test_unbind_op.py 8.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

17
import numpy as np
姜永久 已提交
18
from eager_op_test import OpTest, convert_float_to_uint16
19

20
import paddle
21
from paddle import fluid, tensor
22
from paddle.fluid import Program, program_guard
23 24 25 26


class TestUnbind(unittest.TestCase):
    def test_unbind(self):
27
        paddle.enable_static()
28

29
        x_1 = paddle.static.data(shape=[2, 3], dtype='float32', name='x_1')
30 31
        [out_0, out_1] = tensor.unbind(input=x_1, axis=0)
        input_1 = np.random.random([2, 3]).astype("float32")
32
        axis = paddle.static.data(shape=[], dtype='int32', name='axis')
33 34
        exe = fluid.Executor(place=fluid.CPUPlace())

35 36 37 38 39
        [res_1, res_2] = exe.run(
            fluid.default_main_program(),
            feed={"x_1": input_1, "axis": 0},
            fetch_list=[out_0, out_1],
        )
40 41 42 43

        assert np.array_equal(res_1, input_1[0, 0:100])
        assert np.array_equal(res_2, input_1[1, 0:100])

张春乔 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
    def test_unbind_static_fp16_gpu(self):
        if paddle.fluid.core.is_compiled_with_cuda():
            place = paddle.CUDAPlace(0)
            with paddle.static.program_guard(
                paddle.static.Program(), paddle.static.Program()
            ):
                input = np.random.random([2, 3]).astype("float16")

                x = paddle.static.data(name="x", shape=[2, 3], dtype="float16")
                y = paddle.unbind(x)

                exe = paddle.static.Executor(place)
                res = exe.run(
                    paddle.static.default_main_program(),
                    feed={
                        "x": input,
                    },
                    fetch_list=[y],
                )

                assert np.array_equal(res[0], input[0, :])
                assert np.array_equal(res[1], input[1, :])

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
    def test_unbind_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.random.random([2, 3]).astype("float32")
            x = paddle.to_tensor(np_x)
            x.stop_gradient = False
            [res_1, res_2] = paddle.unbind(x, 0)
            np.testing.assert_array_equal(res_1, np_x[0, 0:100])
            np.testing.assert_array_equal(res_2, np_x[1, 0:100])

            out = paddle.add_n([res_1, res_2])

            np_grad = np.ones(x.shape, np.float32)
            out.backward()
            np.testing.assert_array_equal(x.grad.numpy(), np_grad)


class TestLayersUnbind(unittest.TestCase):
    def test_layers_unbind(self):
85
        paddle.enable_static()
86

87
        x_1 = paddle.static.data(shape=[2, 3], dtype='float32', name='x_1')
88
        [out_0, out_1] = paddle.unbind(input=x_1, axis=0)
89
        input_1 = np.random.random([2, 3]).astype("float32")
90
        axis = paddle.static.data(shape=[], dtype='int32', name='axis')
91 92
        exe = fluid.Executor(place=fluid.CPUPlace())

93 94 95 96 97
        [res_1, res_2] = exe.run(
            fluid.default_main_program(),
            feed={"x_1": input_1, "axis": 0},
            fetch_list=[out_0, out_1],
        )
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124

        assert np.array_equal(res_1, input_1[0, 0:100])
        assert np.array_equal(res_2, input_1[1, 0:100])


class TestUnbindOp(OpTest):
    def initParameters(self):
        pass

    def outReshape(self):
        pass

    def setAxis(self):
        pass

    def setUp(self):
        self._set_op_type()
        self.dtype = self.get_dtype()
        self.axis = 0
        self.num = 3
        self.initParameters()
        x = np.arange(12).reshape(3, 2, 2).astype(self.dtype)
        self.out = np.split(x, self.num, self.axis)
        self.outReshape()
        self.inputs = {'X': x}
        self.attrs = {'axis': self.axis}
        self.setAxis()
125 126 127
        self.outputs = {
            'Out': [('out%d' % i, self.out[i]) for i in range(len(self.out))]
        }
姜永久 已提交
128 129
        self.python_api = paddle.unbind
        self.python_out_sig = ['out%d' % i for i in range(len(self.out))]
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201

    def get_dtype(self):
        return "float64"

    def _set_op_type(self):
        self.op_type = "unbind"

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], ['out0', 'out1', 'out2'])


class TestUnbindOp1(TestUnbindOp):
    def initParameters(self):
        self.axis = 1
        self.num = 2

    def test_check_grad(self):
        self.check_grad(['X'], ['out0', 'out1'])

    def outReshape(self):
        self.out[0] = self.out[0].reshape((3, 2))
        self.out[1] = self.out[1].reshape((3, 2))


class TestUnbindOp2(TestUnbindOp):
    def initParameters(self):
        self.axis = 2
        self.num = 2

    def test_check_grad(self):
        self.check_grad(['X'], ['out0', 'out1'])

    def outReshape(self):
        self.out[0] = self.out[0].reshape((3, 2))
        self.out[1] = self.out[1].reshape((3, 2))


class TestUnbindOp3(TestUnbindOp):
    def initParameters(self):
        self.axis = 2
        self.num = 2

    def setAxis(self):
        self.attrs = {'axis': -1}

    def test_check_grad(self):
        self.check_grad(['X'], ['out0', 'out1'])

    def outReshape(self):
        self.out[0] = self.out[0].reshape((3, 2))
        self.out[1] = self.out[1].reshape((3, 2))


class TestUnbindOp4(TestUnbindOp):
    def initParameters(self):
        self.axis = 1
        self.num = 2

    def setAxis(self):
        self.attrs = {'axis': -2}

    def test_check_grad(self):
        self.check_grad(['X'], ['out0', 'out1'])

    def outReshape(self):
        self.out[0] = self.out[0].reshape((3, 2))
        self.out[1] = self.out[1].reshape((3, 2))


202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
class TestUnbindFP16Op(OpTest):
    def setUp(self):
        paddle.disable_static()
        self.op_type = "unbind"
        self.python_api = paddle.unbind
        self.dtype = self.get_dtype()
        self.axis = 0
        self.num = 3
        x = np.arange(12).reshape(3, 2, 2).astype(self.dtype)
        self.out = np.split(x, self.num, self.axis)
        self.inputs = {'X': x}
        self.attrs = {'axis': self.axis}
        self.outputs = {
            'Out': [('out%d' % i, self.out[i]) for i in range(len(self.out))]
        }
        self.python_out_sig = ['out%d' % i for i in range(len(self.out))]

    def get_dtype(self):
        return np.float16

    def test_check_output(self):
        self.check_output()


226 227
class TestUnbindBF16Op(OpTest):
    def setUp(self):
L
Leo Chen 已提交
228
        paddle.disable_static()
229 230 231 232 233 234 235 236 237
        self._set_op_type()
        self.python_api = paddle.unbind
        self.dtype = self.get_dtype()
        self.axis = 0
        self.num = 3
        x = np.arange(12).reshape(3, 2, 2).astype(self.dtype)
        self.out = np.split(x, self.num, self.axis)
        self.inputs = {'X': convert_float_to_uint16(x)}
        self.attrs = {'axis': self.axis}
238 239 240 241 242 243
        self.outputs = {
            'Out': [
                ('out%d' % i, convert_float_to_uint16(self.out[i]))
                for i in range(len(self.out))
            ]
        }
姜永久 已提交
244
        self.python_out_sig = ['out%d' % i for i in range(len(self.out))]
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261

    def get_dtype(self):
        return np.uint16

    def _set_op_type(self):
        self.op_type = "unbind"

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        pass


class TestUnbindAxisError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
262
            x = paddle.static.data(shape=[2, 3], dtype='float32', name='x')
263 264 265 266 267 268

            def test_table_Variable():
                tensor.unbind(input=x, axis=2.0)

            self.assertRaises(TypeError, test_table_Variable)

269 270 271 272 273
            def test_invalid_axis():
                tensor.unbind(input=x, axis=2)

            self.assertRaises(ValueError, test_invalid_axis)

274

L
Leo Chen 已提交
275 276 277 278 279 280 281 282
class TestUnbindBool(unittest.TestCase):
    def test_bool(self):
        x = paddle.to_tensor([[True, True], [False, False]])
        xs = paddle.unbind(x, axis=0)
        self.assertEqual(len(xs), 2)
        np.testing.assert_array_equal(xs[0].numpy(), [True, True])


283 284 285 286 287 288 289 290 291 292 293 294 295
class TestUnbindGradOptionalInput(unittest.TestCase):
    def test_grad(self):
        a = paddle.zeros([3, 2, 3])
        a.stop_gradient = False
        x, y = a.unbind(-2)
        x.sum().backward()  # y_grad is empty

        a_grad = a.detach()
        a_grad[:, 0, :] = 1

        np.testing.assert_array_equal(a.grad.numpy(), a_grad.numpy())


296 297
if __name__ == '__main__':
    unittest.main()