fleet_meta_optimizer_base.py 6.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import paddle
from paddle import fluid
import os
import paddle.distributed.fleet as fleet
import paddle.distributed.fleet.base.role_maker as role_maker


class TestFleetMetaOptimizer(unittest.TestCase):
    def setUp(self):
        os.environ["PADDLE_TRAINER_ID"] = "1"
        os.environ[
            "PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36001,127.0.0.1:36002"

    def net(self, main_prog, startup_prog):
        with fluid.program_guard(main_prog, startup_prog):
            with fluid.unique_name.guard():
                role = role_maker.PaddleCloudRoleMaker(is_collective=True)
                fleet.init(role)
                input_x = paddle.fluid.layers.data(
                    name="x", shape=[32], dtype='float32')
                input_y = paddle.fluid.layers.data(
                    name="y", shape=[1], dtype='int64')

                fc_1 = paddle.fluid.layers.fc(input=input_x,
                                              size=64,
                                              act='tanh')
                fc_2 = paddle.fluid.layers.fc(input=fc_1, size=256, act='tanh')
                prediction = paddle.fluid.layers.fc(input=[fc_2],
                                                    size=2,
                                                    act='softmax')
                cost = paddle.fluid.layers.cross_entropy(
                    input=prediction, label=input_y)
                avg_cost = paddle.fluid.layers.mean(x=cost)

                strategy = paddle.distributed.fleet.DistributedStrategy()
        return avg_cost, strategy

    def optimizer(self,
                  loss,
                  strategy,
                  train_prog,
                  startup_prog,
58 59 60
                  name='momentum',
                  regularization=None,
                  grad_clip=None):
61 62 63 64
        with fluid.program_guard(train_prog, startup_prog):
            with fluid.unique_name.guard():
                if name == 'momentum':
                    optimizer = paddle.fluid.optimizer.Momentum(
65 66 67 68
                        learning_rate=0.01,
                        momentum=0.9,
                        regularization=regularization,
                        grad_clip=grad_clip)
69
                elif name == 'adam':
70 71 72 73
                    optimizer = paddle.fluid.optimizer.Adam(
                        learning_rate=0.01,
                        regularization=regularization,
                        grad_clip=grad_clip)
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
                optimizer = fleet.distributed_optimizer(
                    optimizer, strategy=strategy)
                optimizer.minimize(loss)

    def set_strategy(self, strategy, name):
        if name == 'amp':
            strategy.amp = True
            strategy.amp_configs = {
                "init_loss_scaling": 32768,
                "decr_every_n_nan_or_inf": 2,
                "incr_every_n_steps": 1000,
                "incr_ratio": 2.0,
                "use_dynamic_loss_scaling": True,
                "decr_ratio": 0.5,
                "custom_white_list": ['softmax'],
                "custom_black_list": ['tanh'],
            }
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
        elif name == 'pure_fp16':
            strategy.amp = True
            strategy.amp_configs = {
                "init_loss_scaling": 32768,
                "decr_every_n_nan_or_inf": 2,
                "incr_every_n_steps": 1000,
                "incr_ratio": 2.0,
                "use_dynamic_loss_scaling": True,
                "decr_ratio": 0.5,
                "custom_white_list": ['softmax'],
                "custom_black_list": ['tanh'],
                "use_pure_fp16": True,
                "use_fp16_guard": False,
            }

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
        elif name == 'dgc':
            strategy.dgc = True
            strategy.dgc_configs = {
                "rampup_begin_step": 128,
                "rampup_step": 100,
                "sparsity": [0.996, 0.999]
            }
        elif name == 'recompute':
            strategy.recompute = True
            strategy.recompute_configs = {
                "checkpoints": ["fc_0.tmp_2", "fc_1.tmp_2"]
            }
        elif name == 'lars':
            strategy.lars = True
            strategy.lars_configs = {
                "lars_coeff": 0.001,
                "lars_weight_decay": 0.0005,
                "epsilon": 0,
                "exclude_from_weight_decay": ["batch_norm", ".b"],
            }
        elif name == 'lamb':
            strategy.lamb = True
            strategy.lamb_configs = {
                'lamb_weight_decay': 0.01,
                'exclude_from_weight_decay': [],
            }
        elif name == 'localsgd':
            strategy.localsgd = True
            strategy.localsgd_configs = {
                'k_steps': 1,
                'begin_step': 1,
            }
        elif name == 'adaptive_localsgd':
            strategy.adaptive_localsgd = True
            strategy.adaptive_localsgd_configs = {
                'init_k_steps': 1,
                'begin_step': 1,
            }
144 145 146
        elif name == "gradient_merge":
            strategy.gradient_merge = True
            strategy.gradient_merge_configs = {"k_steps": 2, "avg": True}
147 148
        elif name == "sharding":
            strategy.sharding = True
149 150 151 152 153
            strategy.sharding_configs = {
                "sharding_segment_strategy": "segment_broadcast_MB",
                "segment_broadcast_MB": 0.2,
                "sharding_degree": 2,
            }
J
JZ-LIANG 已提交
154 155 156 157 158 159 160
        elif name == "recompute-offload":
            strategy.recompute = True
            strategy.recompute_configs = {
                "checkpoints": ["fc_0.tmp_2", "fc_1.tmp_2"],
                "enable_offload": True,
                "checkpoint_shape": [256]
            }
161 162
        else:
            raise NotImplementedError()