test_dist_transpiler.py 48.0 KB
Newer Older
Y
Yancey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import functools
16 17
import gc
import math
18
import unittest
19

20
import numpy as np
T
tangwei12 已提交
21

22 23
gc.set_debug(gc.DEBUG_COLLECTABLE)

24
import paddle
25
from paddle import fluid
26

Y
Yancey 已提交
27

W
Wu Yi 已提交
28
class TranspilerTest(unittest.TestCase):
Y
Yancey 已提交
29
    def setUp(self):
W
Wu Yi 已提交
30 31 32 33 34 35 36 37 38 39 40
        self.trainer_id = 0
        self.trainers = 2
        self.pservers = 2
        # NOTE: we do not actually bind this port
        self.pserver_eps = "127.0.0.1:6174,127.0.0.1:6175"
        self.pserver1_ep = "127.0.0.1:6174"
        self.pserver2_ep = "127.0.0.1:6175"
        self.sync_mode = True
        self.transpiler = None

    def net_conf(self):
G
GGBond8488 已提交
41
        x = paddle.static.data(name='x', shape=[-1, 1000], dtype='float32')
C
Charles-hit 已提交
42 43
        y_predict = paddle.static.nn.fc(
            x,
44
            size=1000,
C
Charles-hit 已提交
45
            weight_attr=fluid.ParamAttr(name='fc_w'),
46 47
            bias_attr=fluid.ParamAttr(name='fc_b'),
        )
G
GGBond8488 已提交
48
        y = paddle.static.data(name='y', shape=[-1, 1], dtype='float32')
49
        cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
50
        avg_cost = paddle.mean(cost)
L
LoneRanger 已提交
51
        sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.1)
W
Wu Yi 已提交
52 53 54 55
        sgd_optimizer.minimize(avg_cost)

    def get_main_program(self):
        main = fluid.Program()
56
        main.random_seed = 1
W
Wu Yi 已提交
57 58 59 60 61
        with fluid.program_guard(main):
            self.net_conf()
        self.origin_prog = main.clone()
        return main

1
123malin 已提交
62
    def get_trainer(self, config=None, sync_mode=True):
G
gongweibao 已提交
63 64
        src = fluid.default_startup_program().clone()

1
123malin 已提交
65
        t = self._transpiler_instance(config, sync_mode=True)
G
gongweibao 已提交
66

W
Wu Yi 已提交
67
        trainer_main = t.get_trainer_program(wait_port=False)
G
gongweibao 已提交
68 69
        trainer_startup = fluid.default_startup_program()

70 71
        assert src.num_blocks == 1
        assert trainer_startup.num_blocks == src.num_blocks
G
gongweibao 已提交
72 73

        return trainer_main, trainer_startup
W
Wu Yi 已提交
74

Q
qiaolongfei 已提交
75 76
    def get_pserver(self, ep, config=None, sync_mode=True):
        t = self._transpiler_instance(config, sync_mode)
W
Wu Yi 已提交
77 78 79 80
        pserver = t.get_pserver_program(ep)
        startup = t.get_startup_program(ep, pserver)
        return pserver, startup

Q
qiaolongfei 已提交
81
    def _transpiler_instance(self, config=None, sync_mode=True):
W
Wu Yi 已提交
82 83
        if not self.transpiler:
            main = self.get_main_program()
84 85 86 87 88
            self.transpiler = (
                paddle.distributed.transpiler.DistributeTranspiler(
                    config=config
                )
            )
89 90 91 92 93 94 95
            self.transpiler.transpile(
                self.trainer_id,
                program=main,
                pservers=self.pserver_eps,
                trainers=self.trainers,
                sync_mode=sync_mode,
            )
G
gongweibao 已提交
96

W
Wu Yi 已提交
97
        return self.transpiler
Y
Yancey 已提交
98

Q
qiaolongfei 已提交
99 100
    def transpiler_test_impl(self):
        pass
W
Wu Yi 已提交
101

Y
Yancey 已提交
102
    def test_transpiler(self):
Q
qiaolongfei 已提交
103 104
        main = fluid.Program()
        startup = fluid.Program()
T
tangwei12 已提交
105 106 107
        with fluid.unique_name.guard():
            with fluid.program_guard(main, startup):
                self.transpiler_test_impl()
108 109 110 111 112 113
        # NOTE: run gc.collect to eliminate pybind side objects to
        # prevent random double-deallocate when inherited in python.
        del self.transpiler
        del main
        del startup
        gc.collect()
Q
qiaolongfei 已提交
114 115 116 117


class TestBasicModel(TranspilerTest):
    def transpiler_test_impl(self):
W
Wu Yi 已提交
118 119 120
        pserver, startup = self.get_pserver(self.pserver1_ep)
        pserver2, startup2 = self.get_pserver(self.pserver2_ep)

G
gongweibao 已提交
121 122
        trainer, trainer_startup = self.get_trainer()

T
tianshuo78520a 已提交
123
        # split var blocks should be in startup program
G
gongweibao 已提交
124 125 126 127 128 129 130 131
        self.assertTrue("fc_w.block0" in trainer_startup.global_block().vars)
        self.assertTrue("fc_w.block1" in trainer_startup.global_block().vars)
        self.assertTrue("fc_w" in trainer_startup.global_block().vars)
        self.assertTrue("fc_b" in trainer_startup.global_block().vars)
        self.assertTrue("fc_w@GRAD" not in trainer_startup.global_block().vars)
        self.assertTrue("fc_b@GRAD" not in trainer_startup.global_block().vars)

        src = [op.type for op in trainer_startup.global_block().ops]
132 133 134 135 136 137 138 139 140
        dst = [
            'fill_constant',
            'fill_constant',
            'uniform_random',
            'recv',
            'recv',
            'fetch_barrier',
            'concat',
        ]
G
gongweibao 已提交
141 142

        self.assertEqual(src, dst)
W
Wu Yi 已提交
143

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
        self.assertEqual(
            [op.type for op in trainer.global_block().ops],
            [
                'mul',
                'elementwise_add',
                'elementwise_sub',
                'square',
                'mean',
                'fill_constant',
                'mean_grad',
                'square_grad',
                'elementwise_sub_grad',
                'elementwise_add_grad',
                'send',
                'mul_grad',
                'split_byref',
                'send',
                'send_barrier',
                'recv',
                'recv',
                'fetch_barrier',
                'concat',
            ],
        )
Y
Yancey 已提交
168 169 170

        self.assertEqual(len(pserver.blocks), 3)
        # block0: listen_and_serv
171 172 173
        self.assertEqual(
            [op.type for op in pserver.blocks[0].ops], ["listen_and_serv"]
        )
W
Wu Yi 已提交
174
        # block1~2: optimize pass
175 176 177
        self.assertEqual(
            [op.type for op in pserver.blocks[1].ops], ["sum", "scale", "sgd"]
        )
Y
Yancey 已提交
178
        # confirm startup program
179 180 181 182
        self.assertEqual(
            [op.type for op in startup.global_block().ops],
            ["fill_constant", "fill_constant", "uniform_random"],
        )
Y
Yancey1989 已提交
183
        # the variable #fc_w will be split into two blocks
Y
Yancey 已提交
184 185
        fc_w_var = startup.global_block().var("fc_w.block1")
        self.assertEqual(fc_w_var.shape, (500, 1000))
W
Wu Yi 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
        # all parameters should be optimized on pserver

        pserver_params = []
        for prog in [pserver, pserver2]:
            for blk in prog.blocks:
                for op in blk.ops:
                    if "Param" in op.input_names:
                        param_name = op.input("Param")[0]
                        is_block_idx = param_name.find(".block")
                        if is_block_idx != -1:
                            origin_param_name = param_name[:is_block_idx]
                        else:
                            origin_param_name = param_name
                        pserver_params.append(origin_param_name)
        trainer_params = []
        for op in self.origin_prog.global_block().ops:
            if "Param" in op.input_names:
                trainer_params.append(op.input("Param")[0])
        self.assertEqual(set(pserver_params), set(trainer_params))


G
gongweibao 已提交
207
class TestBasicModelWithLargeBlockSize(TranspilerTest):
Q
qiaolongfei 已提交
208
    def transpiler_test_impl(self):
209
        config = paddle.distributed.transpiler.DistributeTranspilerConfig()
G
gongweibao 已提交
210 211 212 213 214
        config.min_block_size = 1048576

        pserver, startup = self.get_pserver(self.pserver1_ep, config)
        pserver2, startup2 = self.get_pserver(self.pserver2_ep, config)

G
gongweibao 已提交
215
        trainer, _ = self.get_trainer(config)
G
gongweibao 已提交
216

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
        self.assertEqual(
            [op.type for op in trainer.global_block().ops],
            [
                'mul',
                'elementwise_add',
                'elementwise_sub',
                'square',
                'mean',
                'fill_constant',
                'mean_grad',
                'square_grad',
                'elementwise_sub_grad',
                'elementwise_add_grad',
                'send',
                'mul_grad',
                'send',
                'send_barrier',
                'recv',
                'recv',
                'fetch_barrier',
            ],
        )
G
gongweibao 已提交
239 240 241

        self.assertEqual(len(pserver.blocks), 2)
        # block0: listen_and_serv
242 243 244
        self.assertEqual(
            [op.type for op in pserver.blocks[0].ops], ["listen_and_serv"]
        )
G
gongweibao 已提交
245
        # block1~2: optimize pass
246 247 248
        self.assertEqual(
            [op.type for op in pserver.blocks[1].ops], ["sum", "scale", "sgd"]
        )
G
gongweibao 已提交
249
        # confirm startup program
250 251 252 253
        self.assertEqual(
            [op.type for op in startup.global_block().ops],
            ["fill_constant", "fill_constant"],
        )
G
gongweibao 已提交
254 255
        # the variable #fc_w will be split into two blocks
        fc_w_var = startup2.global_block().var("fc_w")
256
        self.assertEqual(fc_w_var.shape, (1000, 1000))
G
gongweibao 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
        # all parameters should be optimized on pserver

        pserver_params = []
        for prog in [pserver, pserver2]:
            for blk in prog.blocks:
                for op in blk.ops:
                    if "Param" in op.input_names:
                        param_name = op.input("Param")[0]
                        is_block_idx = param_name.find(".block")
                        if is_block_idx != -1:
                            origin_param_name = param_name[:is_block_idx]
                        else:
                            origin_param_name = param_name
                        pserver_params.append(origin_param_name)
        trainer_params = []
        for op in self.origin_prog.global_block().ops:
            if "Param" in op.input_names:
                trainer_params.append(op.input("Param")[0])
        self.assertEqual(set(pserver_params), set(trainer_params))


W
Wu Yi 已提交
278 279
class TestNoSliceVar(TranspilerTest):
    def setUp(self):
280
        super().setUp()
W
Wu Yi 已提交
281

Q
qiaolongfei 已提交
282
    def transpiler_test_impl(self):
283
        config = paddle.distributed.transpiler.DistributeTranspilerConfig()
G
gongweibao 已提交
284 285 286 287
        config.slice_var_up = False

        _, startup = self.get_pserver(self.pserver1_ep, config)
        _, startup2 = self.get_pserver(self.pserver2_ep, config)
W
Wu Yi 已提交
288

289
        if "fc_w" in startup.global_block().vars:
W
Wu Yi 已提交
290
            fc_w_var = startup.global_block().vars["fc_w"]
291
        elif "fc_w" in startup2.global_block().vars:
W
Wu Yi 已提交
292 293 294
            fc_w_var = startup2.global_block().vars["fc_w"]

        self.assertEqual(fc_w_var.shape, (1000, 1000))
Y
Yancey 已提交
295 296


W
Wu Yi 已提交
297 298
class TestLRDecay(TranspilerTest):
    def net_conf(self):
G
GGBond8488 已提交
299
        x = paddle.static.data(name='x', shape=[-1, 1000], dtype='float32')
C
Charles-hit 已提交
300 301
        y_predict = paddle.static.nn.fc(
            x,
302
            size=1000,
C
Charles-hit 已提交
303
            weight_attr=fluid.ParamAttr(name='fc_w'),
304 305
            bias_attr=fluid.ParamAttr(name='fc_b'),
        )
G
GGBond8488 已提交
306
        y = paddle.static.data(name='y', shape=[-1, 1], dtype='float32')
307
        cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
308
        avg_cost = paddle.mean(cost)
L
LoneRanger 已提交
309
        sgd_optimizer = paddle.optimizer.SGD(
310
            learning_rate=paddle.optimizer.lr.ExponentialDecay(
311
                learning_rate=1.0,
312
                gamma=0.1,
313 314
            )
        )
W
Wu Yi 已提交
315 316
        sgd_optimizer.minimize(avg_cost)

Q
qiaolongfei 已提交
317
    def transpiler_test_impl(self):
W
Wu Yi 已提交
318
        pserver, startup = self.get_pserver(self.pserver1_ep)
G
gongweibao 已提交
319
        trainer, _ = self.get_trainer()
W
Wu Yi 已提交
320 321 322

        self.assertEqual(len(pserver.blocks), 4)
        lr_decay_ops = [op.type for op in pserver.blocks[1].ops]
323 324 325 326 327 328 329 330 331 332 333 334 335 336
        self.assertEqual(
            lr_decay_ops,
            [
                "increment",
                "cast",
                "fill_constant",
                "elementwise_div",
                "floor",
                "fill_constant",
                "elementwise_pow",
                "fill_constant",
                "elementwise_mul",
            ],
        )
W
Wu Yi 已提交
337 338


T
tangwei12 已提交
339 340 341 342
class TestFakeInit(TranspilerTest):
    def net_conf(self):
        dict_size, embedding_size, neg_num = 10000, 8, 5

G
GGBond8488 已提交
343 344
        input_word = paddle.static.data(
            name="input_word", shape=[-1, 1], dtype='int64', lod_level=1
345
        )
G
GGBond8488 已提交
346 347
        true_word = paddle.static.data(
            name='true_label', shape=[-1, 1], dtype='int64', lod_level=1
348
        )
G
GGBond8488 已提交
349 350
        neg_word = paddle.static.data(
            name="neg_label", shape=[-1, 1], dtype='int64', lod_level=1
351
        )
T
tangwei12 已提交
352 353 354
        inputs = [input_word, true_word, neg_word]

        init_width = 0.5 / embedding_size
355
        input_emb = paddle.static.nn.embedding(
T
tangwei12 已提交
356 357 358
            input=inputs[0],
            is_sparse=True,
            size=[dict_size, embedding_size],
359 360
            param_attr=fluid.ParamAttr(
                name='emb',
361 362 363
                initializer=paddle.nn.initializer.Uniform(
                    -init_width, init_width
                ),
364 365
            ),
        )
T
tangwei12 已提交
366

367
        true_emb_w = paddle.static.nn.embedding(
T
tangwei12 已提交
368 369 370 371
            input=inputs[1],
            is_sparse=True,
            size=[dict_size, embedding_size],
            param_attr=fluid.ParamAttr(
372 373
                name='emb_w',
                initializer=paddle.nn.initializer.Constant(value=0.0),
374 375
            ),
        )
T
tangwei12 已提交
376

377
        true_emb_b = paddle.static.nn.embedding(
T
tangwei12 已提交
378 379 380 381
            input=inputs[1],
            is_sparse=True,
            size=[dict_size, 1],
            param_attr=fluid.ParamAttr(
382 383
                name='emb_b',
                initializer=paddle.nn.initializer.Constant(value=0.0),
384 385
            ),
        )
T
tangwei12 已提交
386

387
        neg_word_reshape = paddle.reshape(inputs[2], shape=[-1, 1])
T
tangwei12 已提交
388 389
        neg_word_reshape.stop_gradient = True

390
        neg_emb_w = paddle.static.nn.embedding(
391 392 393 394 395
            input=neg_word_reshape,
            is_sparse=True,
            size=[dict_size, embedding_size],
            param_attr=fluid.ParamAttr(name='emb_w', learning_rate=1.0),
        )
T
tangwei12 已提交
396

397
        neg_emb_w_re = paddle.reshape(
398 399
            neg_emb_w, shape=[-1, neg_num, embedding_size]
        )
T
tangwei12 已提交
400

401
        neg_emb_b = paddle.static.nn.embedding(
402 403 404 405 406
            input=neg_word_reshape,
            is_sparse=True,
            size=[dict_size, 1],
            param_attr=fluid.ParamAttr(name='emb_b', learning_rate=1.0),
        )
T
tangwei12 已提交
407

408
        neg_emb_b_vec = paddle.reshape(neg_emb_b, shape=[-1, neg_num])
T
tangwei12 已提交
409

410
        true_logits = paddle.add(
411
            paddle.sum(
412
                paddle.multiply(input_emb, true_emb_w),
413 414 415 416 417 418
                dim=1,
                keep_dim=True,
            ),
            true_emb_b,
        )

419
        input_emb_re = paddle.reshape(input_emb, shape=[-1, 1, embedding_size])
420

K
kangguangli 已提交
421
        neg_matmul = paddle.matmul(input_emb_re, neg_emb_w_re, transpose_y=True)
422
        neg_matmul_re = paddle.reshape(neg_matmul, shape=[-1, neg_num])
423
        neg_logits = paddle.add(neg_matmul_re, neg_emb_b_vec)
T
tangwei12 已提交
424
        # nce loss
425 426 427 428
        fill_shape = [-1, 1]
        fill_shape[0] = paddle.shape(true_logits)[0].item()
        label_ones = paddle.full(
            shape=fill_shape, fill_value=1.0, dtype='float32'
429
        )
430 431 432 433
        fill_shape = [-1, neg_num]
        fill_shape[0] = paddle.shape(true_logits)[0].item()
        label_zeros = paddle.full(
            shape=fill_shape, fill_value=0.0, dtype='float32'
434
        )
T
tangwei12 已提交
435

436
        true_xent = paddle.nn.functional.binary_cross_entropy_with_logits(
437 438
            true_logits, label_ones
        )
439
        neg_xent = paddle.nn.functional.binary_cross_entropy_with_logits(
440 441
            neg_logits, label_zeros
        )
442
        cost = paddle.add(
443 444
            paddle.sum(true_xent, axis=1),
            paddle.sum(neg_xent, axis=1),
445
        )
446
        avg_cost = paddle.mean(cost)
T
tangwei12 已提交
447

L
LoneRanger 已提交
448
        sgd_optimizer = paddle.optimizer.SGD(
449
            learning_rate=paddle.optimizer.lr.ExponentialDecay(
450
                learning_rate=1.0,
451
                gamma=0.1,
452 453
            )
        )
T
tangwei12 已提交
454 455 456 457 458 459 460 461 462 463 464 465 466
        sgd_optimizer.minimize(avg_cost)

    def transpiler_test_impl(self):
        trainer, startup = self.get_trainer()

        fake_init_ops = []
        for op in startup.global_block().ops:
            if op.type == "fake_init":
                fake_init_ops.append(op)

        self.assertEqual(len(fake_init_ops), 3)


W
Wu Yi 已提交
467 468
class TestLRDecayConditional(TranspilerTest):
    def net_conf(self):
G
GGBond8488 已提交
469
        x = paddle.static.data(name='x', shape=[-1, 1000], dtype='float32')
C
Charles-hit 已提交
470 471
        y_predict = paddle.static.nn.fc(
            x,
472
            size=1000,
C
Charles-hit 已提交
473
            weight_attr=fluid.ParamAttr(name='fc_w'),
474 475
            bias_attr=fluid.ParamAttr(name='fc_b'),
        )
G
GGBond8488 已提交
476
        y = paddle.static.data(name='y', shape=[-1, 1], dtype='float32')
477
        cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
478
        avg_cost = paddle.mean(cost)
L
LoneRanger 已提交
479
        sgd_optimizer = paddle.optimizer.SGD(
D
Difer 已提交
480
            learning_rate=paddle.optimizer.lr.piecewise_decay(
481 482 483
                [10000, 20000], [1.0, 0.5, 1.0]
            )
        )
W
Wu Yi 已提交
484 485
        sgd_optimizer.minimize(avg_cost)

Q
qiaolongfei 已提交
486
    def transpiler_test_impl(self):
W
Wu Yi 已提交
487
        pserver, startup = self.get_pserver(self.pserver1_ep)
G
gongweibao 已提交
488
        trainer, _ = self.get_trainer()
W
Wu Yi 已提交
489 490 491 492

        serv_op = pserver.blocks[0].ops[0]
        sub_blocks = []
        optimize_blocks = []
G
gongweibao 已提交
493
        for b in serv_op.all_attrs()["optimize_blocks"]:
W
Wu Yi 已提交
494 495 496 497 498 499 500
            optimize_blocks.append(b.idx)
        for b in pserver.blocks:
            if b.idx not in optimize_blocks:
                sub_blocks.append(b.idx)

        self.assertEqual(len(pserver.blocks), 7)
        lr_decay_ops = [op.type for op in pserver.blocks[1].ops]
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
        self.assertEqual(
            lr_decay_ops,
            [
                "increment",
                "cast",
                "fill_constant",
                "fill_constant",
                "less_than",
                "logical_not",
                "conditional_block",
                "fill_constant",
                "fill_constant",
                "less_than",
                "logical_not",
                "logical_and",
                "logical_and",
                "conditional_block",
                "fill_constant",
                "conditional_block",
            ],
        )
W
Wu Yi 已提交
522 523 524 525 526 527 528 529 530 531
        # test the condition blocks
        for b in sub_blocks:
            if b == 0:
                continue
            block = pserver.blocks[b]
            self.assertEqual([op.type for op in block.ops], ["assign"])


class TestL2Decay(TranspilerTest):
    def net_conf(self):
G
GGBond8488 已提交
532
        x = paddle.static.data(name='x', shape=[-1, 1000], dtype='float32')
C
Charles-hit 已提交
533 534
        y_predict = paddle.static.nn.fc(
            x,
W
Wu Yi 已提交
535
            size=1000,
C
Charles-hit 已提交
536
            weight_attr=fluid.ParamAttr(
537
                name='fc_w', regularizer=paddle.regularizer.L2Decay()
538 539 540
            ),
            bias_attr=fluid.ParamAttr(name='fc_b'),
        )
G
GGBond8488 已提交
541
        y = paddle.static.data(name='y', shape=[-1, 1], dtype='float32')
542
        cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
543
        avg_cost = paddle.mean(cost)
L
LoneRanger 已提交
544
        sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.1)
545 546 547 548

        def filter(param):
            return param.name == "fc_w"

549
        clip = paddle.nn.ClipGradByValue(0.1, need_clip=filter)
550
        sgd_optimizer.minimize(avg_cost, grad_clip=clip)
W
Wu Yi 已提交
551

Q
qiaolongfei 已提交
552
    def transpiler_test_impl(self):
W
Wu Yi 已提交
553
        pserver, startup = self.get_pserver(self.pserver1_ep)
G
gongweibao 已提交
554
        trainer, _ = self.get_trainer()
W
Wu Yi 已提交
555 556

        self.assertEqual(len(pserver.blocks), 3)
557 558 559 560 561 562 563 564
        self.assertEqual(
            [op.type for op in pserver.blocks[1].ops],
            ["sum", "scale", "clip", "sgd"],
        )
        self.assertEqual(
            [op.type for op in pserver.blocks[2].ops],
            ["sum", "scale", "clip", "scale", "sum", "sgd"],
        )
W
Wu Yi 已提交
565 566
        # TODO(typhoonzero): test clipping and L2Decay ops are removed from trainer

Y
Yancey 已提交
567

T
typhoonzero 已提交
568 569
class TestL2DecayWithPiecewise(TranspilerTest):
    def net_conf(self):
G
GGBond8488 已提交
570
        x = paddle.static.data(name='x', shape=[-1, 1000], dtype='float32')
C
Charles-hit 已提交
571 572
        y_predict = paddle.static.nn.fc(
            x,
573
            size=1000,
C
Charles-hit 已提交
574
            weight_attr=fluid.ParamAttr(name='fc_w'),
575 576
            bias_attr=fluid.ParamAttr(name='fc_b'),
        )
G
GGBond8488 已提交
577
        y = paddle.static.data(name='y', shape=[-1, 1], dtype='float32')
578
        cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
579
        avg_cost = paddle.mean(cost)
T
typhoonzero 已提交
580 581 582
        base_lr = 1.0
        bd = [1, 10, 20, 30]
        lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
L
LoneRanger 已提交
583
        sgd_optimizer = paddle.optimizer.Momentum(
D
Difer 已提交
584
            learning_rate=paddle.optimizer.lr.piecewise_decay(
585 586
                boundaries=bd, values=lr
            ),
T
typhoonzero 已提交
587
            momentum=0.9,
L
LoneRanger 已提交
588
            weight_decay=paddle.regularizer.L2Decay(1e-4),
589
        )
T
typhoonzero 已提交
590 591
        sgd_optimizer.minimize(avg_cost)

Q
qiaolongfei 已提交
592
    def transpiler_test_impl(self):
T
typhoonzero 已提交
593
        pserver, startup = self.get_pserver(self.pserver1_ep)
G
gongweibao 已提交
594
        trainer, _ = self.get_trainer()
T
typhoonzero 已提交
595 596

        self.assertEqual(len(pserver.blocks), 9)
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
        self.assertEqual(
            [op.type for op in pserver.blocks[1].ops],
            [
                "increment",
                "cast",
                "fill_constant",
                "fill_constant",
                "less_than",
                "logical_not",
                "conditional_block",
                "fill_constant",
                "fill_constant",
                "less_than",
                "logical_not",
                "logical_and",
                "logical_and",
                "conditional_block",
                "fill_constant",
                "fill_constant",
                "less_than",
                "logical_not",
                "logical_and",
                "logical_and",
                "conditional_block",
                "fill_constant",
                "fill_constant",
                "less_than",
                "logical_not",
                "logical_and",
                "logical_and",
                "conditional_block",
                "fill_constant",
                "conditional_block",
            ],
        )
        self.assertEqual(
            [op.type for op in pserver.blocks[7].ops],
            ["sum", "scale", "scale", "sum", "momentum"],
        )
        self.assertEqual(
            [op.type for op in pserver.blocks[8].ops],
            ["sum", "scale", "scale", "sum", "momentum"],
        )
Y
Yancey 已提交
640 641


Q
Qiao Longfei 已提交
642 643
class TestEmptyPserverOptimizeBlocks(TranspilerTest):
    def net_conf(self):
G
GGBond8488 已提交
644
        x = paddle.static.data(name='x', shape=[-1, 1000], dtype='float32')
Q
Qiao Longfei 已提交
645
        # only one parameter
C
Charles-hit 已提交
646 647
        y_predict = paddle.static.nn.fc(
            x,
648
            size=1000,
C
Charles-hit 已提交
649
            weight_attr=fluid.ParamAttr(name='fc_w'),
650 651
            bias_attr=False,
        )
G
GGBond8488 已提交
652
        y = paddle.static.data(name='y', shape=[-1, 1], dtype='float32')
653
        cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
654
        avg_cost = paddle.mean(cost)
L
LoneRanger 已提交
655
        sgd_optimizer = paddle.optimizer.SGD(learning_rate=1.0)
Q
Qiao Longfei 已提交
656 657 658
        sgd_optimizer.minimize(avg_cost)

    def transpiler_test_impl(self):
659
        config = paddle.distributed.transpiler.DistributeTranspilerConfig()
Q
Qiao Longfei 已提交
660 661 662 663 664 665 666 667
        config.slice_var_up = False

        pserver, startup = self.get_pserver(ep=self.pserver2_ep, config=config)

        self.assertEqual(len(pserver.blocks), 2)
        self.assertEqual(len(pserver.blocks[1].ops), 0)


668
class TestDistLookupTableBase(TranspilerTest):
Q
Qiao Longfei 已提交
669
    def network_with_table(self, is_sparse, is_distributed):
T
tangwei12 已提交
670 671
        self.table_size = 1000
        self.emb_size = 64
T
tangwei12 已提交
672
        self.lookup_table_name = 'shared_w'
T
tangwei12 已提交
673

Q
Qiao Longfei 已提交
674
        def emb_pool(ids, table_name, is_distributed):
675
            emb = paddle.static.nn.embedding(
676 677 678 679 680 681 682
                input=ids,
                size=[self.table_size, self.emb_size],
                dtype='float32',
                param_attr=table_name,
                is_sparse=is_sparse,
                is_distributed=is_distributed,
            )
683 684 685
            pool = paddle.static.nn.sequence_lod.sequence_pool(
                input=emb, pool_type='average'
            )
686 687
            return pool

G
GGBond8488 已提交
688 689
        title_ids = paddle.static.data(
            name='title_ids', shape=[-1, 1], dtype='int64', lod_level=1
690
        )
G
GGBond8488 已提交
691 692
        brand_ids = paddle.static.data(
            name='brand_ids', shape=[-1, 1], dtype='int64', lod_level=1
693
        )
G
GGBond8488 已提交
694 695
        profile_ids = paddle.static.data(
            name='brand_ids', shape=[-1, 1], dtype='int64', lod_level=1
696
        )
Q
Qiao Longfei 已提交
697 698 699
        title_emb = emb_pool(title_ids, self.lookup_table_name, is_distributed)
        brand_emb = emb_pool(brand_ids, self.lookup_table_name, is_distributed)
        profile_emb = emb_pool(profile_ids, "profile_emb", False)
700
        fc0 = paddle.concat([title_emb, brand_emb, profile_emb], axis=1)
C
Charles-hit 已提交
701 702
        predict = paddle.static.nn.fc(
            x=fc0,
703
            size=2,
C
Charles-hit 已提交
704
            weight_attr=fluid.ParamAttr(name='fc_w'),
705 706
            bias_attr=fluid.ParamAttr(name='fc_b'),
        )
707

G
GGBond8488 已提交
708
        label = paddle.static.data(name='label', shape=[-1, 1], dtype='int64')
709 710 711
        cost = paddle.nn.functional.cross_entropy(
            input=predict, label=label, reduction='none', use_softmax=False
        )
712
        avg_cost = paddle.mean(cost)
L
LoneRanger 已提交
713
        optimizer = paddle.optimizer.Adam(learning_rate=0.003)
714 715 716
        optimizer.minimize(avg_cost)


Q
qiaolongfei 已提交
717 718 719 720 721 722 723
class TestLocalLookupTable(TestDistLookupTableBase):
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=False)

    def transpiler_test_impl(self):
        pserver1, startup1 = self.get_pserver(self.pserver1_ep)

724
        self.assertEqual(len(pserver1.blocks), 4)
Q
qiaolongfei 已提交
725 726
        # 0 listen_and_serv
        # 1 optimize for fc_w or fc_b adam
727 728 729 730
        self.assertEqual(
            [op.type for op in pserver1.blocks[1].ops],
            ["sum", "scale", "adam", "scale", "scale"],
        )
Q
qiaolongfei 已提交
731 732
        # 2 optimize for table adam
        # NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
733 734 735 736
        self.assertEqual(
            [op.type for op in pserver1.blocks[2].ops],
            ["sum", "scale", "adam", "scale", "scale"],
        )
Q
qiaolongfei 已提交
737

738 739
        # 3 optimize for table 2 adam
        # NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
740 741 742 743
        self.assertEqual(
            [op.type for op in pserver1.blocks[3].ops],
            ["sum", "scale", "adam", "scale", "scale"],
        )
744

G
gongweibao 已提交
745
        trainer, _ = self.get_trainer()
Q
qiaolongfei 已提交
746 747
        self.assertEqual(len(trainer.blocks), 1)
        ops = [
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
            'lookup_table',
            'sequence_pool',
            'lookup_table',
            'sequence_pool',
            'lookup_table',
            'sequence_pool',
            'concat',
            'mul',
            'elementwise_add',
            'cross_entropy2',
            'mean',
            'fill_constant',
            'mean_grad',
            'cross_entropy_grad2',
            'elementwise_add_grad',
            'send',
            'mul_grad',
            'send',
            'concat_grad',
            'sequence_pool_grad',
            'lookup_table_grad',
            'split_selected_rows',
            'send',
            'sequence_pool_grad',
            'lookup_table_grad',
            'sequence_pool_grad',
            'lookup_table_grad',
            'sum',
            'split_selected_rows',
            'send',
            'send_barrier',
            'recv',
            'recv',
            'fetch_barrier',
Q
qiaolongfei 已提交
782 783 784 785
        ]
        self.assertEqual([op.type for op in trainer.blocks[0].ops], ops)


786 787 788 789 790 791 792
class TestDistLookupTable(TestDistLookupTableBase):
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=True)

    def transpiler_test_impl(self):
        pserver1, startup1 = self.get_pserver(self.pserver1_ep)

793
        self.assertEqual(len(pserver1.blocks), 6)
794 795
        # 0 listen_and_serv
        # 1 optimize for fc_w or fc_b adam
796 797 798 799
        self.assertEqual(
            [op.type for op in pserver1.blocks[1].ops],
            ["sum", "scale", "adam", "scale", "scale"],
        )
800
        # 4 prefetch -> lookup_sparse_table_read for data0
801 802 803 804
        self.assertEqual(
            [op.type for op in pserver1.blocks[2].ops],
            ["sum", "scale", "adam", "scale", "scale"],
        )
Q
Qiao Longfei 已提交
805
        # 2 optimize for table sgd
806 807 808
        self.assertEqual(
            [op.type for op in pserver1.blocks[3].ops], ["sum", "sgd"]
        )
809
        # 3 prefetch -> lookup_sparse_table_read for data0
810 811 812 813
        self.assertEqual(
            [op.type for op in pserver1.blocks[4].ops],
            ["lookup_sparse_table_read"],
        )
Q
Qiao Longfei 已提交
814 815 816 817 818 819
        # 5 save table
        self.assertEqual([op.type for op in pserver1.blocks[5].ops], ["save"])

        trainer, trainer_startup = self.get_trainer()
        self.assertEqual(len(trainer.blocks), 1)
        ops = [
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
            'split_ids',
            'prefetch',
            'merge_ids',
            'sequence_pool',
            'sequence_pool',
            'lookup_table',
            'sequence_pool',
            'concat',
            'mul',
            'elementwise_add',
            'cross_entropy2',
            'mean',
            'fill_constant',
            'mean_grad',
            'cross_entropy_grad2',
            'elementwise_add_grad',
            'send',
            'mul_grad',
            'send',
            'concat_grad',
            'sequence_pool_grad',
            'lookup_table_grad',
            'split_selected_rows',
            'send',
            'sequence_pool_grad',
            'lookup_table_grad',
            'sequence_pool_grad',
            'lookup_table_grad',
            'sum',
            'split_ids',
            'send',
            'send_barrier',
            'recv',
            'recv',
            'fetch_barrier',
Q
Qiao Longfei 已提交
855 856 857
        ]
        self.assertEqual([op.type for op in trainer.blocks[0].ops], ops)
        startup_ops = [
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'uniform_random',
            'uniform_random',
            'recv',
            'recv',
            'recv',
            'fetch_barrier',
            'concat',
            'fake_init',
Q
Qiao Longfei 已提交
880
        ]
881 882 883
        self.assertEqual(
            [op.type for op in trainer_startup.blocks[0].ops], startup_ops
        )
Q
Qiao Longfei 已提交
884 885


Q
qiaolongfei 已提交
886 887 888 889 890
class TestAsyncLocalLookupTable(TestDistLookupTableBase):
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=False)

    def transpiler_test_impl(self):
891
        config = paddle.distributed.transpiler.DistributeTranspilerConfig()
Q
qiaolongfei 已提交
892
        pserver1, startup1 = self.get_pserver(self.pserver1_ep, config, False)
Q
qiaolongfei 已提交
893

894
        self.assertEqual(len(pserver1.blocks), 4)
Q
qiaolongfei 已提交
895 896
        # 0 listen_and_serv
        # 1 optimize for fc_w or fc_b adam
897 898 899 900
        self.assertEqual(
            [op.type for op in pserver1.blocks[1].ops],
            ["adam", "scale", "scale"],
        )
Q
qiaolongfei 已提交
901 902
        # 2 optimize for table adam
        # NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
903 904 905 906
        self.assertEqual(
            [op.type for op in pserver1.blocks[2].ops],
            ["adam", "scale", "scale"],
        )
907 908
        # 3 optimize for table adam
        # NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
909 910 911 912
        self.assertEqual(
            [op.type for op in pserver1.blocks[3].ops],
            ["adam", "scale", "scale"],
        )
Q
qiaolongfei 已提交
913

G
gongweibao 已提交
914
        trainer, _ = self.get_trainer(config)
Q
qiaolongfei 已提交
915 916
        self.assertEqual(len(trainer.blocks), 1)
        ops = [
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
            'lookup_table',
            'sequence_pool',
            'lookup_table',
            'sequence_pool',
            'lookup_table',
            'sequence_pool',
            'concat',
            'mul',
            'elementwise_add',
            'cross_entropy2',
            'mean',
            'fill_constant',
            'mean_grad',
            'cross_entropy_grad2',
            'elementwise_add_grad',
            'send',
            'mul_grad',
            'send',
            'concat_grad',
            'sequence_pool_grad',
            'lookup_table_grad',
            'split_selected_rows',
            'send',
            'sequence_pool_grad',
            'lookup_table_grad',
            'sequence_pool_grad',
            'lookup_table_grad',
            'sum',
            'split_selected_rows',
            'send',
            'recv',
            'recv',
Q
qiaolongfei 已提交
949 950 951 952
        ]
        self.assertEqual([op.type for op in trainer.blocks[0].ops], ops)


Q
qiaolongfei 已提交
953 954 955 956 957
class TestAsyncDistLookupTable(TestDistLookupTableBase):
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=True)

    def transpiler_test_impl(self):
958
        config = paddle.distributed.transpiler.DistributeTranspilerConfig()
Q
qiaolongfei 已提交
959

Q
qiaolongfei 已提交
960
        pserver1, startup1 = self.get_pserver(self.pserver1_ep, config, False)
Q
qiaolongfei 已提交
961

962
        self.assertEqual(len(pserver1.blocks), 6)
Q
qiaolongfei 已提交
963 964
        # 0 listen_and_serv
        # 1 optimize for fc_w or fc_b adam
965 966 967 968
        self.assertEqual(
            [op.type for op in pserver1.blocks[1].ops],
            ["adam", "scale", "scale"],
        )
969
        # 2 optimize for table adam
970 971 972 973
        self.assertEqual(
            [op.type for op in pserver1.blocks[2].ops],
            ["adam", "scale", "scale"],
        )
974 975
        # 3 optimize for table sgd
        self.assertEqual([op.type for op in pserver1.blocks[3].ops], ["sgd"])
976
        # 4 prefetch -> lookup_sparse_table_read for data0
977 978 979 980
        self.assertEqual(
            [op.type for op in pserver1.blocks[4].ops],
            ["lookup_sparse_table_read"],
        )
981 982
        # 5 save table
        self.assertEqual([op.type for op in pserver1.blocks[5].ops], ["save"])
Q
qiaolongfei 已提交
983

Q
Qiao Longfei 已提交
984
        trainer, trainer_startup = self.get_trainer(config)
Q
qiaolongfei 已提交
985 986
        self.assertEqual(len(trainer.blocks), 1)
        ops = [
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
            'split_ids',
            'prefetch',
            'merge_ids',
            'sequence_pool',
            'sequence_pool',
            'lookup_table',
            'sequence_pool',
            'concat',
            'mul',
            'elementwise_add',
            'cross_entropy2',
            'mean',
            'fill_constant',
            'mean_grad',
            'cross_entropy_grad2',
            'elementwise_add_grad',
            'send',
            'mul_grad',
            'send',
            'concat_grad',
            'sequence_pool_grad',
            'lookup_table_grad',
            'split_selected_rows',
            'send',
            'sequence_pool_grad',
            'lookup_table_grad',
            'sequence_pool_grad',
            'lookup_table_grad',
            'sum',
            'split_ids',
            'send',
            'recv',
            'recv',
Q
Qiao Longfei 已提交
1020
        ]
Q
qiaolongfei 已提交
1021
        self.assertEqual([op.type for op in trainer.blocks[0].ops], ops)
Q
Qiao Longfei 已提交
1022
        startup_ops = [
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'uniform_random',
            'uniform_random',
            'recv',
            'recv',
            'recv',
            'fetch_barrier',
            'concat',
            'fake_init',
Q
Qiao Longfei 已提交
1045
        ]
1046 1047 1048
        self.assertEqual(
            [op.type for op in trainer_startup.blocks[0].ops], startup_ops
        )
Q
qiaolongfei 已提交
1049 1050


T
tangwei12 已提交
1051
class TestDistLookupTableSliceSize(TestDistLookupTableBase):
T
tangwei12 已提交
1052 1053 1054 1055
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=True)

    def transpiler_test_impl(self):
1056
        config = paddle.distributed.transpiler.DistributeTranspilerConfig()
T
tangwei12 已提交
1057
        pserver1, _ = self.get_pserver(self.pserver1_ep, config)
T
tangwei12 已提交
1058 1059 1060

        self.assertTrue(self.transpiler.has_distributed_lookup_table)
        lookup_table_var = pserver1.global_block().vars[
1061 1062
            self.transpiler.table_name
        ]
T
tangwei12 已提交
1063 1064 1065
        row_size = lookup_table_var.shape[0]
        calc_row_size = int(math.ceil(self.table_size / self.pservers))
        self.assertEqual(row_size, calc_row_size)
T
tangwei12 已提交
1066 1067


T
tangwei12 已提交
1068 1069 1070 1071 1072 1073 1074 1075 1076
class TestDistArgsInProgram(TestDistLookupTableBase):
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=True)

    def transpiler_test_impl(self):
        trainer, _ = self.get_trainer()

        self.assertTrue(trainer._is_distributed)
        self.assertTrue(trainer._is_chief)
1077 1078 1079 1080 1081 1082
        self.assertEqual(
            trainer._distributed_lookup_table, self.lookup_table_name
        )
        self.assertEqual(
            trainer._endpoints, [self.pserver1_ep, self.pserver2_ep]
        )
T
tangwei12 已提交
1083 1084


W
Wu Yi 已提交
1085 1086
class TestRMSPropOptimizer(TranspilerTest):
    def net_conf(self):
G
GGBond8488 已提交
1087
        x = paddle.static.data(name='x', shape=[-1, 1000], dtype='float32')
C
Charles-hit 已提交
1088 1089
        y_predict = paddle.static.nn.fc(
            x,
1090
            size=1000,
C
Charles-hit 已提交
1091
            weight_attr=fluid.ParamAttr(name='fc_w'),
1092 1093
            bias_attr=fluid.ParamAttr(name='fc_b'),
        )
G
GGBond8488 已提交
1094
        y = paddle.static.data(name='y', shape=[-1, 1], dtype='float32')
1095
        cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
1096
        avg_cost = paddle.mean(cost)
L
LoneRanger 已提交
1097
        optimizer = paddle.optimizer.RMSProp(learning_rate=0.1)
W
Wu Yi 已提交
1098 1099 1100 1101 1102 1103 1104 1105
        optimizer.minimize(avg_cost)

    def transpiler_test_impl(self):
        pserver, startup = self.get_pserver(self.pserver1_ep)
        pserver2, startup2 = self.get_pserver(self.pserver2_ep)

        self.assertEqual(len(pserver.blocks), 3)
        # block1~2: optimize pass
1106 1107 1108 1109
        self.assertEqual(
            [op.type for op in pserver.blocks[1].ops],
            ["sum", "scale", "rmsprop"],
        )
W
Wu Yi 已提交
1110 1111 1112 1113 1114 1115 1116
        # the variable #fc_w will be split into two blocks
        fc_w_var = startup.global_block().var("fc_w.block1")
        self.assertEqual(fc_w_var.shape, (500, 1000))
        moment_var = startup.global_block().var("momentum_1")
        self.assertEqual(moment_var.shape, (500, 1000))


T
tangwei12 已提交
1117 1118
class TestLoadSliceVar(TranspilerTest):
    def net_conf(self):
G
GGBond8488 已提交
1119
        x = paddle.static.data(name='x', shape=[-1, 1000], dtype='float32')
C
Charles-hit 已提交
1120 1121
        y_predict = paddle.static.nn.fc(
            x,
1122
            size=1000,
C
Charles-hit 已提交
1123
            weight_attr=fluid.ParamAttr(name='fc_w'),
1124 1125
            bias_attr=fluid.ParamAttr(name='fc_b'),
        )
G
GGBond8488 已提交
1126
        y = paddle.static.data(name='y', shape=[-1, 1], dtype='float32')
1127
        cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
1128
        avg_cost = paddle.mean(cost)
1129
        optimizer = paddle.optimizer.RMSProp(learning_rate=0.1)
T
tangwei12 已提交
1130 1131 1132 1133 1134 1135
        optimizer.minimize(avg_cost)

    def transpiler_test_impl(self):
        pserver, _ = self.get_pserver(self.pserver1_ep)
        pserver2, _ = self.get_pserver(self.pserver2_ep)

1136
        vars_ps1 = pserver._parameters_on_pservers.get_distributed_vars_by_ep(
1137 1138
            self.pserver1_ep
        )
1139
        vars_ps2 = pserver._parameters_on_pservers.get_distributed_vars_by_ep(
1140 1141
            self.pserver2_ep
        )
1142 1143 1144 1145

        self.assertTrue(vars_ps1)
        self.assertTrue(vars_ps2)

1146
        for idx in range(len(vars_ps1)):
1147 1148 1149 1150 1151 1152
            total_numel = 0
            ps1_numel, ps2_numel = 0, 0

            ps1_var = vars_ps1[idx]

            if not ps1_var.is_slice:
1153 1154 1155 1156 1157 1158
                total_numel = functools.reduce(
                    lambda x, y: x * y, vars_ps1[idx].origin.shape
                )
                ps1_numel = functools.reduce(
                    lambda x, y: x * y, vars_ps1[idx].slice.shape
                )
1159 1160 1161 1162 1163 1164 1165
            else:
                ps2_var = None
                for var in vars_ps2:
                    if var.origin.name == ps1_var.origin.name:
                        ps2_var = var
                        break

1166 1167 1168 1169 1170 1171 1172 1173 1174
                total_numel = functools.reduce(
                    lambda x, y: x * y, ps1_var.origin.shape
                )
                ps1_numel = functools.reduce(
                    lambda x, y: x * y, ps1_var.slice.shape
                )
                ps2_numel = functools.reduce(
                    lambda x, y: x * y, ps2_var.slice.shape
                )
1175 1176

            self.assertEqual(total_numel, ps1_numel + ps2_numel)
T
tangwei12 已提交
1177 1178


W
Wu Yi 已提交
1179 1180
class TestNCCL2Transpile(TranspilerTest):
    def test_nccl2_transpile(self):
T
tangwei12 已提交
1181
        if fluid.core.is_compiled_with_cuda():  # test nccl2 only with cuda
J
JiabinYang 已提交
1182 1183 1184 1185 1186
            main = fluid.Program()
            startup = fluid.Program()
            with fluid.program_guard(main, startup):
                self.net_conf()

1187
            config = paddle.distributed.transpiler.DistributeTranspilerConfig()
J
JiabinYang 已提交
1188
            config.mode = "nccl2"
W
Wu Yi 已提交
1189
            config.wait_port = False
1190 1191 1192
            t = paddle.distributed.transpiler.DistributeTranspiler(
                config=config
            )
1193 1194 1195 1196 1197 1198
            t.transpile(
                0,
                trainers="127.0.0.1:6174,127.0.0.1:6175",
                current_endpoint="127.0.0.1:6174",
                startup_program=startup,
            )
J
JiabinYang 已提交
1199 1200 1201
            print([op.type for op in startup.global_block().ops])
            self.assertEqual(startup.global_block().ops[-1].type, "gen_nccl_id")
            self.assertIsNotNone(startup.global_block().vars.get("NCCLID"))
1202
            gc.collect()
J
JiabinYang 已提交
1203 1204
        else:
            pass
W
Wu Yi 已提交
1205 1206


Q
Qiao Longfei 已提交
1207 1208 1209
# test for remote prefetch
class TestRemoteLookupTable(TestDistLookupTableBase):
    def net_conf(self):
1210
        import os
1211

1212
        os.environ['PADDLE_ENABLE_REMOTE_PREFETCH'] = "1"
Q
Qiao Longfei 已提交
1213
        self.network_with_table(is_sparse=True, is_distributed=False)
Q
Qiao Longfei 已提交
1214 1215 1216 1217 1218 1219 1220

    def transpiler_test_impl(self):
        pserver1, startup1 = self.get_pserver(self.pserver1_ep)

        self.assertEqual(len(pserver1.blocks), 4)
        # 0 listen_and_serv
        # 1 optimize for fc_w or fc_b adam
1221 1222 1223 1224
        self.assertEqual(
            [op.type for op in pserver1.blocks[1].ops],
            ["sum", "scale", "adam", "scale", "scale"],
        )
Q
Qiao Longfei 已提交
1225 1226
        # 2 optimize for table adam
        # NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
1227 1228 1229 1230
        self.assertEqual(
            [op.type for op in pserver1.blocks[2].ops],
            ["sum", "scale", "adam", "scale", "scale"],
        )
Q
Qiao Longfei 已提交
1231 1232 1233

        # 3 optimize for table 2 adam
        # NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
1234 1235 1236 1237
        self.assertEqual(
            [op.type for op in pserver1.blocks[3].ops],
            ["sum", "scale", "adam", "scale", "scale"],
        )
Q
Qiao Longfei 已提交
1238 1239 1240 1241

        trainer, _ = self.get_trainer()
        self.assertEqual(len(trainer.blocks), 1)
        ops = [
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
            'lookup_table',
            'sequence_pool',
            'lookup_table',
            'sequence_pool',
            'lookup_table',
            'sequence_pool',
            'concat',
            'mul',
            'elementwise_add',
            'cross_entropy2',
            'mean',
            'fill_constant',
            'mean_grad',
            'cross_entropy_grad2',
            'elementwise_add_grad',
            'send',
            'mul_grad',
            'send',
            'concat_grad',
            'sequence_pool_grad',
            'lookup_table_grad',
            'split_selected_rows',
            'send',
            'sequence_pool_grad',
            'lookup_table_grad',
            'sequence_pool_grad',
            'lookup_table_grad',
            'sum',
            'split_selected_rows',
            'send',
            'send_barrier',
            'recv',
            'recv',
            'fetch_barrier',
Q
Qiao Longfei 已提交
1276 1277 1278 1279
        ]
        self.assertEqual([op.type for op in trainer.blocks[0].ops], ops)


1280 1281 1282 1283 1284 1285 1286
# test for remote prefetch
class TestRemoteNce(TestDistLookupTableBase):
    def network_with_table(self, is_sparse, is_distributed):
        num_total_classes = 20
        sampler = "uniform"
        nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')

G
GGBond8488 已提交
1287 1288 1289 1290
        input = paddle.static.data(
            name="input", shape=[-1, 10], dtype="float32"
        )
        label = paddle.static.data(name="label", shape=[-1, 1], dtype="int64")
1291

1292 1293 1294 1295 1296 1297 1298
        w_param = (
            fluid.default_main_program()
            .global_block()
            .create_parameter(
                shape=[num_total_classes, 10],
                dtype='float32',
                name='nce_w',
1299
                initializer=paddle.nn.initializer.Constant(),
1300 1301 1302 1303 1304 1305 1306 1307 1308
            )
        )
        b_param = (
            fluid.default_main_program()
            .global_block()
            .create_parameter(
                shape=[num_total_classes, 1],
                dtype='float32',
                name='nce_b',
1309
                initializer=paddle.nn.initializer.Constant(),
1310 1311 1312
            )
        )

1313
        cost = paddle.static.nn.nce(
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
            input=input,
            label=label,
            num_total_classes=num_total_classes,
            sampler=sampler,
            custom_dist=nid_freq_arr.tolist(),
            sample_weight=None,
            param_attr='nce_w',
            bias_attr='nce_b',
            seed=1,
            num_neg_samples=5,
            is_sparse=is_sparse,
        )
1326
        avg_cost = paddle.mean(cost)
1327
        # optimizer
L
LoneRanger 已提交
1328
        optimizer = paddle.optimizer.Adam(learning_rate=0.003)
1329 1330 1331 1332
        optimizer.minimize(avg_cost)

    def net_conf(self):
        import os
1333

1334 1335 1336 1337 1338
        os.environ['PADDLE_ENABLE_REMOTE_PREFETCH'] = "1"
        self.network_with_table(is_sparse=True, is_distributed=False)

    def transpiler_test_impl(self):
        trainer, _ = self.get_trainer()
T
tangwei12 已提交
1339

1340 1341
        out_vars = ["nce_w"]
        in_vars = ["nce_b"]
T
tangwei12 已提交
1342 1343 1344

        recv_var_names = []

1345 1346
        for op in trainer.blocks[0].ops:
            if op.type == "recv":
T
tangwei12 已提交
1347 1348 1349 1350 1351 1352 1353
                for var in op.output("Out"):
                    recv_var_names.append(var)

        for out_var in out_vars:
            self.assertFalse(out_var in recv_var_names)
        for in_var in in_vars:
            self.assertTrue(in_var in recv_var_names)
1354 1355


J
JiabinYang 已提交
1356 1357 1358
# test for remote prefetch
class TestRemoteHsigmoid(TestDistLookupTableBase):
    def network_with_table(self, is_sparse, is_distributed):
1359
        num_total_classes = 3
J
JiabinYang 已提交
1360

G
GGBond8488 已提交
1361 1362 1363 1364
        input = paddle.static.data(name="input", shape=[-1, 1], dtype="float32")
        label = paddle.static.data(name="label", shape=[-1, 1], dtype="int64")
        path_table = paddle.static.data(
            name='path_table', shape=[-1, 3], dtype='int64'
1365
        )
G
GGBond8488 已提交
1366 1367
        path_code = paddle.static.data(
            name='path_code', shape=[-1, 3], dtype='int64'
1368 1369 1370 1371 1372 1373 1374 1375
        )
        w_param = (
            fluid.default_main_program()
            .global_block()
            .create_parameter(
                shape=[num_total_classes, 10],
                dtype='float32',
                name='hs_w',
1376
                initializer=paddle.nn.initializer.Constant(),
1377 1378 1379 1380 1381 1382 1383 1384 1385
            )
        )
        b_param = (
            fluid.default_main_program()
            .global_block()
            .create_parameter(
                shape=[3, 1],
                dtype='float32',
                name='hs_b',
1386
                initializer=paddle.nn.initializer.Constant(),
1387 1388
            )
        )
J
JiabinYang 已提交
1389

1390
        emb = paddle.static.nn.embedding(
J
JiabinYang 已提交
1391
            input=input,
1392 1393
            is_sparse=is_sparse,
            size=[3, 3],
1394
            param_attr=fluid.ParamAttr(
1395
                initializer=paddle.nn.initializer.Normal(
1396 1397 1398 1399 1400
                    scale=1 / math.sqrt(num_total_classes)
                )
            ),
        )

1401 1402 1403 1404 1405 1406 1407 1408
        loss = paddle.nn.HSigmoidLoss(
            feature_size=emb.shape[1],
            num_classes=num_total_classes,
            is_custom=True,
            is_sparse=is_sparse,
        )

        cost = loss(
1409 1410 1411 1412 1413
            input=emb,
            label=label,
            path_table=path_table,
            path_code=path_code,
        )
1414

1415
        avg_cost = paddle.mean(cost)
J
JiabinYang 已提交
1416
        # optimizer
L
LoneRanger 已提交
1417
        optimizer = paddle.optimizer.SGD(learning_rate=0.003)
J
JiabinYang 已提交
1418 1419 1420 1421
        optimizer.minimize(avg_cost)

    def net_conf(self):
        import os
1422

J
JiabinYang 已提交
1423 1424 1425 1426 1427
        os.environ['PADDLE_ENABLE_REMOTE_PREFETCH'] = "1"
        self.network_with_table(is_sparse=True, is_distributed=False)

    def transpiler_test_impl(self):
        trainer, _ = self.get_trainer()
1428
        params_to_check = []
J
JiabinYang 已提交
1429
        for op in trainer.blocks[0].ops:
1430 1431 1432 1433 1434
            if op.type == "hierarchical_sigmoid":
                params_to_check = [op.input("W")[0], op.input("Bias")[0]]
                for name in ["epmap", "table_names", "epmap"]:
                    assert op.has_attr(name)
                    if name == "epmap":
1435
                        assert op.attr(name)[0] == '127.0.0.1:6174'
1436
                    elif name == "table_names":
1437
                        assert op.attr(name)[0] == 'hierarchical_sigmoid_0.w_0'
1438 1439 1440 1441 1442
                    else:
                        assert op.attr(name) == 3
            elif op.type == "lookup_table":
                params_to_check.append(op.input("W")[0])
            else:
J
JiabinYang 已提交
1443
                pass
1444 1445 1446 1447
        op_count = 0
        for op in trainer.blocks[0].ops:
            if op.type == "recv":
                assert len(op.output("Out")) == 1
1448
                assert op.output("Out")[0] == 'hierarchical_sigmoid_0.b_0'
1449 1450
                op_count += 1
        assert op_count == 1
J
JiabinYang 已提交
1451 1452


Y
Yancey 已提交
1453 1454
if __name__ == "__main__":
    unittest.main()