data_feed.h 52.6 KB
Newer Older
W
Wang Guibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

J
jiaqi 已提交
17 18 19 20 21
#if defined _WIN32 || defined __APPLE__
#else
#define _LINUX
#endif

W
Wang Guibao 已提交
22
#include <fstream>
23
#include <future>  // NOLINT
W
Wang Guibao 已提交
24 25
#include <memory>
#include <mutex>  // NOLINT
D
danleifeng 已提交
26
#include <random>
27
#include <sstream>
W
Wang Guibao 已提交
28 29
#include <string>
#include <thread>  // NOLINT
30
#include <unordered_map>
31
#include <unordered_set>
32
#include <utility>
33
#include <vector>
W
Wang Guibao 已提交
34

J
jiaqi 已提交
35
#include "paddle/fluid/framework/archive.h"
36
#include "paddle/fluid/framework/blocking_queue.h"
J
jiaqi 已提交
37
#include "paddle/fluid/framework/channel.h"
W
Wang Guibao 已提交
38
#include "paddle/fluid/framework/data_feed.pb.h"
39
#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
W
Wang Guibao 已提交
40 41 42
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/variable.h"
Y
yaoxuefeng 已提交
43
#include "paddle/fluid/platform/timer.h"
44
#include "paddle/fluid/string/string_helper.h"
45
#if defined(PADDLE_WITH_CUDA)
D
danleifeng 已提交
46
#include "paddle/fluid/framework/fleet/heter_ps/gpu_graph_utils.h"
47 48 49
#include "paddle/fluid/platform/cuda_device_guard.h"
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
#endif
W
Wang Guibao 已提交
50

Y
yaoxuefeng 已提交
51 52 53 54 55
DECLARE_int32(record_pool_max_size);
DECLARE_int32(slotpool_thread_num);
DECLARE_bool(enable_slotpool_wait_release);
DECLARE_bool(enable_slotrecord_reset_shrink);

W
wanghuancoder 已提交
56 57 58 59 60
namespace paddle {
namespace framework {
class DataFeedDesc;
class Scope;
class Variable;
D
danleifeng 已提交
61 62
class NeighborSampleResult;
class NodeQueryResult;
W
wanghuancoder 已提交
63 64 65
}  // namespace framework
}  // namespace paddle

66
namespace phi {
67
class DenseTensor;
68
}  // namespace phi
69

W
Wang Guibao 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
namespace paddle {
namespace framework {

// DataFeed is the base virtual class for all ohther DataFeeds.
// It is used to read files and parse the data for subsequent trainer.
// Example:
//   DataFeed* reader =
//   paddle::framework::DataFeedFactory::CreateDataFeed(data_feed_name);
//   reader->Init(data_feed_desc); // data_feed_desc is a protobuf object
//   reader->SetFileList(filelist);
//   const std::vector<std::string> & use_slot_alias =
//   reader->GetUseSlotAlias();
//   for (auto name: use_slot_alias){ // for binding memory
//     reader->AddFeedVar(scope->Var(name), name);
//   }
//   reader->Start();
//   while (reader->Next()) {
//      // trainer do something
//   }
Y
yaoxuefeng 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

template <typename T>
struct SlotValues {
  std::vector<T> slot_values;
  std::vector<uint32_t> slot_offsets;

  void add_values(const T* values, uint32_t num) {
    if (slot_offsets.empty()) {
      slot_offsets.push_back(0);
    }
    if (num > 0) {
      slot_values.insert(slot_values.end(), values, values + num);
    }
    slot_offsets.push_back(static_cast<uint32_t>(slot_values.size()));
  }
  T* get_values(int idx, size_t* size) {
    uint32_t& offset = slot_offsets[idx];
    (*size) = slot_offsets[idx + 1] - offset;
    return &slot_values[offset];
  }
  void add_slot_feasigns(const std::vector<std::vector<T>>& slot_feasigns,
                         uint32_t fea_num) {
    slot_values.reserve(fea_num);
    int slot_num = static_cast<int>(slot_feasigns.size());
    slot_offsets.resize(slot_num + 1);
    for (int i = 0; i < slot_num; ++i) {
      auto& slot_val = slot_feasigns[i];
      slot_offsets[i] = static_cast<uint32_t>(slot_values.size());
      uint32_t num = static_cast<uint32_t>(slot_val.size());
      if (num > 0) {
        slot_values.insert(slot_values.end(), slot_val.begin(), slot_val.end());
      }
    }
    slot_offsets[slot_num] = slot_values.size();
  }
  void clear(bool shrink) {
    slot_offsets.clear();
    slot_values.clear();
    if (shrink) {
      slot_values.shrink_to_fit();
      slot_offsets.shrink_to_fit();
    }
  }
};
T
Thunderbrook 已提交
133
union FeatureFeasign {
134 135 136 137 138 139
  uint64_t uint64_feasign_;
  float float_feasign_;
};

struct FeatureItem {
  FeatureItem() {}
T
Thunderbrook 已提交
140
  FeatureItem(FeatureFeasign sign, uint16_t slot) {
141 142 143
    this->sign() = sign;
    this->slot() = slot;
  }
T
Thunderbrook 已提交
144 145 146 147 148 149
  FeatureFeasign& sign() {
    return *(reinterpret_cast<FeatureFeasign*>(sign_buffer()));
  }
  const FeatureFeasign& sign() const {
    const FeatureFeasign* ret =
        reinterpret_cast<FeatureFeasign*>(sign_buffer());
150 151 152 153 154 155 156
    return *ret;
  }
  uint16_t& slot() { return slot_; }
  const uint16_t& slot() const { return slot_; }

 private:
  char* sign_buffer() const { return const_cast<char*>(sign_); }
T
Thunderbrook 已提交
157
  char sign_[sizeof(FeatureFeasign)];
158 159 160
  uint16_t slot_;
};

Y
yaoxuefeng 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
struct AllSlotInfo {
  std::string slot;
  std::string type;
  int used_idx;
  int slot_value_idx;
};
struct UsedSlotInfo {
  int idx;
  int slot_value_idx;
  std::string slot;
  std::string type;
  bool dense;
  std::vector<int> local_shape;
  int total_dims_without_inductive;
  int inductive_shape_index;
};
struct SlotRecordObject {
  uint64_t search_id;
  uint32_t rank;
  uint32_t cmatch;
  std::string ins_id_;
  SlotValues<uint64_t> slot_uint64_feasigns_;
  SlotValues<float> slot_float_feasigns_;

  ~SlotRecordObject() { clear(true); }
  void reset(void) { clear(FLAGS_enable_slotrecord_reset_shrink); }
  void clear(bool shrink) {
    slot_uint64_feasigns_.clear(shrink);
    slot_float_feasigns_.clear(shrink);
  }
};
using SlotRecord = SlotRecordObject*;
193 194 195 196 197 198 199 200 201
// sizeof Record is much less than std::vector<MultiSlotType>
struct Record {
  std::vector<FeatureItem> uint64_feasigns_;
  std::vector<FeatureItem> float_feasigns_;
  std::string ins_id_;
  std::string content_;
  uint64_t search_id;
  uint32_t rank;
  uint32_t cmatch;
202
  std::string uid_;
203 204
};

Y
yaoxuefeng 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
inline SlotRecord make_slotrecord() {
  static const size_t slot_record_byte_size = sizeof(SlotRecordObject);
  void* p = malloc(slot_record_byte_size);
  new (p) SlotRecordObject;
  return reinterpret_cast<SlotRecordObject*>(p);
}

inline void free_slotrecord(SlotRecordObject* p) {
  p->~SlotRecordObject();
  free(p);
}

template <class T>
class SlotObjAllocator {
 public:
  explicit SlotObjAllocator(std::function<void(T*)> deleter)
      : free_nodes_(NULL), capacity_(0), deleter_(deleter) {}
  ~SlotObjAllocator() { clear(); }

  void clear() {
    T* tmp = NULL;
    while (free_nodes_ != NULL) {
      tmp = reinterpret_cast<T*>(reinterpret_cast<void*>(free_nodes_));
      free_nodes_ = free_nodes_->next;
      deleter_(tmp);
      --capacity_;
    }
    CHECK_EQ(capacity_, static_cast<size_t>(0));
  }
  T* acquire(void) {
    T* x = NULL;
    x = reinterpret_cast<T*>(reinterpret_cast<void*>(free_nodes_));
    free_nodes_ = free_nodes_->next;
    --capacity_;
    return x;
  }
  void release(T* x) {
    Node* node = reinterpret_cast<Node*>(reinterpret_cast<void*>(x));
    node->next = free_nodes_;
    free_nodes_ = node;
    ++capacity_;
  }
  size_t capacity(void) { return capacity_; }

 private:
  struct alignas(T) Node {
    union {
      Node* next;
      char data[sizeof(T)];
    };
  };
  Node* free_nodes_;  // a list
  size_t capacity_;
  std::function<void(T*)> deleter_ = nullptr;
};
static const int OBJPOOL_BLOCK_SIZE = 10000;
class SlotObjPool {
 public:
  SlotObjPool()
      : max_capacity_(FLAGS_record_pool_max_size), alloc_(free_slotrecord) {
    ins_chan_ = MakeChannel<SlotRecord>();
    ins_chan_->SetBlockSize(OBJPOOL_BLOCK_SIZE);
    for (int i = 0; i < FLAGS_slotpool_thread_num; ++i) {
      threads_.push_back(std::thread([this]() { run(); }));
    }
    disable_pool_ = false;
    count_ = 0;
  }
  ~SlotObjPool() {
    ins_chan_->Close();
    for (auto& t : threads_) {
      t.join();
    }
  }
  void disable_pool(bool disable) { disable_pool_ = disable; }
  void set_max_capacity(size_t max_capacity) { max_capacity_ = max_capacity; }
  void get(std::vector<SlotRecord>* output, int n) {
    output->resize(n);
    return get(&(*output)[0], n);
  }
  void get(SlotRecord* output, int n) {
    int size = 0;
    mutex_.lock();
    int left = static_cast<int>(alloc_.capacity());
    if (left > 0) {
      size = (left >= n) ? n : left;
      for (int i = 0; i < size; ++i) {
        output[i] = alloc_.acquire();
      }
    }
    mutex_.unlock();
    count_ += n;
    if (size == n) {
      return;
    }
    for (int i = size; i < n; ++i) {
      output[i] = make_slotrecord();
    }
  }
  void put(std::vector<SlotRecord>* input) {
    size_t size = input->size();
    if (size == 0) {
      return;
    }
    put(&(*input)[0], size);
    input->clear();
  }
  void put(SlotRecord* input, size_t size) {
    CHECK(ins_chan_->WriteMove(size, input) == size);
  }
  void run(void) {
    std::vector<SlotRecord> input;
    while (ins_chan_->ReadOnce(input, OBJPOOL_BLOCK_SIZE)) {
      if (input.empty()) {
        continue;
      }
      // over max capacity
      size_t n = input.size();
      count_ -= n;
      if (disable_pool_ || n + capacity() > max_capacity_) {
        for (auto& t : input) {
          free_slotrecord(t);
        }
      } else {
        for (auto& t : input) {
          t->reset();
        }
        mutex_.lock();
        for (auto& t : input) {
          alloc_.release(t);
        }
        mutex_.unlock();
      }
      input.clear();
    }
  }
  void clear(void) {
    platform::Timer timeline;
    timeline.Start();
    mutex_.lock();
    alloc_.clear();
    mutex_.unlock();
    // wait release channel data
    if (FLAGS_enable_slotpool_wait_release) {
      while (!ins_chan_->Empty()) {
        sleep(1);
      }
    }
    timeline.Pause();
    VLOG(3) << "clear slot pool data size=" << count_.load()
            << ", span=" << timeline.ElapsedSec();
  }
  size_t capacity(void) {
    mutex_.lock();
    size_t total = alloc_.capacity();
    mutex_.unlock();
    return total;
  }

 private:
  size_t max_capacity_;
  Channel<SlotRecord> ins_chan_;
  std::vector<std::thread> threads_;
  std::mutex mutex_;
  SlotObjAllocator<SlotRecordObject> alloc_;
  bool disable_pool_;
  std::atomic<long> count_;  // NOLINT
};

inline SlotObjPool& SlotRecordPool() {
  static SlotObjPool pool;
  return pool;
}
378 379 380 381 382 383 384 385 386
struct PvInstanceObject {
  std::vector<Record*> ads;
  void merge_instance(Record* ins) { ads.push_back(ins); }
};

using PvInstance = PvInstanceObject*;

inline PvInstance make_pv_instance() { return new PvInstanceObject(); }

T
Thunderbrook 已提交
387 388 389 390 391 392 393 394 395 396 397 398
struct SlotConf {
  std::string name;
  std::string type;
  int use_slots_index;
  int use_slots_is_dense;
};

class CustomParser {
 public:
  CustomParser() {}
  virtual ~CustomParser() {}
  virtual void Init(const std::vector<SlotConf>& slots) = 0;
T
Thunderbrook 已提交
399
  virtual bool Init(const std::vector<AllSlotInfo>& slots) = 0;
T
Thunderbrook 已提交
400
  virtual void ParseOneInstance(const char* str, Record* instance) = 0;
401 402
  virtual int ParseInstance(int len,
                            const char* str,
T
Thunderbrook 已提交
403 404 405
                            std::vector<Record>* instances) {
    return 0;
  };
Y
yaoxuefeng 已提交
406 407 408 409 410 411 412 413 414 415 416 417 418
  virtual bool ParseOneInstance(
      const std::string& line,
      std::function<void(std::vector<SlotRecord>&, int)>
          GetInsFunc) {  // NOLINT
    return true;
  }
  virtual bool ParseFileInstance(
      std::function<int(char* buf, int len)> ReadBuffFunc,
      std::function<void(std::vector<SlotRecord>&, int, int)>
          PullRecordsFunc,  // NOLINT
      int& lines) {         // NOLINT
    return false;
  }
T
Thunderbrook 已提交
419 420
};

421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
struct UsedSlotGpuType {
  int is_uint64_value;
  int slot_value_idx;
};

#if defined(PADDLE_WITH_CUDA) && defined(PADDLE_WITH_HETERPS)
template <typename T>
struct CudaBuffer {
  T* cu_buffer;
  uint64_t buf_size;

  CudaBuffer<T>() {
    cu_buffer = NULL;
    buf_size = 0;
  }
  ~CudaBuffer<T>() { free(); }
  T* data() { return cu_buffer; }
  uint64_t size() { return buf_size; }
  void malloc(uint64_t size) {
    buf_size = size;
    CUDA_CHECK(
        cudaMalloc(reinterpret_cast<void**>(&cu_buffer), size * sizeof(T)));
  }
  void free() {
    if (cu_buffer != NULL) {
      CUDA_CHECK(cudaFree(cu_buffer));
      cu_buffer = NULL;
    }
    buf_size = 0;
  }
  void resize(uint64_t size) {
    if (size <= buf_size) {
      return;
    }
    free();
    malloc(size);
  }
};
template <typename T>
struct HostBuffer {
  T* host_buffer;
  size_t buf_size;
  size_t data_len;

  HostBuffer<T>() {
    host_buffer = NULL;
    buf_size = 0;
    data_len = 0;
  }
  ~HostBuffer<T>() { free(); }

  T* data() { return host_buffer; }
  const T* data() const { return host_buffer; }
  size_t size() const { return data_len; }
  void clear() { free(); }
  T& back() { return host_buffer[data_len - 1]; }

  T& operator[](size_t i) { return host_buffer[i]; }
  const T& operator[](size_t i) const { return host_buffer[i]; }
  void malloc(size_t len) {
    buf_size = len;
    CUDA_CHECK(cudaHostAlloc(reinterpret_cast<void**>(&host_buffer),
483 484
                             buf_size * sizeof(T),
                             cudaHostAllocDefault));
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
    CHECK(host_buffer != NULL);
  }
  void free() {
    if (host_buffer != NULL) {
      CUDA_CHECK(cudaFreeHost(host_buffer));
      host_buffer = NULL;
    }
    buf_size = 0;
  }
  void resize(size_t size) {
    if (size <= buf_size) {
      data_len = size;
      return;
    }
    data_len = size;
    free();
    malloc(size);
  }
};

struct BatchCPUValue {
  HostBuffer<int> h_uint64_lens;
  HostBuffer<uint64_t> h_uint64_keys;
  HostBuffer<int> h_uint64_offset;

  HostBuffer<int> h_float_lens;
  HostBuffer<float> h_float_keys;
  HostBuffer<int> h_float_offset;

  HostBuffer<int> h_rank;
  HostBuffer<int> h_cmatch;
  HostBuffer<int> h_ad_offset;
};

struct BatchGPUValue {
  CudaBuffer<int> d_uint64_lens;
  CudaBuffer<uint64_t> d_uint64_keys;
  CudaBuffer<int> d_uint64_offset;

  CudaBuffer<int> d_float_lens;
  CudaBuffer<float> d_float_keys;
  CudaBuffer<int> d_float_offset;

  CudaBuffer<int> d_rank;
  CudaBuffer<int> d_cmatch;
  CudaBuffer<int> d_ad_offset;
};

class MiniBatchGpuPack {
 public:
  MiniBatchGpuPack(const paddle::platform::Place& place,
                   const std::vector<UsedSlotInfo>& infos);
  ~MiniBatchGpuPack();
  void reset(const paddle::platform::Place& place);
  void pack_instance(const SlotRecord* ins_vec, int num);
  int ins_num() { return ins_num_; }
  int pv_num() { return pv_num_; }
  BatchGPUValue& value() { return value_; }
  BatchCPUValue& cpu_value() { return buf_; }
  UsedSlotGpuType* get_gpu_slots(void) {
    return reinterpret_cast<UsedSlotGpuType*>(gpu_slots_.data());
  }
  SlotRecord* get_records(void) { return &ins_vec_[0]; }

  // tensor gpu memory reused
  void resize_tensor(void) {
    if (used_float_num_ > 0) {
      int float_total_len = buf_.h_float_lens.back();
      if (float_total_len > 0) {
        float_tensor_.mutable_data<float>({float_total_len, 1}, this->place_);
      }
    }
    if (used_uint64_num_ > 0) {
      int uint64_total_len = buf_.h_uint64_lens.back();
      if (uint64_total_len > 0) {
        uint64_tensor_.mutable_data<int64_t>({uint64_total_len, 1},
                                             this->place_);
      }
    }
  }
  LoDTensor& float_tensor(void) { return float_tensor_; }
  LoDTensor& uint64_tensor(void) { return uint64_tensor_; }

  HostBuffer<size_t>& offsets(void) { return offsets_; }
  HostBuffer<void*>& h_tensor_ptrs(void) { return h_tensor_ptrs_; }

  void* gpu_slot_offsets(void) { return gpu_slot_offsets_->ptr(); }

  void* slot_buf_ptr(void) { return slot_buf_ptr_->ptr(); }

  void resize_gpu_slot_offsets(const size_t slot_total_bytes) {
    if (gpu_slot_offsets_ == nullptr) {
      gpu_slot_offsets_ = memory::AllocShared(place_, slot_total_bytes);
    } else if (gpu_slot_offsets_->size() < slot_total_bytes) {
      auto buf = memory::AllocShared(place_, slot_total_bytes);
      gpu_slot_offsets_.swap(buf);
      buf = nullptr;
    }
  }
  const std::string& get_lineid(int idx) {
    if (enable_pv_) {
      return ins_vec_[idx]->ins_id_;
    }
    return batch_ins_[idx]->ins_id_;
  }

 private:
  void transfer_to_gpu(void);
  void pack_all_data(const SlotRecord* ins_vec, int num);
  void pack_uint64_data(const SlotRecord* ins_vec, int num);
  void pack_float_data(const SlotRecord* ins_vec, int num);

 public:
  template <typename T>
  void copy_host2device(CudaBuffer<T>* buf, const T* val, size_t size) {
    if (size == 0) {
      return;
    }
    buf->resize(size);
604 605
    CUDA_CHECK(cudaMemcpyAsync(
        buf->data(), val, size * sizeof(T), cudaMemcpyHostToDevice, stream_));
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
  }
  template <typename T>
  void copy_host2device(CudaBuffer<T>* buf, const HostBuffer<T>& val) {
    copy_host2device(buf, val.data(), val.size());
  }

 private:
  paddle::platform::Place place_;
  cudaStream_t stream_;
  BatchGPUValue value_;
  BatchCPUValue buf_;
  int ins_num_ = 0;
  int pv_num_ = 0;

  bool enable_pv_ = false;
  int used_float_num_ = 0;
  int used_uint64_num_ = 0;
  int used_slot_size_ = 0;

  CudaBuffer<UsedSlotGpuType> gpu_slots_;
  std::vector<UsedSlotGpuType> gpu_used_slots_;
  std::vector<SlotRecord> ins_vec_;
  const SlotRecord* batch_ins_ = nullptr;

  // uint64 tensor
  LoDTensor uint64_tensor_;
  // float tensor
  LoDTensor float_tensor_;
  // batch
  HostBuffer<size_t> offsets_;
  HostBuffer<void*> h_tensor_ptrs_;

  std::shared_ptr<phi::Allocation> gpu_slot_offsets_ = nullptr;
  std::shared_ptr<phi::Allocation> slot_buf_ptr_ = nullptr;
};
class MiniBatchGpuPackMgr {
  static const int MAX_DEIVCE_NUM = 16;

 public:
  MiniBatchGpuPackMgr() {
    for (int i = 0; i < MAX_DEIVCE_NUM; ++i) {
      pack_list_[i] = nullptr;
    }
  }
  ~MiniBatchGpuPackMgr() {
    for (int i = 0; i < MAX_DEIVCE_NUM; ++i) {
      if (pack_list_[i] == nullptr) {
        continue;
      }
      delete pack_list_[i];
      pack_list_[i] = nullptr;
    }
  }
  // one device one thread
  MiniBatchGpuPack* get(const paddle::platform::Place& place,
                        const std::vector<UsedSlotInfo>& infos) {
    int device_id = place.GetDeviceId();
    if (pack_list_[device_id] == nullptr) {
      pack_list_[device_id] = new MiniBatchGpuPack(place, infos);
    } else {
      pack_list_[device_id]->reset(place);
    }
    return pack_list_[device_id];
  }

 private:
  MiniBatchGpuPack* pack_list_[MAX_DEIVCE_NUM];
};
// global mgr
inline MiniBatchGpuPackMgr& BatchGpuPackMgr() {
  static MiniBatchGpuPackMgr mgr;
  return mgr;
}
#endif

T
Thunderbrook 已提交
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
typedef paddle::framework::CustomParser* (*CreateParserObjectFunc)();

class DLManager {
  struct DLHandle {
    void* module;
    paddle::framework::CustomParser* parser;
  };

 public:
  DLManager() {}

  ~DLManager() {
#ifdef _LINUX
    std::lock_guard<std::mutex> lock(mutex_);
    for (auto it = handle_map_.begin(); it != handle_map_.end(); ++it) {
      delete it->second.parser;
      dlclose(it->second.module);
    }
#endif
  }

  bool Close(const std::string& name) {
#ifdef _LINUX
    auto it = handle_map_.find(name);
    if (it == handle_map_.end()) {
      return true;
    }
    delete it->second.parser;
    dlclose(it->second.module);
#endif
    VLOG(0) << "Not implement in windows";
    return false;
  }

  paddle::framework::CustomParser* Load(const std::string& name,
Y
yaoxuefeng 已提交
716
                                        const std::vector<SlotConf>& conf) {
T
Thunderbrook 已提交
717 718 719 720 721 722 723 724 725 726
#ifdef _LINUX
    std::lock_guard<std::mutex> lock(mutex_);
    DLHandle handle;
    std::map<std::string, DLHandle>::iterator it = handle_map_.find(name);
    if (it != handle_map_.end()) {
      return it->second.parser;
    }

    handle.module = dlopen(name.c_str(), RTLD_NOW);
    if (handle.module == nullptr) {
T
Thunderbrook 已提交
727
      VLOG(0) << "Create so of " << name << " fail, " << dlerror();
T
Thunderbrook 已提交
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
      return nullptr;
    }

    CreateParserObjectFunc create_parser_func =
        (CreateParserObjectFunc)dlsym(handle.module, "CreateParserObject");
    handle.parser = create_parser_func();
    handle.parser->Init(conf);
    handle_map_.insert({name, handle});

    return handle.parser;
#endif
    VLOG(0) << "Not implement in windows";
    return nullptr;
  }

Y
yaoxuefeng 已提交
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
  paddle::framework::CustomParser* Load(const std::string& name,
                                        const std::vector<AllSlotInfo>& conf) {
#ifdef _LINUX
    std::lock_guard<std::mutex> lock(mutex_);
    DLHandle handle;
    std::map<std::string, DLHandle>::iterator it = handle_map_.find(name);
    if (it != handle_map_.end()) {
      return it->second.parser;
    }
    handle.module = dlopen(name.c_str(), RTLD_NOW);
    if (handle.module == nullptr) {
      VLOG(0) << "Create so of " << name << " fail";
      exit(-1);
      return nullptr;
    }

    CreateParserObjectFunc create_parser_func =
        (CreateParserObjectFunc)dlsym(handle.module, "CreateParserObject");
    handle.parser = create_parser_func();
    handle.parser->Init(conf);
    handle_map_.insert({name, handle});

    return handle.parser;
#endif
    VLOG(0) << "Not implement in windows";
    return nullptr;
  }

T
Thunderbrook 已提交
771
  paddle::framework::CustomParser* ReLoad(const std::string& name,
Y
yaoxuefeng 已提交
772
                                          const std::vector<SlotConf>& conf) {
T
Thunderbrook 已提交
773 774 775 776 777 778 779 780 781
    Close(name);
    return Load(name, conf);
  }

 private:
  std::mutex mutex_;
  std::map<std::string, DLHandle> handle_map_;
};

D
danleifeng 已提交
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
struct engine_wrapper_t {
  std::default_random_engine engine;
#if !defined(_WIN32)
  engine_wrapper_t() {
    struct timespec tp;
    clock_gettime(CLOCK_REALTIME, &tp);
    double cur_time = tp.tv_sec + tp.tv_nsec * 1e-9;
    static std::atomic<uint64_t> x(0);
    std::seed_seq sseq = {x++, x++, x++, (uint64_t)(cur_time * 1000)};
    engine.seed(sseq);
  }
#endif
};

struct BufState {
  int left;
  int right;
  int central_word;
  int step;
  engine_wrapper_t random_engine_;

  int len;
  int cursor;
  int row_num;

  int batch_size;
  int walk_len;
  std::vector<int>* window;

  BufState() {}
  ~BufState() {}

  void Init(int graph_batch_size,
            int graph_walk_len,
            std::vector<int>* graph_window) {
    batch_size = graph_batch_size;
    walk_len = graph_walk_len;
    window = graph_window;

    left = 0;
    right = window->size() - 1;
    central_word = -1;
    step = -1;

    len = 0;
    cursor = 0;
    row_num = 0;
    for (size_t i = 0; i < graph_window->size(); i++) {
      VLOG(2) << "graph_window[" << i << "] = " << (*graph_window)[i];
    }
  }

  void Reset(int total_rows) {
    cursor = 0;
    row_num = total_rows;
    int tmp_len = cursor + batch_size > row_num ? row_num - cursor : batch_size;
    len = tmp_len;
    central_word = -1;
    step = -1;
    GetNextCentrolWord();
  }

  int GetNextStep() {
    step++;
    if (step <= right && central_word + (*window)[step] < walk_len) {
      return 1;
    }
    return 0;
  }

  void Debug() {
    VLOG(2) << "left: " << left << " right: " << right
            << " central_word: " << central_word << " step: " << step
            << " cursor: " << cursor << " len: " << len
            << " row_num: " << row_num;
  }

  int GetNextCentrolWord() {
    if (++central_word >= walk_len) {
      return 0;
    }
    int window_size = window->size() / 2;
    int random_window = random_engine_.engine() % window_size + 1;
    left = window_size - random_window;
    right = window_size + random_window - 1;
    VLOG(2) << "random window: " << random_window << " window[" << left
            << "] = " << (*window)[left] << " window[" << right
            << "] = " << (*window)[right];

    for (step = left; step <= right; step++) {
      if (central_word + (*window)[step] >= 0) {
        return 1;
      }
    }
    return 0;
  }

  int GetNextBatch() {
    cursor += len;
    int tmp_len = cursor + batch_size > row_num ? row_num - cursor : batch_size;
    if (tmp_len == 0) {
      return 0;
    }
    len = tmp_len;
    central_word = -1;
    step = -1;
    GetNextCentrolWord();
    return tmp_len != 0;
  }
};

class GraphDataGenerator {
 public:
  GraphDataGenerator(){};
  virtual ~GraphDataGenerator(){};
  void SetConfig(const paddle::framework::DataFeedDesc& data_feed_desc);
  void AllocResource(const paddle::platform::Place& place,
                     std::vector<LoDTensor*> feed_vec);
  int AcquireInstance(BufState* state);
  int GenerateBatch();
  int FillWalkBuf(std::shared_ptr<phi::Allocation> d_walk);
  int FillFeatureBuf(uint64_t* d_walk, uint64_t* d_feature, size_t key_num);
  int FillFeatureBuf(std::shared_ptr<phi::Allocation> d_walk,
                     std::shared_ptr<phi::Allocation> d_feature);
  void FillOneStep(uint64_t* start_ids,
                   uint64_t* walk,
                   int len,
                   NeighborSampleResult& sample_res,
                   int cur_degree,
                   int step,
                   int* len_per_row);
  int FillInsBuf();
  void SetDeviceKeys(std::vector<uint64_t>* device_keys, int type) {
    type_to_index_[type] = h_device_keys_.size();
    h_device_keys_.push_back(device_keys);
  }

 protected:
  int walk_degree_;
  int walk_len_;
  int window_;
  int once_sample_startid_len_;
  int gpuid_;
  // start ids
  // int64_t* device_keys_;
  // size_t device_key_size_;
  std::vector<std::vector<uint64_t>*> h_device_keys_;
  std::unordered_map<int, int> type_to_index_;
  // point to device_keys_
  size_t cursor_;
  size_t jump_rows_;
  int64_t* id_tensor_ptr_;
  int64_t* show_tensor_ptr_;
  int64_t* clk_tensor_ptr_;
  cudaStream_t stream_;
  paddle::platform::Place place_;
  std::vector<LoDTensor*> feed_vec_;
  std::vector<size_t> offset_;
  std::shared_ptr<phi::Allocation> d_prefix_sum_;
  std::vector<std::shared_ptr<phi::Allocation>> d_device_keys_;

  std::shared_ptr<phi::Allocation> d_walk_;
  std::shared_ptr<phi::Allocation> d_feature_;
  std::shared_ptr<phi::Allocation> d_len_per_row_;
  std::shared_ptr<phi::Allocation> d_random_row_;
  //
  std::vector<std::shared_ptr<phi::Allocation>> d_sampleidx2rows_;
  int cur_sampleidx2row_;
  // record the keys to call graph_neighbor_sample
  std::shared_ptr<phi::Allocation> d_sample_keys_;
  int sample_keys_len_;

  std::set<int> finish_node_type_;
  std::unordered_map<int, size_t> node_type_start_;
  std::vector<int> infer_node_type_start_;

  std::shared_ptr<phi::Allocation> d_ins_buf_;
  std::shared_ptr<phi::Allocation> d_feature_buf_;
  std::shared_ptr<phi::Allocation> d_pair_num_;
  std::shared_ptr<phi::Allocation> d_slot_tensor_ptr_;
  std::shared_ptr<phi::Allocation> d_slot_lod_tensor_ptr_;
  int ins_buf_pair_len_;
  // size of a d_walk buf
  size_t buf_size_;
  int repeat_time_;
  std::vector<int> window_step_;
  BufState buf_state_;
  int batch_size_;
  int slot_num_;
  int shuffle_seed_;
  int debug_mode_;
  std::vector<int> first_node_type_;
  std::vector<std::vector<int>> meta_path_;
  bool gpu_graph_training_;
};

W
Wang Guibao 已提交
978 979
class DataFeed {
 public:
980 981 982
  DataFeed() {
    mutex_for_pick_file_ = nullptr;
    file_idx_ = nullptr;
H
hutuxian 已提交
983 984
    mutex_for_fea_num_ = nullptr;
    total_fea_num_ = nullptr;
985
  }
W
Wang Guibao 已提交
986
  virtual ~DataFeed() {}
H
hutuxian 已提交
987
  virtual void Init(const DataFeedDesc& data_feed_desc) = 0;
W
Wang Guibao 已提交
988
  virtual bool CheckFile(const char* filename) {
989 990
    PADDLE_THROW(platform::errors::Unimplemented(
        "This function(CheckFile) is not implemented."));
W
Wang Guibao 已提交
991 992 993 994 995 996
  }
  // Set filelist for DataFeed.
  // Pay attention that it must init all readers before call this function.
  // Otherwise, Init() function will init finish_set_filelist_ flag.
  virtual bool SetFileList(const std::vector<std::string>& files);
  virtual bool Start() = 0;
D
dongdaxiang 已提交
997

W
Wang Guibao 已提交
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
  // The trainer calls the Next() function, and the DataFeed will load a new
  // batch to the feed_vec. The return value of this function is the batch
  // size of the current batch.
  virtual int Next() = 0;
  // Get all slots' alias which defined in protofile
  virtual const std::vector<std::string>& GetAllSlotAlias() {
    return all_slots_;
  }
  // Get used slots' alias which defined in protofile
  virtual const std::vector<std::string>& GetUseSlotAlias() {
    return use_slots_;
  }
  // This function is used for binding feed_vec memory
  virtual void AddFeedVar(Variable* var, const std::string& name);

H
hutuxian 已提交
1013 1014 1015
  // This function is used for binding feed_vec memory in a given scope
  virtual void AssignFeedVar(const Scope& scope);

1016 1017 1018 1019 1020 1021 1022
  // This function will do nothing at default
  virtual void SetInputPvChannel(void* channel) {}
  // This function will do nothing at default
  virtual void SetOutputPvChannel(void* channel) {}
  // This function will do nothing at default
  virtual void SetConsumePvChannel(void* channel) {}

1023
  // This function will do nothing at default
J
jiaqi 已提交
1024 1025 1026
  virtual void SetInputChannel(void* channel) {}
  // This function will do nothing at default
  virtual void SetOutputChannel(void* channel) {}
1027
  // This function will do nothing at default
J
jiaqi 已提交
1028
  virtual void SetConsumeChannel(void* channel) {}
1029
  // This function will do nothing at default
1030
  virtual void SetThreadId(int thread_id) {}
1031
  // This function will do nothing at default
1032
  virtual void SetThreadNum(int thread_num) {}
1033 1034
  // This function will do nothing at default
  virtual void SetParseInsId(bool parse_ins_id) {}
1035
  virtual void SetParseUid(bool parse_uid) {}
1036
  virtual void SetParseContent(bool parse_content) {}
1037 1038 1039
  virtual void SetParseLogKey(bool parse_logkey) {}
  virtual void SetEnablePvMerge(bool enable_pv_merge) {}
  virtual void SetCurrentPhase(int current_phase) {}
D
danleifeng 已提交
1040 1041 1042 1043 1044 1045 1046 1047
  virtual void SetDeviceKeys(std::vector<uint64_t>* device_keys, int type) {
#if defined(PADDLE_WITH_GPU_GRAPH) && defined(PADDLE_WITH_HETERPS)
    gpu_graph_data_generator_.SetDeviceKeys(device_keys, type);
#endif
  }
  virtual void SetGpuGraphMode(int gpu_graph_mode) {
    gpu_graph_mode_ = gpu_graph_mode;
  }
1048 1049 1050
  virtual void SetFileListMutex(std::mutex* mutex) {
    mutex_for_pick_file_ = mutex;
  }
H
hutuxian 已提交
1051
  virtual void SetFeaNumMutex(std::mutex* mutex) { mutex_for_fea_num_ = mutex; }
1052
  virtual void SetFileListIndex(size_t* file_index) { file_idx_ = file_index; }
H
hutuxian 已提交
1053
  virtual void SetFeaNum(uint64_t* fea_num) { total_fea_num_ = fea_num; }
1054 1055 1056 1057 1058 1059 1060
  virtual const std::vector<std::string>& GetInsIdVec() const {
    return ins_id_vec_;
  }
  virtual const std::vector<std::string>& GetInsContentVec() const {
    return ins_content_vec_;
  }
  virtual int GetCurBatchSize() { return batch_size_; }
1061
  virtual void LoadIntoMemory() {
1062 1063
    PADDLE_THROW(platform::errors::Unimplemented(
        "This function(LoadIntoMemory) is not implemented."));
1064
  }
1065 1066 1067 1068
  virtual void SetPlace(const paddle::platform::Place& place) {
    place_ = place;
  }
  virtual const paddle::platform::Place& GetPlace() const { return place_; }
1069

W
Wang Guibao 已提交
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
 protected:
  // The following three functions are used to check if it is executed in this
  // order:
  //   Init() -> SetFileList() -> Start() -> Next()
  virtual void CheckInit();
  virtual void CheckSetFileList();
  virtual void CheckStart();
  virtual void SetBatchSize(
      int batch);  // batch size will be set in Init() function
  // This function is used to pick one file from the global filelist(thread
  // safe).
  virtual bool PickOneFile(std::string* filename);
1082
  virtual void CopyToFeedTensor(void* dst, const void* src, size_t size);
W
Wang Guibao 已提交
1083

1084 1085 1086
  std::vector<std::string> filelist_;
  size_t* file_idx_;
  std::mutex* mutex_for_pick_file_;
H
hutuxian 已提交
1087 1088 1089
  std::mutex* mutex_for_fea_num_ = nullptr;
  uint64_t* total_fea_num_ = nullptr;
  uint64_t fea_num_ = 0;
W
Wang Guibao 已提交
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099

  // the alias of used slots, and its order is determined by
  // data_feed_desc(proto object)
  std::vector<std::string> use_slots_;
  std::vector<bool> use_slots_is_dense_;

  // the alias of all slots, and its order is determined by data_feed_desc(proto
  // object)
  std::vector<std::string> all_slots_;
  std::vector<std::string> all_slots_type_;
1100
  std::vector<std::vector<int>> use_slots_shape_;
1101 1102
  std::vector<int> inductive_shape_index_;
  std::vector<int> total_dims_without_inductive_;
H
hutuxian 已提交
1103 1104
  // For the inductive shape passed within data
  std::vector<std::vector<int>> multi_inductive_shape_index_;
W
Wang Guibao 已提交
1105 1106 1107 1108
  std::vector<int>
      use_slots_index_;  // -1: not used; >=0: the index of use_slots_

  // The data read by DataFeed will be stored here
1109
  std::vector<LoDTensor*> feed_vec_;
W
Wang Guibao 已提交
1110

1111 1112
  LoDTensor* rank_offset_;

W
Wang Guibao 已提交
1113 1114 1115 1116 1117 1118
  // the batch size defined by user
  int default_batch_size_;
  // current batch size
  int batch_size_;

  bool finish_init_;
1119
  bool finish_set_filelist_;
W
Wang Guibao 已提交
1120
  bool finish_start_;
1121
  std::string pipe_command_;
T
Thunderbrook 已提交
1122 1123
  std::string so_parser_name_;
  std::vector<SlotConf> slot_conf_;
1124 1125
  std::vector<std::string> ins_id_vec_;
  std::vector<std::string> ins_content_vec_;
1126
  platform::Place place_;
1127
  std::string uid_slot_;
1128 1129 1130

  // The input type of pipe reader, 0 for one sample, 1 for one batch
  int input_type_;
D
danleifeng 已提交
1131 1132 1133 1134
  int gpu_graph_mode_ = 0;
#if defined(PADDLE_WITH_GPU_GRAPH) && defined(PADDLE_WITH_HETERPS)
  GraphDataGenerator gpu_graph_data_generator_;
#endif
W
Wang Guibao 已提交
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
};

// PrivateQueueDataFeed is the base virtual class for ohther DataFeeds.
// It use a read-thread to read file and parse data to a private-queue
// (thread level), and get data from this queue when trainer call Next().
template <typename T>
class PrivateQueueDataFeed : public DataFeed {
 public:
  PrivateQueueDataFeed() {}
  virtual ~PrivateQueueDataFeed() {}
  virtual bool Start();
  virtual int Next();

 protected:
  // The thread implementation function for reading file and parse.
  virtual void ReadThread();
  // This function is used to set private-queue size, and the most
  // efficient when the queue size is close to the batch size.
  virtual void SetQueueSize(int queue_size);
  // The reading and parsing method called in the ReadThread.
  virtual bool ParseOneInstance(T* instance) = 0;
D
dongdaxiang 已提交
1156
  virtual bool ParseOneInstanceFromPipe(T* instance) = 0;
W
Wang Guibao 已提交
1157
  // This function is used to put instance to vec_ins
1158 1159
  virtual void AddInstanceToInsVec(T* vec_ins,
                                   const T& instance,
W
Wang Guibao 已提交
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
                                   int index) = 0;
  // This function is used to put ins_vec to feed_vec
  virtual void PutToFeedVec(const T& ins_vec) = 0;

  // The thread for read files
  std::thread read_thread_;
  // using ifstream one line and one line parse is faster
  // than using fread one buffer and one buffer parse.
  //   for a 601M real data:
  //     ifstream one line and one line parse: 6034 ms
  //     fread one buffer and one buffer parse: 7097 ms
  std::ifstream file_;
D
dongdaxiang 已提交
1172
  std::shared_ptr<FILE> fp_;
W
Wang Guibao 已提交
1173
  size_t queue_size_;
1174
  string::LineFileReader reader_;
W
Wang Guibao 已提交
1175
  // The queue for store parsed data
1176
  std::shared_ptr<paddle::framework::ChannelObject<T>> queue_;
W
Wang Guibao 已提交
1177 1178
};

1179
template <typename T>
J
jiaqi 已提交
1180
class InMemoryDataFeed : public DataFeed {
1181 1182 1183
 public:
  InMemoryDataFeed();
  virtual ~InMemoryDataFeed() {}
H
hutuxian 已提交
1184
  virtual void Init(const DataFeedDesc& data_feed_desc) = 0;
1185 1186
  virtual bool Start();
  virtual int Next();
1187 1188 1189 1190
  virtual void SetInputPvChannel(void* channel);
  virtual void SetOutputPvChannel(void* channel);
  virtual void SetConsumePvChannel(void* channel);

J
jiaqi 已提交
1191 1192 1193
  virtual void SetInputChannel(void* channel);
  virtual void SetOutputChannel(void* channel);
  virtual void SetConsumeChannel(void* channel);
1194 1195
  virtual void SetThreadId(int thread_id);
  virtual void SetThreadNum(int thread_num);
1196
  virtual void SetParseInsId(bool parse_ins_id);
1197
  virtual void SetParseUid(bool parse_uid);
1198
  virtual void SetParseContent(bool parse_content);
1199 1200 1201
  virtual void SetParseLogKey(bool parse_logkey);
  virtual void SetEnablePvMerge(bool enable_pv_merge);
  virtual void SetCurrentPhase(int current_phase);
1202
  virtual void LoadIntoMemory();
T
Thunderbrook 已提交
1203
  virtual void LoadIntoMemoryFromSo();
Y
yaoxuefeng 已提交
1204 1205 1206 1207 1208
  virtual void SetRecord(T* records) { records_ = records; }
  int GetDefaultBatchSize() { return default_batch_size_; }
  void AddBatchOffset(const std::pair<int, int>& offset) {
    batch_offsets_.push_back(offset);
  }
X
xujiaqi01 已提交
1209

1210 1211 1212
 protected:
  virtual bool ParseOneInstance(T* instance) = 0;
  virtual bool ParseOneInstanceFromPipe(T* instance) = 0;
1213 1214
  virtual void ParseOneInstanceFromSo(const char* str,
                                      T* instance,
T
Thunderbrook 已提交
1215
                                      CustomParser* parser) {}
1216 1217
  virtual int ParseInstanceFromSo(int len,
                                  const char* str,
T
Thunderbrook 已提交
1218 1219 1220 1221
                                  std::vector<T>* instances,
                                  CustomParser* parser) {
    return 0;
  }
J
jiaqi 已提交
1222
  virtual void PutToFeedVec(const std::vector<T>& ins_vec) = 0;
Y
yaoxuefeng 已提交
1223
  virtual void PutToFeedVec(const T* ins_vec, int num) = 0;
1224

Y
yaoxuefeng 已提交
1225 1226 1227 1228 1229
  std::vector<std::vector<float>> batch_float_feasigns_;
  std::vector<std::vector<uint64_t>> batch_uint64_feasigns_;
  std::vector<std::vector<size_t>> offset_;
  std::vector<bool> visit_;

1230 1231
  int thread_id_;
  int thread_num_;
1232
  bool parse_ins_id_;
1233
  bool parse_uid_;
1234
  bool parse_content_;
1235 1236 1237
  bool parse_logkey_;
  bool enable_pv_merge_;
  int current_phase_{-1};  // only for untest
J
jiaqi 已提交
1238 1239 1240 1241 1242
  std::ifstream file_;
  std::shared_ptr<FILE> fp_;
  paddle::framework::ChannelObject<T>* input_channel_;
  paddle::framework::ChannelObject<T>* output_channel_;
  paddle::framework::ChannelObject<T>* consume_channel_;
1243 1244 1245 1246

  paddle::framework::ChannelObject<PvInstance>* input_pv_channel_;
  paddle::framework::ChannelObject<PvInstance>* output_pv_channel_;
  paddle::framework::ChannelObject<PvInstance>* consume_pv_channel_;
Y
yaoxuefeng 已提交
1247 1248 1249 1250 1251

  std::vector<std::pair<int, int>> batch_offsets_;
  uint64_t offset_index_ = 0;
  bool enable_heterps_ = false;
  T* records_ = nullptr;
1252 1253
};

W
Wang Guibao 已提交
1254 1255 1256 1257 1258
// This class define the data type of instance(ins_vec) in MultiSlotDataFeed
class MultiSlotType {
 public:
  MultiSlotType() {}
  ~MultiSlotType() {}
H
hutuxian 已提交
1259
  void Init(const std::string& type, size_t reserved_size = 0) {
W
Wang Guibao 已提交
1260 1261 1262
    CheckType(type);
    if (type_[0] == 'f') {
      float_feasign_.clear();
H
hutuxian 已提交
1263 1264 1265
      if (reserved_size) {
        float_feasign_.reserve(reserved_size);
      }
W
Wang Guibao 已提交
1266 1267
    } else if (type_[0] == 'u') {
      uint64_feasign_.clear();
H
hutuxian 已提交
1268 1269 1270
      if (reserved_size) {
        uint64_feasign_.reserve(reserved_size);
      }
W
Wang Guibao 已提交
1271 1272 1273
    }
    type_ = type;
  }
H
hutuxian 已提交
1274 1275 1276 1277
  void InitOffset(size_t max_batch_size = 0) {
    if (max_batch_size > 0) {
      offset_.reserve(max_batch_size + 1);
    }
W
Wang Guibao 已提交
1278 1279 1280 1281 1282 1283
    offset_.resize(1);
    // LoDTensor' lod is counted from 0, the size of lod
    // is one size larger than the size of data.
    offset_[0] = 0;
  }
  const std::vector<size_t>& GetOffset() const { return offset_; }
1284
  std::vector<size_t>& MutableOffset() { return offset_; }
W
Wang Guibao 已提交
1285 1286 1287 1288 1289 1290 1291 1292
  void AddValue(const float v) {
    CheckFloat();
    float_feasign_.push_back(v);
  }
  void AddValue(const uint64_t v) {
    CheckUint64();
    uint64_feasign_.push_back(v);
  }
H
hutuxian 已提交
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
  void CopyValues(const float* input, size_t size) {
    CheckFloat();
    float_feasign_.resize(size);
    memcpy(float_feasign_.data(), input, size * sizeof(float));
  }
  void CopyValues(const uint64_t* input, size_t size) {
    CheckUint64();
    uint64_feasign_.resize(size);
    memcpy(uint64_feasign_.data(), input, size * sizeof(uint64_t));
  }
W
Wang Guibao 已提交
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
  void AddIns(const MultiSlotType& ins) {
    if (ins.GetType()[0] == 'f') {  // float
      CheckFloat();
      auto& vec = ins.GetFloatData();
      offset_.push_back(offset_.back() + vec.size());
      float_feasign_.insert(float_feasign_.end(), vec.begin(), vec.end());
    } else if (ins.GetType()[0] == 'u') {  // uint64
      CheckUint64();
      auto& vec = ins.GetUint64Data();
      offset_.push_back(offset_.back() + vec.size());
      uint64_feasign_.insert(uint64_feasign_.end(), vec.begin(), vec.end());
    }
  }
H
hutuxian 已提交
1316 1317 1318 1319 1320 1321 1322 1323
  void AppendValues(const uint64_t* input, size_t size) {
    CheckUint64();
    offset_.push_back(offset_.back() + size);
    uint64_feasign_.insert(uint64_feasign_.end(), input, input + size);
  }
  void AppendValues(const float* input, size_t size) {
    CheckFloat();
    offset_.push_back(offset_.back() + size);
1324

H
hutuxian 已提交
1325 1326
    float_feasign_.insert(float_feasign_.end(), input, input + size);
  }
W
Wang Guibao 已提交
1327
  const std::vector<float>& GetFloatData() const { return float_feasign_; }
1328
  std::vector<float>& MutableFloatData() { return float_feasign_; }
W
Wang Guibao 已提交
1329
  const std::vector<uint64_t>& GetUint64Data() const { return uint64_feasign_; }
1330
  std::vector<uint64_t>& MutableUint64Data() { return uint64_feasign_; }
W
Wang Guibao 已提交
1331
  const std::string& GetType() const { return type_; }
H
hutuxian 已提交
1332
  size_t GetBatchSize() { return offset_.size() - 1; }
1333
  std::string& MutableType() { return type_; }
W
Wang Guibao 已提交
1334

X
xujiaqi01 已提交
1335 1336
  std::string DebugString() {
    std::stringstream ss;
W
wanghuancoder 已提交
1337

1338 1339
    ss << "\ntype: " << type_ << "\n";
    ss << "offset: ";
X
xujiaqi01 已提交
1340 1341 1342 1343
    ss << "[";
    for (const size_t& i : offset_) {
      ss << offset_[i] << ",";
    }
1344
    ss << "]\ndata: [";
X
xujiaqi01 已提交
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
    if (type_[0] == 'f') {
      for (const float& i : float_feasign_) {
        ss << i << ",";
      }
    } else {
      for (const uint64_t& i : uint64_feasign_) {
        ss << i << ",";
      }
    }
    ss << "]\n";
    return ss.str();
  }

W
Wang Guibao 已提交
1358 1359
 private:
  void CheckType(const std::string& type) const {
1360 1361
    PADDLE_ENFORCE_EQ((type == "uint64" || type == "float"),
                      true,
1362 1363 1364 1365
                      platform::errors::InvalidArgument(
                          "MultiSlotType error, expect type is uint64 or "
                          "float, but received type is %s.",
                          type));
W
Wang Guibao 已提交
1366 1367
  }
  void CheckFloat() const {
1368
    PADDLE_ENFORCE_EQ(
1369 1370
        type_[0],
        'f',
1371 1372
        platform::errors::InvalidArgument(
            "MultiSlotType error, add %s value to float slot.", type_));
W
Wang Guibao 已提交
1373 1374
  }
  void CheckUint64() const {
1375
    PADDLE_ENFORCE_EQ(
1376 1377
        type_[0],
        'u',
1378 1379
        platform::errors::InvalidArgument(
            "MultiSlotType error, add %s value to uint64 slot.", type_));
W
Wang Guibao 已提交
1380 1381 1382 1383 1384 1385 1386
  }
  std::vector<float> float_feasign_;
  std::vector<uint64_t> uint64_feasign_;
  std::string type_;
  std::vector<size_t> offset_;
};

J
jiaqi 已提交
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
template <class AR>
paddle::framework::Archive<AR>& operator<<(paddle::framework::Archive<AR>& ar,
                                           const MultiSlotType& ins) {
  ar << ins.GetType();
#ifdef _LINUX
  ar << ins.GetOffset();
#else
  const auto& offset = ins.GetOffset();
  ar << (uint64_t)offset.size();
  for (const size_t& x : offset) {
    ar << (const uint64_t)x;
  }
#endif
  ar << ins.GetFloatData();
  ar << ins.GetUint64Data();
  return ar;
}

template <class AR>
paddle::framework::Archive<AR>& operator>>(paddle::framework::Archive<AR>& ar,
                                           MultiSlotType& ins) {
  ar >> ins.MutableType();
#ifdef _LINUX
  ar >> ins.MutableOffset();
#else
  auto& offset = ins.MutableOffset();
  offset.resize(ar.template Get<uint64_t>());
  for (size_t& x : offset) {
    uint64_t t;
    ar >> t;
Y
yaoxuefeng 已提交
1417
    x = static_cast<size_t>(t);
J
jiaqi 已提交
1418 1419 1420 1421 1422 1423 1424
  }
#endif
  ar >> ins.MutableFloatData();
  ar >> ins.MutableUint64Data();
  return ar;
}

1425 1426
struct RecordCandidate {
  std::string ins_id_;
T
Thunderbrook 已提交
1427
  std::unordered_multimap<uint16_t, FeatureFeasign> feas_;
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
  size_t shadow_index_ = -1;  // Optimization for Reservoir Sample

  RecordCandidate() {}
  RecordCandidate(const Record& rec,
                  const std::unordered_set<uint16_t>& slot_index_to_replace) {
    for (const auto& fea : rec.uint64_feasigns_) {
      if (slot_index_to_replace.find(fea.slot()) !=
          slot_index_to_replace.end()) {
        feas_.insert({fea.slot(), fea.sign()});
      }
    }
  }
1440 1441

  RecordCandidate& operator=(const Record& rec) {
1442
    feas_.clear();
1443 1444
    ins_id_ = rec.ins_id_;
    for (auto& fea : rec.uint64_feasigns_) {
1445
      feas_.insert({fea.slot(), fea.sign()});
1446 1447 1448 1449 1450 1451 1452 1453
    }
    return *this;
  }
};

class RecordCandidateList {
 public:
  RecordCandidateList() = default;
1454
  RecordCandidateList(const RecordCandidateList&) {}
1455

1456
  size_t Size() { return cur_size_; }
1457 1458 1459
  void ReSize(size_t length);

  void ReInit();
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
  void ReInitPass() {
    for (size_t i = 0; i < cur_size_; ++i) {
      if (candidate_list_[i].shadow_index_ != i) {
        candidate_list_[i].ins_id_ =
            candidate_list_[candidate_list_[i].shadow_index_].ins_id_;
        candidate_list_[i].feas_.swap(
            candidate_list_[candidate_list_[i].shadow_index_].feas_);
        candidate_list_[i].shadow_index_ = i;
      }
    }
    candidate_list_.resize(cur_size_);
  }
1472 1473

  void AddAndGet(const Record& record, RecordCandidate* result);
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
  void AddAndGet(const Record& record, size_t& index_result) {  // NOLINT
    // std::unique_lock<std::mutex> lock(mutex_);
    size_t index = 0;
    ++total_size_;
    auto fleet_ptr = FleetWrapper::GetInstance();
    if (!full_) {
      candidate_list_.emplace_back(record, slot_index_to_replace_);
      candidate_list_.back().shadow_index_ = cur_size_;
      ++cur_size_;
      full_ = (cur_size_ == capacity_);
    } else {
      index = fleet_ptr->LocalRandomEngine()() % total_size_;
      if (index < capacity_) {
        candidate_list_.emplace_back(record, slot_index_to_replace_);
        candidate_list_[index].shadow_index_ = candidate_list_.size() - 1;
      }
    }
    index = fleet_ptr->LocalRandomEngine()() % cur_size_;
    index_result = candidate_list_[index].shadow_index_;
  }
  const RecordCandidate& Get(size_t index) const {
    PADDLE_ENFORCE_LT(
1496 1497
        index,
        candidate_list_.size(),
1498 1499
        platform::errors::OutOfRange("Your index [%lu] exceeds the number of "
                                     "elements in candidate_list[%lu].",
1500 1501
                                     index,
                                     candidate_list_.size()));
1502 1503 1504 1505 1506 1507
    return candidate_list_[index];
  }
  void SetSlotIndexToReplace(
      const std::unordered_set<uint16_t>& slot_index_to_replace) {
    slot_index_to_replace_ = slot_index_to_replace;
  }
1508 1509

 private:
1510 1511 1512 1513 1514 1515 1516
  size_t capacity_ = 0;
  std::mutex mutex_;
  bool full_ = false;
  size_t cur_size_ = 0;
  size_t total_size_ = 0;
  std::vector<RecordCandidate> candidate_list_;
  std::unordered_set<uint16_t> slot_index_to_replace_;
1517 1518
};

J
jiaqi 已提交
1519 1520
template <class AR>
paddle::framework::Archive<AR>& operator<<(paddle::framework::Archive<AR>& ar,
T
Thunderbrook 已提交
1521
                                           const FeatureFeasign& fk) {
J
jiaqi 已提交
1522 1523 1524 1525 1526 1527 1528
  ar << fk.uint64_feasign_;
  ar << fk.float_feasign_;
  return ar;
}

template <class AR>
paddle::framework::Archive<AR>& operator>>(paddle::framework::Archive<AR>& ar,
T
Thunderbrook 已提交
1529
                                           FeatureFeasign& fk) {
J
jiaqi 已提交
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
  ar >> fk.uint64_feasign_;
  ar >> fk.float_feasign_;
  return ar;
}

template <class AR>
paddle::framework::Archive<AR>& operator<<(paddle::framework::Archive<AR>& ar,
                                           const FeatureItem& fi) {
  ar << fi.sign();
  ar << fi.slot();
  return ar;
}

template <class AR>
paddle::framework::Archive<AR>& operator>>(paddle::framework::Archive<AR>& ar,
                                           FeatureItem& fi) {
  ar >> fi.sign();
  ar >> fi.slot();
  return ar;
}

template <class AR>
paddle::framework::Archive<AR>& operator<<(paddle::framework::Archive<AR>& ar,
                                           const Record& r) {
  ar << r.uint64_feasigns_;
  ar << r.float_feasigns_;
  ar << r.ins_id_;
  return ar;
}

template <class AR>
paddle::framework::Archive<AR>& operator>>(paddle::framework::Archive<AR>& ar,
                                           Record& r) {
  ar >> r.uint64_feasigns_;
  ar >> r.float_feasigns_;
  ar >> r.ins_id_;
  return ar;
}

W
Wang Guibao 已提交
1569 1570 1571 1572 1573 1574 1575 1576
// This DataFeed is used to feed multi-slot type data.
// The format of multi-slot type data:
//   [n feasign_0 feasign_1 ... feasign_n]*
class MultiSlotDataFeed
    : public PrivateQueueDataFeed<std::vector<MultiSlotType>> {
 public:
  MultiSlotDataFeed() {}
  virtual ~MultiSlotDataFeed() {}
H
hutuxian 已提交
1577
  virtual void Init(const DataFeedDesc& data_feed_desc);
W
Wang Guibao 已提交
1578 1579 1580
  virtual bool CheckFile(const char* filename);

 protected:
D
dongdaxiang 已提交
1581
  virtual void ReadThread();
W
Wang Guibao 已提交
1582 1583 1584 1585
  virtual void AddInstanceToInsVec(std::vector<MultiSlotType>* vec_ins,
                                   const std::vector<MultiSlotType>& instance,
                                   int index);
  virtual bool ParseOneInstance(std::vector<MultiSlotType>* instance);
D
dongdaxiang 已提交
1586
  virtual bool ParseOneInstanceFromPipe(std::vector<MultiSlotType>* instance);
W
Wang Guibao 已提交
1587 1588
  virtual void PutToFeedVec(const std::vector<MultiSlotType>& ins_vec);
};
1589

J
jiaqi 已提交
1590
class MultiSlotInMemoryDataFeed : public InMemoryDataFeed<Record> {
1591 1592 1593
 public:
  MultiSlotInMemoryDataFeed() {}
  virtual ~MultiSlotInMemoryDataFeed() {}
H
hutuxian 已提交
1594
  virtual void Init(const DataFeedDesc& data_feed_desc);
Y
yaoxuefeng 已提交
1595
  // void SetRecord(Record* records) { records_ = records; }
1596

1597
 protected:
J
jiaqi 已提交
1598 1599
  virtual bool ParseOneInstance(Record* instance);
  virtual bool ParseOneInstanceFromPipe(Record* instance);
1600 1601
  virtual void ParseOneInstanceFromSo(const char* str,
                                      Record* instance,
T
Thunderbrook 已提交
1602
                                      CustomParser* parser){};
1603 1604
  virtual int ParseInstanceFromSo(int len,
                                  const char* str,
T
Thunderbrook 已提交
1605 1606
                                  std::vector<Record>* instances,
                                  CustomParser* parser);
J
jiaqi 已提交
1607
  virtual void PutToFeedVec(const std::vector<Record>& ins_vec);
1608 1609 1610 1611
  virtual void GetMsgFromLogKey(const std::string& log_key,
                                uint64_t* search_id,
                                uint32_t* cmatch,
                                uint32_t* rank);
Y
yaoxuefeng 已提交
1612
  virtual void PutToFeedVec(const Record* ins_vec, int num);
1613 1614
};

Y
yaoxuefeng 已提交
1615 1616 1617
class SlotRecordInMemoryDataFeed : public InMemoryDataFeed<SlotRecord> {
 public:
  SlotRecordInMemoryDataFeed() {}
1618 1619 1620 1621 1622 1623 1624
  virtual ~SlotRecordInMemoryDataFeed() {
#if defined(PADDLE_WITH_CUDA) && defined(PADDLE_WITH_HETERPS)
    if (pack_ != nullptr) {
      pack_ = nullptr;
    }
#endif
  }
Y
yaoxuefeng 已提交
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
  virtual void Init(const DataFeedDesc& data_feed_desc);
  virtual void LoadIntoMemory();
  void ExpandSlotRecord(SlotRecord* ins);

 protected:
  virtual bool Start();
  virtual int Next();
  virtual bool ParseOneInstance(SlotRecord* instance) { return false; }
  virtual bool ParseOneInstanceFromPipe(SlotRecord* instance) { return false; }
  // virtual void ParseOneInstanceFromSo(const char* str, T* instance,
  //                                    CustomParser* parser) {}
  virtual void PutToFeedVec(const std::vector<SlotRecord>& ins_vec) {}

  virtual void LoadIntoMemoryByCommand(void);
  virtual void LoadIntoMemoryByLib(void);
  virtual void LoadIntoMemoryByLine(void);
  virtual void LoadIntoMemoryByFile(void);
  virtual void SetInputChannel(void* channel) {
    input_channel_ = static_cast<ChannelObject<SlotRecord>*>(channel);
  }
  bool ParseOneInstance(const std::string& line, SlotRecord* rec);
  virtual void PutToFeedVec(const SlotRecord* ins_vec, int num);
1647 1648 1649
  virtual void AssignFeedVar(const Scope& scope);
#if defined(PADDLE_WITH_CUDA) && defined(PADDLE_WITH_HETERPS)
  void BuildSlotBatchGPU(const int ins_num);
1650 1651
  void FillSlotValueOffset(const int ins_num,
                           const int used_slot_num,
1652 1653
                           size_t* slot_value_offsets,
                           const int* uint64_offsets,
1654 1655
                           const int uint64_slot_size,
                           const int* float_offsets,
1656 1657
                           const int float_slot_size,
                           const UsedSlotGpuType* used_slots);
1658 1659 1660
  void CopyForTensor(const int ins_num,
                     const int used_slot_num,
                     void** dest,
1661
                     const size_t* slot_value_offsets,
1662 1663 1664 1665 1666 1667 1668 1669
                     const uint64_t* uint64_feas,
                     const int* uint64_offsets,
                     const int* uint64_ins_lens,
                     const int uint64_slot_size,
                     const float* float_feas,
                     const int* float_offsets,
                     const int* float_ins_lens,
                     const int float_slot_size,
1670 1671
                     const UsedSlotGpuType* used_slots);
#endif
Y
yaoxuefeng 已提交
1672 1673 1674 1675 1676 1677 1678 1679
  float sample_rate_ = 1.0f;
  int use_slot_size_ = 0;
  int float_use_slot_size_ = 0;
  int uint64_use_slot_size_ = 0;
  std::vector<AllSlotInfo> all_slots_info_;
  std::vector<UsedSlotInfo> used_slots_info_;
  size_t float_total_dims_size_ = 0;
  std::vector<int> float_total_dims_without_inductives_;
1680 1681 1682 1683

#if defined(PADDLE_WITH_CUDA) && defined(PADDLE_WITH_HETERPS)
  MiniBatchGpuPack* pack_ = nullptr;
#endif
Y
yaoxuefeng 已提交
1684 1685
};

1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
class PaddleBoxDataFeed : public MultiSlotInMemoryDataFeed {
 public:
  PaddleBoxDataFeed() {}
  virtual ~PaddleBoxDataFeed() {}

 protected:
  virtual void Init(const DataFeedDesc& data_feed_desc);
  virtual bool Start();
  virtual int Next();
  virtual void AssignFeedVar(const Scope& scope);
  virtual void PutToFeedVec(const std::vector<PvInstance>& pv_vec);
  virtual void PutToFeedVec(const std::vector<Record*>& ins_vec);
  virtual int GetCurrentPhase();
  virtual void GetRankOffset(const std::vector<PvInstance>& pv_vec,
                             int ins_number);
  std::string rank_offset_name_;
  int pv_batch_size_;
1703 1704
};

1705
#if (defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)) && !defined(_WIN32)
H
hutuxian 已提交
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
template <typename T>
class PrivateInstantDataFeed : public DataFeed {
 public:
  PrivateInstantDataFeed() {}
  virtual ~PrivateInstantDataFeed() {}
  void Init(const DataFeedDesc& data_feed_desc) override;
  bool Start() override { return true; }
  int Next() override;

 protected:
  // The batched data buffer
  std::vector<MultiSlotType> ins_vec_;

  // This function is used to preprocess with a given filename, e.g. open it or
  // mmap
  virtual bool Preprocess(const std::string& filename) = 0;

  // This function is used to postprocess system resource such as closing file
  // NOTICE: Ensure that it is safe to call before Preprocess
  virtual bool Postprocess() = 0;

  // The reading and parsing method.
  virtual bool ParseOneMiniBatch() = 0;

  // This function is used to put ins_vec to feed_vec
  virtual void PutToFeedVec();
};

class MultiSlotFileInstantDataFeed
    : public PrivateInstantDataFeed<std::vector<MultiSlotType>> {
 public:
  MultiSlotFileInstantDataFeed() {}
  virtual ~MultiSlotFileInstantDataFeed() {}

 protected:
  int fd_{-1};
  char* buffer_{nullptr};
  size_t end_{0};
  size_t offset_{0};

  bool Preprocess(const std::string& filename) override;

  bool Postprocess() override;

  bool ParseOneMiniBatch() override;
};
#endif

W
Wang Guibao 已提交
1754 1755
}  // namespace framework
}  // namespace paddle