utils.py 9.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import itertools
17 18 19
import os
import re
from typing import Tuple
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236


def divisor(num, reverse=False):
    """Return the divisor of the given number."""
    results = set()
    i = 1
    mid = num // 2 + 1
    while i < mid:
        if num % i == 0:
            results.add(i)
            results.add(num // i)
        i += 1
    results = list(results)
    return sorted(results, reverse=reverse)


def dist_degree(mode, num_gpus, num_nodes):
    """Return the degree of different parallel modes by gpus and nodes num."""
    assert mode in ["dp", "mp", "pp", "sharding"]
    results = []
    if mode == "dp":
        results = divisor(num_gpus, reverse=True)

    elif mode == "pp":
        if num_nodes > 1:
            results = list(range(num_nodes))
        else:
            results = divisor(num_gpus, reverse=True)

    elif mode == "mp":
        gpus_per_node = num_gpus // num_nodes
        results = divisor(gpus_per_node, reverse=True)

    elif mode == "sharding":
        results = divisor(num_gpus, reverse=True)

    return results


def default_candidates(tuner_cfg):
    """Return the default candidates of every hyper param which user defined auto"""
    candidates = {}
    num_gpus = tuner_cfg["num_gpus"]
    num_nodes = tuner_cfg["nodes"]
    assert num_gpus > 0

    if tuner_cfg.get("dp_degree", None) == "auto":
        candidates["dp_degree"] = dist_degree("dp", num_gpus, num_nodes)
    elif tuner_cfg.get("dp_degree", None):
        candidates["dp_degree"] = tuner_cfg.get("dp_degree")
    else:
        candidates["dp_degree"] = [1]

    if tuner_cfg.get("mp_degree", None) == "auto":
        candidates["mp_degree"] = dist_degree("mp", num_gpus, num_nodes)
    elif tuner_cfg.get("mp_degree", None):
        candidates["mp_degree"] = tuner_cfg.get("mp_degree")
    else:
        candidates["mp_degree"] = [1]

    if tuner_cfg.get("pp_degree", None) == "auto":
        candidates["pp_degree"] = dist_degree("pp", num_gpus, num_nodes)
    elif tuner_cfg.get("pp_degree", None):
        candidates["pp_degree"] = tuner_cfg.get("pp_degree")
    else:
        candidates["pp_degree"] = [1]

    if tuner_cfg.get("sharding_degree", None) == "auto":
        candidates["sharding_degree"] = dist_degree(
            "sharding", num_gpus, num_nodes
        )
    elif tuner_cfg.get("sharding_degree", None):
        candidates["sharding_degree"] = tuner_cfg.get("sharding_degree")
    else:
        candidates["sharding_degree"] = [1]

    if tuner_cfg.get("sharding_stage", None) == "auto":
        candidates["sharding_stage"] = [1, 2, 3]
    elif tuner_cfg.get("sharding_stage", None):
        candidates["sharding_stage"] = tuner_cfg.get("sharding_stage")
    else:
        candidates["sharding_stage"] = [None]

    if tuner_cfg.get("use_recompute", None) == "auto":
        candidates["use_recompute"] = [False, True]
    elif tuner_cfg.get("use_recompute", None):
        candidates["use_recompute"] = tuner_cfg.get("use_recompute")
    else:
        candidates["use_recompute"] = [None]

    if tuner_cfg.get("recompute_granularity", None) == "auto":
        candidates["recompute_granularity"] = ["full_attn", "full"]
    elif tuner_cfg.get("recompute_granularity", None):
        candidates["recompute_granularity"] = tuner_cfg.get(
            "recompute_granularity"
        )
    else:
        candidates["recompute_granularity"] = [None]

    if tuner_cfg.get("micro_batch_size", None) == "auto":
        candidates["micro_batch_size"] = list(
            range(tuner_cfg["model_cfg"]["global_batch_size"], 0, -1)
        )
    elif tuner_cfg.get("micro_batch_size", None):
        candidates["micro_batch_size"] = tuner_cfg.get("micro_batch_size")
    else:
        candidates["micro_batch_size"] = [
            tuner_cfg["model_cfg"]["global_batch_size"]
        ]

    return candidates


def search_all(tuner_cfg):
    """Permutate the candidates of all hyper params."""
    candidates = tuner_cfg["candidates"]
    # Order: dp -> mp -> pp -> mbs -> sharding-> recompute
    dp_degree_candidates = candidates["dp_degree"]
    mp_degree_candidates = candidates["mp_degree"]
    pp_degree_candidates = candidates["pp_degree"]
    mbs_candidates = candidates["micro_batch_size"]
    sharding_stage_candidates = candidates["sharding_stage"]
    sharding_degree_candidates = candidates["sharding_degree"]
    use_recompute_candidates = candidates["use_recompute"]
    recompute_granularity_candidates = candidates["recompute_granularity"]
    all_cfgs = list(
        itertools.product(
            dp_degree_candidates,
            mp_degree_candidates,
            pp_degree_candidates,
            mbs_candidates,
            sharding_degree_candidates,
            sharding_stage_candidates,
            use_recompute_candidates,
            recompute_granularity_candidates,
        )
    )
    mapping = {
        0: "dp_degree",
        1: "mp_degree",
        2: "pp_degree",
        3: "micro_batch_size",
        5: "sharding_stage",
        4: "sharding_degree",
        6: "use_recompute",
        7: "recompute_granularity",
    }
    new_all_cfgs = []
    for cfg in all_cfgs:
        new_cfg = {}
        for idx, val in enumerate(cfg):
            new_cfg[mapping[idx]] = val
        new_all_cfgs.append(new_cfg)
    return new_all_cfgs


def gen_new_args(raw_args, cfg, tuner_cfg):
    """Generate new script args."""
    assert "run_cmd" in tuner_cfg
    cmd = copy.deepcopy(tuner_cfg["run_cmd"])
    res_args = copy.deepcopy(raw_args)
    if "dp_degree" in cmd and "dp_degree" in cfg:
        cmd["dp_degree"][1] = cmd["dp_degree"][1] + "=" + str(cfg["dp_degree"])
        res_args.extend(cmd["dp_degree"])

    if "mp_degree" in cmd and "mp_degree" in cfg:
        cmd["mp_degree"][1] = cmd["mp_degree"][1] + "=" + str(cfg["mp_degree"])
        res_args.extend(cmd["mp_degree"])

    if "pp_degree" in cmd and "pp_degree" in cfg:
        cmd["pp_degree"][1] = cmd["pp_degree"][1] + "=" + str(cfg["pp_degree"])
        res_args.extend(cmd["pp_degree"])

    if "micro_batch_size" in cmd and "micro_batch_size" in cfg:
        cmd["micro_batch_size"][1] = (
            cmd["micro_batch_size"][1] + "=" + str(cfg["micro_batch_size"])
        )
        res_args.extend(cmd["micro_batch_size"])

    if "sharding_degree" in cmd and "sharding_degree" in cfg:
        cmd["sharding_degree"][1] = (
            cmd["sharding_degree"][1] + "=" + str(cfg["sharding_degree"])
        )
        res_args.extend(cmd["sharding_degree"])

    if "sharding_stage" in cmd and "sharding_stage" in cfg:
        cmd["sharding_stage"][1] = (
            cmd["sharding_stage"][1] + "=" + str(cfg["sharding_stage"])
        )
        res_args.extend(cmd["sharding_stage"])

    if "use_recompute" in cmd and "use_recompute" in cfg:
        cmd["use_recompute"][1] = (
            cmd["use_recompute"][1] + "=" + str(cfg["use_recompute"])
        )
        res_args.extend(cmd["use_recompute"])

    if "recompute_granularity" in cmd and "recompute_granularity" in cfg:
        cmd["recompute_granularity"][1] = (
            cmd["recompute_granularity"][1]
            + "="
            + str(cfg["recompute_granularity"])
        )
        res_args.extend(cmd["recompute_granularity"])

    if "local_batch_size" in cmd:
        local_batch_size = (
            tuner_cfg["model_cfg"]["global_batch_size"]
            // cfg["sharding_degree"]
            // cfg["dp_degree"]
        )
        cmd["local_batch_size"][1] = (
            cmd["local_batch_size"][1] + "=" + str(local_batch_size)
        )
        res_args.extend(cmd["local_batch_size"])

    return res_args
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271


def read_log(
    path, file="workerlog.0", target_metric='step/s'
) -> Tuple[float, bool]:
    """For extracting metric from log file."""
    target_file = path + "/" + file
    if not os.path.exists(target_file):
        return (0.0, True)
    with open(target_file, "r") as f:
        # read file
        re_metric_pattern = r'speed: (\d+(\.\d*)?) *' + target_metric

        metric_list = []
        lines = f.readlines()
        for line in lines:
            metric = re.findall(re_metric_pattern, line)
            if metric:
                metric_list.append(float(metric[0][0]))
        if not metric_list:
            metric_ave = 0.0
            flag = True
        elif len(metric_list) < 10:
            metric_ave = metric_list[-1]
            flag = False
        elif len(metric_list) < 20:
            metric_ave = sum(metric_list[9:]) / (len(metric_list[9:]))
            flag = False
        else:
            metric_ave = sum(metric_list[-10:]) / 10
            flag = False
        # round to 5 decimal places
        metric_ave = round(metric_ave, 5)
    res = metric_ave, flag
    return res