[channel_dim]
1255
    if num_channels < 0:
1256 1257 1258 1259
        raise ValueError(
            "The channel dimension of the input({}) "
            "should be defined. Received: {}.".format(x.shape, num_channels)
        )
1260 1261
    if groups <= 0:
        raise ValueError(
1262 1263 1264 1265
            "The groups of conv2d_transpose should be greater than 0. Received groups: {}".format(
                groups
            )
        )
1266 1267 1268 1269
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
1270 1271
            ", the groups is {}".format(num_channels, x.shape, groups)
        )
L
LielinJiang 已提交
1272 1273 1274

    cudnn_version = get_cudnn_version()

1275 1276 1277 1278 1279
    use_cudnn = (
        True
        if (is_compiled_with_cuda() and cudnn_version is not None)
        else False
    )
1280 1281 1282

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
1283 1284
    stride = convert_to_list(stride, 2, 'stride')
    dilation = convert_to_list(dilation, 2, 'dilation')
L
LielinJiang 已提交
1285

1286 1287 1288
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1289
        if output_padding != 0:
1290 1291 1292 1293
            raise ValueError(
                'output_padding option is mutually exclusive with '
                'output_size'
            )
1294 1295 1296 1297 1298 1299
        if isinstance(output_size, (list, tuple)):
            if _contain_var(output_size):
                output_size = _convert_to_tensor_list(output_size)
            else:
                output_size = convert_to_list(output_size, 2, 'output_size')
        elif isinstance(output_size, int):
1300
            output_size = convert_to_list(output_size, 2, 'output_size')
1301
        elif isinstance(output_size, Variable):
1302 1303 1304 1305 1306 1307 1308 1309 1310
            check_dtype(
                output_size.dtype,
                'output_size',
                ['int32', 'int64'],
                'conv2d_transpose',
            )
            if len(output_size.shape) == 1 and (
                output_size.shape[0] == 1 or output_size.shape[0] == 2
            ):
1311 1312 1313 1314
                if output_size.shape[0] == 1:
                    output_size = [output_size, output_size]
            else:
                raise ValueError(
1315 1316
                    "output_size must contain one or two integers."
                )
L
LielinJiang 已提交
1317 1318
        else:
            raise ValueError(
1319 1320
                "output_size should be int or Tensor or list, tuple of ints or Tensor"
            )
L
LielinJiang 已提交
1321 1322 1323 1324

    if output_padding == 0:
        output_padding = []
    else:
1325
        output_padding = convert_to_list(output_padding, 2, 'output_padding')
1326 1327 1328

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
1329
    if num_channels == groups and num_channels != 1 and num_filters == 1:
1330
        op_type = 'depthwise_conv2d_transpose'
L
LielinJiang 已提交
1331
        use_cudnn = False
1332

F
From00 已提交
1333
    if in_dygraph_mode():
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
        op = (
            _C_ops.conv2d_transpose
            if op_type == 'conv2d_transpose'
            else _C_ops.depthwise_conv2d_transpose
        )
        pre_bias = op(
            x,
            weight,
            stride,
            padding,
            output_padding,
            output_size,
            padding_algorithm,
            groups,
            dilation,
            data_format,
        )
F
From00 已提交
1351 1352 1353 1354 1355 1356
        if bias is not None:
            return nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            return pre_bias

    if _in_legacy_dygraph():
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
        attrs = (
            'output_padding',
            output_padding,
            'output_size',
            output_size,
            'strides',
            stride,
            'paddings',
            padding,
            'padding_algorithm',
            padding_algorithm,
            'dilations',
            dilation,
            'groups',
            groups,
            'use_cudnn',
            use_cudnn,
            'data_format',
            data_format,
        )
1377
        pre_bias = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
1378
        if bias is not None:
L
LielinJiang 已提交
1379
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1380
        else:
L
LielinJiang 已提交
1381
            out = pre_bias
1382
    else:
L
LielinJiang 已提交
1383
        inputs = {'Input': [x], 'Filter': [weight]}
1384
        attrs = {
L
LielinJiang 已提交
1385
            'output_padding': output_padding,
1386 1387 1388 1389 1390 1391 1392
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
1393
            'data_format': data_format,
1394
        }
1395 1396 1397
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'conv2d_transpose'
        )
1398
        helper = LayerHelper(op_type, **locals())
L
LielinJiang 已提交
1399
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1400
        outputs = {"Output": [pre_bias]}
1401 1402 1403
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
L
LielinJiang 已提交
1404

1405
        if bias is not None:
L
LielinJiang 已提交
1406
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1407
        else:
L
LielinJiang 已提交
1408 1409
            out = pre_bias

1410 1411 1412
    return out


1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
def conv3d(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    dilation=1,
    groups=1,
    data_format="NCDHW",
    name=None,
):
1424
    r"""
S
swtkiwi 已提交
1425

1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are in NCDHW or NDHWC format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

1437
    ..  math::
1438

1439
        Out = \sigma (W \ast X + b)
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1463
        ..  math::
1464 1465 1466 1467 1468 1469

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
1470
        x (Tensor): The input is 5-D Tensor with shape [N, C, D, H, W], the data
1471
            type of input is float16 or float32 or float64.
1472
        weight (Tensor): The convolution kernel, a Tensor with shape [M, C/g, kD, kH, kW],
1473 1474
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
1475
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
1476 1477
        stride (int|list|tuple, optional): The stride size. It means the stride in convolution. If stride is a
            list/tuple, it must contain three integers, (stride_depth, stride_height, stride_width).
1478
            Otherwise, stride_depth = stride_height = stride_width = stride. Default: stride = 1.
1479
        padding (string|int|list|tuple, optional): The padding size. It means the number of zero-paddings
1480 1481 1482 1483
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1484
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1485
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1486
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1487 1488
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
1489
        dilation (int|list|tuple, optional): The dilation size. It means the spacing between the kernel points.
1490
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height,
1491
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation.
1492
            Default: dilation = 1.
1493
        groups (int, optional): The groups number of the Conv3D Layer. According to grouped
1494 1495 1496 1497
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
1498
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1499 1500 1501
            will be consistent with that of the input. An optional string from: `"NCDHW"`, `"NDHWC"`.
            The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_depth, input_height, input_width]`.
1502 1503
        name(str|None, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
1504 1505 1506
           None by default.

    Returns:
1507 1508 1509
        A Tensor representing the conv3d, whose data type is
        the same with input. If act is None, the tensor storing the
        convolution result, and if act is not None, the tensor storing
1510 1511 1512 1513 1514
        convolution and non-linearity activation result.

    Examples:
        .. code-block:: python

1515 1516
            import paddle
            import paddle.nn.functional as F
1517

1518 1519
            x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
            w_var = paddle.randn((6, 3, 3, 3, 3), dtype='float32')
1520

1521 1522
            y_var = F.conv3d(x_var, w_var)
            y_np = y_var.numpy()
1523

1524
            print(y_np.shape)
1525 1526 1527 1528 1529 1530
            # (2, 6, 6, 6, 6)
    """
    # entry check
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
1531 1532
            "Attr(data_format): {}.".format(data_format)
        )
1533

1534
    channel_last = data_format == "NDHWC"
1535
    channel_dim = -1 if channel_last else 1
1536 1537
    if len(x.shape) != 5:
        raise ValueError(
1538 1539 1540 1541
            "Input x should be 5D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
1542
    num_channels = x.shape[channel_dim]
1543 1544 1545
    num_filters = weight.shape[0]
    if num_channels < 0:
        raise ValueError(
1546
            "The channel dimension of the input({}) should be defined. "
1547 1548
            "Received: {}.".format(x.shape, num_channels)
        )
1549 1550
    if groups <= 0:
        raise ValueError(
1551 1552 1553 1554
            "The groups of conv3d should be greater than 0. Received groups: {}".format(
                groups
            )
        )
1555 1556 1557
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
1558
            "Received: number of channels({}), groups({}).".format(
1559 1560 1561
                num_channels, groups
            )
        )
1562 1563 1564
    if num_filters % groups != 0:
        raise ValueError(
            "The number of filters must be divisible by Attr(groups). "
1565
            "Received: number of filters({}), groups({}).".format(
1566 1567 1568
                num_filters, groups
            )
        )
1569

1570
    cudnn_version = get_cudnn_version()
1571 1572 1573 1574 1575
    use_cudnn = (
        True
        if (is_compiled_with_cuda() and cudnn_version is not None)
        else False
    )
1576

1577
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
1578 1579
    stride = convert_to_list(stride, 3, 'stride')
    dilation = convert_to_list(dilation, 3, 'dilation')
1580 1581
    op_type = "conv3d"

1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
    return _conv_nd(
        x,
        weight,
        bias,
        stride,
        padding,
        padding_algorithm,
        dilation,
        groups,
        data_format,
        channel_dim,
        op_type,
        use_cudnn,
        False,
        name,
    )


def conv3d_transpose(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    output_padding=0,
    groups=1,
    dilation=1,
    output_size=None,
    data_format='NCDHW',
    name=None,
):
1613
    r"""
L
LielinJiang 已提交
1614
    The convolution3d transpose layer calculates the output based on the input,
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW or NDHWC format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
1625
    See more detail in :ref:`api_nn_conv_ConvTranspose3d` .
1626 1627 1628

    For each input :math:`X`, the equation is:

1629
    ..  math::
1630

1631
        Out = \sigma (W \ast X + b)
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655

    In the above equation:

    * :math:`X`: Input value, a Tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a Tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1656
        ..  math::
1657 1658 1659 1660 1661 1662 1663 1664 1665

           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[2] ]

    Note:
1666 1667
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d,
          when stride > 1, conv3d maps multiple input shape to the same output shape,
1668 1669
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
1670 1671 1672 1673
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`,
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}`
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must
1674
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`.
1675 1676

    Args:
1677
        x(Tensor): The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C], the data type
1678
            of input is float32 or float64.
L
LielinJiang 已提交
1679
        weight (Tensor): The convolution kernel, a Tensor with shape [C, M/g, kD, kH, kW],
1680 1681
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
L
LielinJiang 已提交
1682
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
1683 1684 1685
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution.
            If stride is a list/tuple, it must contain three integers, (stride_depth, stride_height,
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride.
L
LielinJiang 已提交
1686
            Default: stride = 1.
1687
        padding (string|int|list|tuple, optional): The padding size. It means the number of zero-paddings
1688 1689 1690
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
1691
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1692
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1693
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1694
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1695 1696
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
1697 1698
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
C
cnn 已提交
1699
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
1700 1701 1702 1703 1704
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
1705 1706 1707
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points.
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height,
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation.
1708
            Default: dilation = 1.
L
LielinJiang 已提交
1709
        output_size(int|list|tuple, optional): The output image size. If output size is a
1710
            list/tuple, it must contain three integers, (image_depth, image_height, image_width).
1711
            None if use filter_size(shape of weight), padding, and stride to calculate output_size.
1712
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1713 1714 1715
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
1716 1717
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
1718 1719 1720
           None by default.

    Returns:
1721
        A Tensor representing the conv3d_transpose, whose data
1722 1723 1724
        type is the same with input and shape is (num_batches, channels, out_d, out_h,
        out_w) or (num_batches, out_d, out_h, out_w, channels). If act is None, the tensor
        variable storing the transposed convolution result, and if act is not None, the tensor
1725 1726 1727 1728
        variable storing transposed convolution and non-linearity activation result.

    Examples:
       .. code-block:: python
1729

L
LielinJiang 已提交
1730
          import paddle
1731 1732
          import paddle.nn.functional as F

1733 1734
          x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3, 3), dtype='float32')
1735

1736
          y_var = F.conv3d_transpose(x_var, w_var)
L
LielinJiang 已提交
1737
          y_np = y_var.numpy()
1738

1739
          print(y_np.shape)
1740 1741 1742 1743 1744 1745
          # (2, 6, 10, 10, 10)
    """
    # entry checks
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
1746 1747
            "Attr(data_format): {}.".format(data_format)
        )
1748

1749
    channel_last = data_format == "NDHWC"
1750
    channel_dim = -1 if channel_last else 1
1751 1752
    if len(x.shape) != 5:
        raise ValueError(
1753 1754 1755 1756
            "Input x should be 5D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
L
LielinJiang 已提交
1757
    num_channels = x.shape[channel_dim]
1758 1759 1760
    num_filters = weight.shape[1]
    if num_channels < 0:
        raise ValueError(
1761
            "The channel dimension of the input({}) should be defined. "
1762 1763
            "Received: {}.".format(x.shape, num_channels)
        )
1764 1765
    if groups <= 0:
        raise ValueError(
1766 1767 1768 1769
            "The groups of conv3d_transpose should be greater than 0. Received groups: {}".format(
                groups
            )
        )
1770 1771 1772
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
1773
            "Received: number of channels({}), groups({}).".format(
1774 1775 1776
                num_channels, groups
            )
        )
1777 1778

    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
1779 1780
    stride = convert_to_list(stride, 3, 'stride')
    dilation = convert_to_list(dilation, 3, 'dilation')
1781 1782 1783
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1784
        if output_padding != 0:
1785 1786 1787 1788
            raise ValueError(
                'output_padding option is mutually exclusive with '
                'output_size'
            )
L
LielinJiang 已提交
1789
        if isinstance(output_size, (list, tuple, int)):
1790
            output_size = convert_to_list(output_size, 3, 'output_size')
L
LielinJiang 已提交
1791 1792
        else:
            raise ValueError(
1793 1794
                "output_size should be int, or list, tuple of ints"
            )
L
LielinJiang 已提交
1795 1796 1797 1798

    if output_padding == 0:
        output_padding = []
    else:
1799
        output_padding = convert_to_list(output_padding, 3, 'output_padding')
L
LielinJiang 已提交
1800 1801 1802

    cudnn_version = get_cudnn_version()

1803 1804 1805 1806 1807 1808
    # TODO(LielinJiang): whether to use cudnn according to the version of cudnn
    use_cudnn = (
        True
        if (is_compiled_with_cuda() and cudnn_version is not None)
        else False
    )
1809 1810 1811 1812

    op_type = 'conv3d_transpose'
    data_format_ = "NHWC" if channel_last else "NCHW"

F
From00 已提交
1813
    if in_dygraph_mode():
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
        pre_bias = _C_ops.conv3d_transpose(
            x,
            weight,
            stride,
            padding,
            output_padding,
            output_size,
            padding_algorithm,
            groups,
            dilation,
            data_format_,
        )
F
From00 已提交
1826 1827 1828 1829 1830 1831
        if bias is not None:
            return nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            return pre_bias

    if _in_legacy_dygraph():
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
        attrs = (
            'output_padding',
            output_padding,
            'output_size',
            output_size,
            'paddings',
            padding,
            "padding_algorithm",
            padding_algorithm,
            'strides',
            stride,
            'dilations',
            dilation,
            'groups',
            groups,
            'use_cudnn',
            use_cudnn,
            "data_format",
            data_format_,
        )
1852
        pre_bias = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
1853
        if bias is not None:
L
LielinJiang 已提交
1854
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1855
        else:
L
LielinJiang 已提交
1856
            out = pre_bias
1857
    else:
L
LielinJiang 已提交
1858
        inputs = {'Input': [x], 'Filter': [weight]}
1859
        attrs = {
L
LielinJiang 已提交
1860
            'output_padding': output_padding,
1861 1862 1863 1864 1865 1866 1867
            'output_size': output_size,
            'paddings': padding,
            "padding_algorithm": padding_algorithm,
            'strides': stride,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
1868
            "data_format": data_format_,
1869 1870
        }
        helper = LayerHelper(op_type, **locals())
1871 1872 1873
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'conv3d'
        )
1874

L
LielinJiang 已提交
1875
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1876 1877
        outputs = {"Output": [pre_bias]}

1878 1879 1880
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
1881
        if bias is not None:
L
LielinJiang 已提交
1882
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1883
        else:
L
LielinJiang 已提交
1884
            out = pre_bias
1885 1886

    return out