creation.py 88.3 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
# TODO: define functions to get create a tensor

17
import math
18
import re
19 20 21 22 23
import warnings

import numpy as np

import paddle
C
Chen Weihang 已提交
24
from paddle import _C_ops
25

26 27
from ..fluid.data_feeder import (
    check_dtype,
28 29
    check_type,
    check_variable_and_dtype,
30
    convert_dtype,
31
    convert_float_to_uint16,
32 33
)
from ..fluid.framework import (
34
    Variable,
35
    _in_eager_without_dygraph_check,
36
    device_guard,
37
)
38
from ..fluid.param_attr import ParamAttr
39 40 41 42 43 44 45 46
from ..framework import (
    LayerHelper,
    _current_expected_place,
    _get_paddle_place,
    convert_np_dtype_to_dtype_,
    core,
    in_dygraph_mode,
)
47

48 49
__all__ = []

W
wangchaochaohu 已提交
50

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
def _complex_to_real_dtype(dtype):
    if dtype == core.VarDesc.VarType.COMPLEX64:
        return core.VarDesc.VarType.FP32
    elif dtype == core.VarDesc.VarType.COMPLEX128:
        return core.VarDesc.VarType.FP64
    else:
        return dtype


def _real_to_complex_dtype(dtype):
    if dtype == core.VarDesc.VarType.FP32:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == core.VarDesc.VarType.FP64:
        return core.VarDesc.VarType.COMPLEX128
    else:
        return dtype


69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
def create_global_var(
    shape, value, dtype, persistable=False, force_cpu=False, name=None
):
    """
    This function creates a new tensor variable with value in the global block(block 0).

    Args:
        shape (list[int]|tuple[int]): Shape of the variable
        value (float): The value of the variable. The new created
                      variable will be filled with it.
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
                           Default: False
        force_cpu (bool, optional): Force this variable to be on CPU.
                         Default: False
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.

    Returns:
        Variable: The created Variable

    Examples:
        .. code-block:: python

            import paddle
            paddle.enable_static()
            var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32',
                                           persistable=True, force_cpu=True, name='new_var')
    """
    check_type(shape, 'shape', (list, tuple, np.ndarray), 'create_global_var')
    for item in shape:
        check_type(
            item,
            'item of shape',
            (
                int,
                np.uint8,
                np.int8,
                np.int16,
                np.int32,
                np.int64,
            ),
            'create_global_var',
        )

    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int8',
            'int16',
            'int32',
            'int64',
            'uint8',
            'uint16',
        ],
        'create_global_var',
    )

    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True,
    )
    helper.set_variable_initializer(
141 142 143 144
        var,
        initializer=paddle.nn.initializer.ConstantInitializer(
            value=float(value), force_cpu=force_cpu
        ),
145 146 147 148 149
    )

    return var


150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
def create_parameter(
    shape, dtype, name=None, attr=None, is_bias=False, default_initializer=None
):
    """
    This function creates a parameter. The parameter is a learnable variable, which can have
    gradient, and can be optimized.

    Note:
        This is a very low-level API. This API is useful when you create operator by your self, instead of using layers.

    Args:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
        default_initializer (Initializer, optional): Initializer for the parameter

    Returns:
        The created parameter.

    Examples:
        .. code-block:: python

            import paddle
            paddle.enable_static()
180
            W = paddle.create_parameter(shape=[784, 200], dtype='float32')
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
    """
    check_type(shape, 'shape', (list, tuple, np.ndarray), 'create_parameter')
    for item in shape:
        check_type(
            item,
            'item of shape',
            (
                int,
                np.uint8,
                np.int8,
                np.int16,
                np.int32,
                np.int64,
            ),
            'create_parameter',
        )

    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
204
            'uint16',
205 206 207 208 209 210 211 212 213 214 215 216 217 218
            'float32',
            'float64',
            'int8',
            'int16',
            'int32',
            'int64',
            'uint8',
        ],
        'create_parameter',
    )
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(
        default_initializer,
        'default_initializer',
219
        (type(None), paddle.nn.initializer.Initializer),
220 221 222 223 224 225 226 227 228 229 230
        'create_parameter',
    )

    helper = LayerHelper("create_parameter", **locals())
    if attr is None:
        attr = ParamAttr(name=name)
    return helper.create_parameter(
        attr, shape, convert_dtype(dtype), is_bias, default_initializer
    )


231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
def create_tensor(dtype, name=None, persistable=False):
    """
    Create a variable, which will hold a Tensor with data type dtype.

    Args:
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
        persistable(bool): Set the persistable flag of the create tensor.
            default value is False.

    Returns:
        Variable: The tensor to be created according to dtype.

    Examples:
        .. code-block:: python

          import paddle
          tensor = paddle.tensor.create_tensor(dtype='float32')
    """
    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int8',
            'int32',
            'int32',
            'int64',
        ],
        'create_tensor',
    )
    helper = LayerHelper("create_tensor", **locals())
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable
    )


273 274
def linspace(start, stop, num, dtype=None, name=None):
    r"""
L
LoneRanger 已提交
275
    Return fixed number of evenly spaced values within a given interval. Note: no gradient calculation is performed.
276 277

    Args:
278 279
        start(int|float|Tensor): The input :attr:`start` is start of range. It is a int, float, \
            or a 0-D Tensor with data type int32, int64, float32 or float64.
L
LoneRanger 已提交
280
        stop(int|float|Tensor): The input :attr:`stop` is end of range. It is a int, float, \
281 282 283
            or a 0-D Tensor with data type int32, int64, float32 or float64.
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int, \
            or a 0-D Tensor with data type int32.
284 285
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
            int32, int64, float32 and float64. Default: if None, the data type is float32.
286
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
287 288 289 290

    Returns:
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
291
        the value with input :attr:`start`.
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311

    Examples:
        .. code-block:: python

             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]

    """
    if dtype is None:
        dtype = 'float32'
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if not isinstance(start, Variable):
        with device_guard("cpu"):
312
            tensor_start = fill_constant([1], dtype, start, force_cpu=True)
313 314
    if not isinstance(stop, Variable):
        with device_guard("cpu"):
315
            tensor_stop = fill_constant([1], dtype, stop, force_cpu=True)
316 317
    if not isinstance(num, Variable):
        with device_guard("cpu"):
318
            tensor_num = fill_constant([1], 'int32', num, force_cpu=True)
319
    if in_dygraph_mode():
320 321 322 323 324 325 326
        return _C_ops.linspace(
            tensor_start,
            tensor_stop,
            tensor_num,
            dtype,
            _current_expected_place(),
        )
327
    else:
328 329 330 331 332 333 334 335 336
        helper = LayerHelper("linspace", **locals())

        start_dtype = convert_dtype(tensor_start.dtype)
        stop_dtype = convert_dtype(tensor_stop.dtype)
        out_dtype = convert_dtype(dtype)
        if isinstance(start, Variable):
            check_dtype(
                start.dtype,
                'start',
337
                ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
338 339 340 341
                'linspace',
            )
        else:
            check_type(start, 'start', (int, float), 'linspace')
342

343 344 345 346
        if isinstance(stop, Variable):
            check_dtype(
                stop.dtype,
                'stop',
347
                ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
348 349 350 351 352 353
                'linspace',
            )
        else:
            check_type(stop, 'stop', (int, float), 'linspace')
        if isinstance(num, Variable):
            check_dtype(num.dtype, 'num', ['int32'], 'linspace')
354
        check_dtype(
355 356
            dtype,
            'dtype',
357
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
358
            'linspace',
359
        )
360 361 362 363 364 365 366 367 368 369 370 371
        if (
            (stop_dtype == "float64" or start_dtype == "float64")
            and out_dtype in ["float32", "int32"]
        ) or (
            (stop_dtype == "int64" or start_dtype == "int64")
            and out_dtype == "int32"
        ):
            raise ValueError(
                "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
                "which may cause data type overflows. Please reset attr(dtype) of linspace.".format(
                    start_dtype, stop_dtype, dtype
                )
372
            )
373

374
        out = helper.create_variable_for_type_inference(dtype=dtype)
375

376 377 378 379 380 381 382 383 384 385 386 387 388
        helper.append_op(
            type='linspace',
            inputs={
                'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num,
            },
            attrs={'dtype': dtype},
            outputs={'Out': [out]},
        )
        if isinstance(num, int):
            out.desc.set_shape((num,))
        return out
389 390


391 392 393 394
def logspace(start, stop, num, base=10.0, dtype=None, name=None):
    r"""
    Return fixed number of logarithmical-evenly spaced values within the interval \
    :math:`[base^{start}, base^{stop}]`.
395

396 397
    Notes:
        This API does not compute the gradient.
398

399 400 401 402 403 404 405 406 407 408 409 410 411 412
    Args:
        start(int|float|Tensor): The input :attr:`start` is exponent of first entry in \
            the sequence. It is a scalar, or a Tensor of shape [1] with input data \
            type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is exponent of last entry in the \
            sequence. It is a scalar, or a Tensor of shape [1] with input data \
            type int32, int64, float32 or float64.
        num(int|Tensor): The input :attr:`num` is given number of items in the sequence. \
            It is an int scalar, or a Tensor of shape [1] with data type int32.
        base(int|float|Tensor): The input :attr:`base` is base of the logarithm function. \
            It is a scalar, or a Tensor of shape [1] with input data type int32, int64, \
            float32 or float64.
        dtype(np.dtype|str, optional): The data type of output tensor, it could be \
            int32, int64, float32 or float64. Default: if None, the data type is float32. \
413
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
414 415 416 417 418

    Returns:
        Tensor: The output data type will be float32, float64. The 1-D tensor with \
        fixed number of logarithmical-evenly spaced values, the data shape of this \
        tensor is :math:`[num]`. If the :attr:`num` is set 1, the output tensor \
419
        just has the value with exponential of :attr:`start` with base :attr:`base`.
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451

    Examples:
        .. code-block:: python

            import paddle
            data = paddle.logspace(0, 10, 5, 2, 'float32')
            # [1.          , 5.65685415  , 32.         , 181.01933289, 1024.       ]
            data = paddle.logspace(0, 10, 1, 2, 'float32')
            # [1.]
    """
    if dtype is None:
        dtype = 'float32'
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    tensor_base = base
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'logspace')
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if not isinstance(start, Variable):
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
    if not isinstance(base, Variable):
        with device_guard("cpu"):
            tensor_base = fill_constant([1], dtype, base)
452
    if in_dygraph_mode():
C
Chen Weihang 已提交
453 454 455 456 457 458 459
        return _C_ops.logspace(
            tensor_start,
            tensor_stop,
            tensor_num,
            tensor_base,
            dtype,
            _current_expected_place(),
460
        )
461 462
    else:
        helper = LayerHelper("logspace", **locals())
463

464 465 466 467 468 469 470 471 472 473 474 475 476
        start_dtype = convert_dtype(tensor_start.dtype)
        stop_dtype = convert_dtype(tensor_stop.dtype)
        base_dtype = convert_dtype(tensor_base.dtype)
        out_dtype = convert_dtype(dtype)
        if isinstance(start, Variable):
            check_dtype(
                start.dtype,
                'start',
                ['float32', 'float64', 'int32', 'int64'],
                'logspace',
            )
        else:
            check_type(start, 'start', (int, float), 'logspace')
477

478 479 480 481 482 483 484 485 486
        if isinstance(stop, Variable):
            check_dtype(
                stop.dtype,
                'stop',
                ['float32', 'float64', 'int32', 'int64'],
                'logspace',
            )
        else:
            check_type(stop, 'stop', (int, float), 'logspace')
487

488 489
        if isinstance(num, Variable):
            check_dtype(num.dtype, 'num', ['int32'], 'logspace')
490

491 492 493 494 495 496 497 498 499
        if isinstance(base, Variable):
            check_dtype(
                base.dtype,
                'base',
                ['float32', 'float64', 'int32', 'int64'],
                'logspace',
            )
        else:
            check_type(base, 'base', (int, float), 'logspace')
500

501
        check_dtype(
502
            dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'], 'logspace'
503
        )
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
        if (
            (
                stop_dtype == "float64"
                or start_dtype == "float64"
                or base_dtype == "float64"
            )
            and out_dtype in ["float32", "int32"]
        ) or (
            (
                stop_dtype == "int64"
                or start_dtype == "int64"
                or base_dtype == "int64"
            )
            and out_dtype == "int32"
        ):
            raise ValueError(
                "The dtype of start/stop/base is {}/{}/{} but the attr(dtype) of logspace is {}, "
                "which may cause data type overflows. Please reset attr(dtype) of logspace.".format(
                    start_dtype, stop_dtype, base_dtype, dtype
                )
524
            )
525

526
        out = helper.create_variable_for_type_inference(dtype=dtype)
527

528 529 530 531 532 533 534 535 536 537 538 539 540 541
        helper.append_op(
            type='logspace',
            inputs={
                'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num,
                'Base': tensor_base,
            },
            attrs={'dtype': dtype},
            outputs={'Out': [out]},
        )
        if isinstance(num, int):
            out.desc.set_shape((num,))
        return out
542 543


544
def _to_tensor_non_static(data, dtype=None, place=None, stop_gradient=True):
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
    def _handle_tensor_dtype(tensor, dtype):
        if dtype:
            if convert_dtype(dtype) != convert_dtype(tensor.dtype):
                return tensor.astype(convert_dtype(dtype))
        return tensor

    def _handle_np_dtype(ndarray, dtype):
        if dtype:
            if convert_dtype(dtype) != convert_dtype(ndarray.dtype):
                # should not ndarray.astype('uint16') directly, data bits is wrong
                if convert_dtype(dtype) in ['uint16']:
                    return convert_float_to_uint16(ndarray.astype('float32'))
                else:
                    return ndarray.astype(convert_dtype(dtype))

        return ndarray
561

562 563 564
    if isinstance(data, np.number):  # Special case for numpy scalars
        data = np.array(data)

565
    if not isinstance(data, np.ndarray):
566

567
        if np.isscalar(data) and not isinstance(data, str):
568
            data = np.array(data)
569 570
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
571
            if data.dtype == np.object_:
572 573 574 575
                raise ValueError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t - Usually "
                    "this means the input data contains nested lists with different lengths. "
                )
W
wanghuancoder 已提交
576 577
        elif isinstance(data, paddle.Tensor) and not in_dygraph_mode():
            data = data._copy_to(place, False)
578
            data = _handle_tensor_dtype(data, dtype)
W
wanghuancoder 已提交
579 580 581
            data.stop_gradient = stop_gradient
            return data
        elif isinstance(data, core.eager.Tensor) and in_dygraph_mode():
582
            data = data._copy_to(place, False)
583
            data = _handle_tensor_dtype(data, dtype)
584
            data.stop_gradient = stop_gradient
585
            return data
586
        elif isinstance(data, (core.LoDTensor, core.Tensor)):
587
            # should't expose it to users, just for internal use.
W
wanghuancoder 已提交
588
            # convert core.Tensor/core.LoDTensor to Tensor first
589
            # Currenly, there is no copy when places are same
W
wanghuancoder 已提交
590 591 592 593
            if in_dygraph_mode():
                data = core.eager.Tensor(data)
            else:
                data = paddle.Tensor(data)
594 595
            if not data.place._equals(place):
                data = data._copy_to(place, False)
596
            data = _handle_tensor_dtype(data, dtype)
597
            data.stop_gradient = stop_gradient
598
            return data
599 600
        else:
            raise TypeError(
601 602 603 604
                "Can't constructs a 'paddle.Tensor' with data type {}, data type must be scalar|list|tuple|np.ndarray|paddle.Tensor".format(
                    type(data)
                )
            )
605 606
        if not dtype:
            if data.dtype in [
607 608 609 610 611
                'float16',
                'float32',
                'float64',
                'complex64',
                'complex128',
612 613 614
            ]:
                default_type = paddle.get_default_dtype()
                if np.iscomplexobj(data):
615 616 617 618 619
                    default_type = (
                        'complex64'
                        if default_type in ['float16', 'float32']
                        else 'complex128'
                    )
620
                data = _handle_np_dtype(data, default_type)
621 622
            # Windows default type is 'int32', while Linux/Mac is 'int64'. Unify they.
            if data.dtype in ['int32']:
623
                data = data.astype("int64")
624

625 626
    if dtype:
        data = _handle_np_dtype(data, dtype)
627

J
Jiabin Yang 已提交
628
    if _in_eager_without_dygraph_check() and isinstance(data, np.ndarray):
629 630 631 632 633 634 635 636
        return core.eager.Tensor(
            value=data,
            place=place,
            persistable=False,
            zero_copy=False,
            name=None,
            stop_gradient=stop_gradient,
        )
637
    else:
638 639 640 641 642 643 644
        return paddle.Tensor(
            value=data,
            place=place,
            persistable=False,
            zero_copy=False,
            stop_gradient=stop_gradient,
        )
645 646


647 648 649 650 651
def _to_tensor_static(data, dtype=None, stop_gradient=None):

    if isinstance(data, Variable) and (dtype is None or dtype == data.dtype):
        output = data
    else:
652 653
        if isinstance(data, np.number):  # Special case for numpy scalars
            data = np.array(data)
654 655 656

        if not isinstance(data, np.ndarray):
            if np.isscalar(data) and not isinstance(data, str):
657
                data = np.array(data)
658 659 660
            elif isinstance(data, (list, tuple)):
                data = np.array(data)

661 662 663 664 665
            if (
                isinstance(data, np.ndarray)
                and not dtype
                and data.dtype != 'object'
            ):
666 667 668 669 670
                if data.dtype in ['float16', 'float32', 'float64']:
                    data = data.astype(paddle.get_default_dtype())
                elif data.dtype in ['int32']:
                    data = data.astype('int64')

671 672
        if dtype:
            target_dtype = dtype
673
        elif hasattr(data, 'dtype') and data.dtype != 'object':
674 675 676 677 678 679
            target_dtype = data.dtype
        else:
            target_dtype = paddle.get_default_dtype()

        target_dtype = convert_dtype(target_dtype)

680 681 682 683 684
        if (
            isinstance(data, np.ndarray)
            and len(data.shape) > 0
            and any(isinstance(x, Variable) for x in data)
        ):
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
            to_stack_list = [None] * data.shape[0]
            for idx, d in enumerate(data):
                to_stack_list[idx] = _to_tensor_static(d, dtype, stop_gradient)
            data = paddle.stack(to_stack_list)
            data = paddle.squeeze(data, -1)

        if not isinstance(data, Variable):
            output = assign(data)
        else:
            output = data
        if convert_dtype(output.dtype) != target_dtype:
            output = paddle.cast(output, target_dtype)

    output.stop_gradient = stop_gradient

    return output


703 704
def to_tensor(data, dtype=None, place=None, stop_gradient=True):
    r"""
705
    Constructs a ``paddle.Tensor`` from ``data`` ,
706 707 708 709 710
    which can be scalar, tuple, list, numpy\.ndarray, paddle\.Tensor.

    If the ``data`` is already a Tensor, copy will be performed and return a new tensor.
    If you only want to change stop_gradient property, please call ``Tensor.stop_gradient = stop_gradient`` directly.

711 712 713 714 715 716 717 718
    .. code-block:: text

        We use the dtype conversion rules following this:
                Keep dtype
        np.number ───────────► paddle.Tensor
                                (0D-Tensor)
                    default_dtype
        Python Number ───────────────► paddle.Tensor
719
                                        (0D-Tensor)
720 721 722
                    Keep dtype
        np.ndarray ───────────► paddle.Tensor

723 724 725
    Args:
        data(scalar|tuple|list|ndarray|Tensor): Initial data for the tensor.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor.
726
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' ,
727
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8',
728
            'complex64' , 'complex128'. Default: None, infers dtype from ``data``
729
            except for python float number which gets dtype from ``get_default_type`` .
730 731 732
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional): The place to allocate Tensor. Can be
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If ``place`` is
            string, It can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where ``x`` is the index of the GPUs.
733 734 735 736 737 738 739 740 741 742
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
        Tensor: A Tensor constructed from ``data`` .

    Examples:

    .. code-block:: python

        import paddle
743

744 745 746 747
        type(paddle.to_tensor(1))
        # <class 'paddle.Tensor'>

        paddle.to_tensor(1)
748 749
        # Tensor(shape=[], dtype=int64, place=CPUPlace, stop_gradient=True,
        #        1)
750 751 752

        x = paddle.to_tensor(1, stop_gradient=False)
        print(x)
753 754
        # Tensor(shape=[], dtype=int64, place=CPUPlace, stop_gradient=False,
        #        1)
755 756

        paddle.to_tensor(x)  # A new tensor will be created with default stop_gradient=True
757 758
        # Tensor(shape=[], dtype=int64, place=CPUPlace, stop_gradient=True,
        #        1)
759 760 761 762 763 764 765 766 767 768 769 770 771 772

        paddle.to_tensor([[0.1, 0.2], [0.3, 0.4]], place=paddle.CPUPlace(), stop_gradient=False)
        # Tensor(shape=[2, 2], dtype=float32, place=CPUPlace, stop_gradient=False,
        #        [[0.10000000, 0.20000000],
        #         [0.30000001, 0.40000001]])

        type(paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64'))
        # <class 'paddle.Tensor'>

        paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64')
        # Tensor(shape=[2, 2], dtype=complex64, place=CPUPlace, stop_gradient=True,
        #        [[(1+1j), (2+0j)],
        #         [(3+2j), (4+0j)]])
    """
773 774 775 776
    place = _get_paddle_place(place)
    if place is None:
        place = _current_expected_place()

777
    if paddle.fluid.framework._non_static_mode():
778 779 780 781
        return _to_tensor_non_static(data, dtype, place, stop_gradient)

    # call assign for static graph
    else:
782
        re_exp = re.compile(r'[(](.+?)[)]', re.S)
783 784 785
        place_str = re.findall(re_exp, str(place))[0]

        with paddle.static.device_guard(place_str):
786
            return _to_tensor_static(data, dtype, stop_gradient)
787 788


789
def full_like(x, fill_value, dtype=None, name=None):
P
Pei Yang 已提交
790
    """
S
swtkiwi 已提交
791

792 793
    This function creates a tensor filled with ``fill_value`` which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
794

P
Pei Yang 已提交
795
    Args:
796 797
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        fill_value(bool|float|int): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
W
wangchaochaohu 已提交
798
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
799
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output
800
            data type is the same as input.
801
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
802

P
Pei Yang 已提交
803
    Returns:
804
        Tensor: Tensor which is created according to ``x``, ``fill_value`` and ``dtype``.
805

P
Pei Yang 已提交
806 807
    Examples:
        .. code-block:: python
808

P
Pei Yang 已提交
809
          import paddle
810

811
          input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input')
P
Pei Yang 已提交
812
          output = paddle.full_like(input, 2.0)
813 814
          # [[2. 2. 2.]
          #  [2. 2. 2.]]
P
Pei Yang 已提交
815 816
    """
    if dtype is None:
817
        dtype = x.dtype
818
    else:
819 820
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
821
    if in_dygraph_mode():
822
        return _C_ops.full_like(x, fill_value, dtype, x.place)
823 824 825 826 827 828 829 830 831 832 833 834 835
    else:
        helper = LayerHelper("full_like", **locals())
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
836
                'uint16',
837 838
            ],
            'full_like',
839
        )
840 841 842 843 844 845 846 847 848 849 850
        check_dtype(
            dtype,
            'dtype',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
851
                'uint16',
852 853 854 855
            ],
            'full_like/zeros_like/ones_like',
        )
        out = helper.create_variable_for_type_inference(dtype=dtype)
P
Pei Yang 已提交
856

857 858 859 860 861 862 863 864
        helper.append_op(
            type='fill_any_like',
            inputs={'X': [x]},
            attrs={'value': fill_value, "dtype": dtype},
            outputs={'Out': [out]},
        )
        out.stop_gradient = True
        return out
P
Pei Yang 已提交
865 866


867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
    if in_dygraph_mode():
        place = _current_expected_place()
        if force_cpu:
            place = core.CPUPlace()
        if isinstance(shape, (list, tuple)):
            shape = paddle.utils.convert_shape_to_list(shape)

        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

        if out is None:
            out = _C_ops.full(shape, float(value), dtype, place)
            out.stop_gradient = True
            return out

        if out is not None:
            # final state mode is support out is not None.
            _C_ops.full_(out, shape, float(value), dtype, place)
            out.stop_gradient = True
            return out
    else:
        attrs = {'force_cpu': force_cpu}
        dtype = convert_dtype(dtype)
        if not isinstance(value, Variable):
892
            if dtype in ['int8', 'uint8', 'int16', 'int32', 'int64']:
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
                attrs['str_value'] = str(int(value))
                attrs['value'] = int(value)
            else:
                attrs['str_value'] = str(float(value))
                attrs['value'] = float(value)

        helper = LayerHelper("fill_constant", **locals())
        inputs = {}
        if isinstance(value, Variable):
            if convert_dtype(value.dtype) != dtype:
                value = paddle.cast(value, dtype)
            inputs['ValueTensor'] = value

        paddle.utils.check_shape(shape)
        check_dtype(
            dtype,
            'dtype',
            [
                'bool',
                'float16',
                'float32',
                'float64',
915
                'int8',
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
                'uint8',
                'int16',
                'int32',
                'int64',
                'complex64',
                'complex128',
                'uint16',
            ],
            'fill_constant',
        )
        check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')

        if out is not None:
            check_variable_and_dtype(
                out, 'out', [convert_dtype(dtype)], 'fill_constant'
            )

        helper = LayerHelper("fill_constant", **locals())
        paddle.utils.get_shape_tensor_inputs(
            inputs=inputs, attrs=attrs, shape=shape, op_type='fill_constant'
        )

        if out is None:
            out = helper.create_variable_for_type_inference(dtype=dtype)
        attrs['dtype'] = out.dtype
        helper.append_op(
            type='fill_constant',
            inputs=inputs,
            outputs={'Out': [out]},
            attrs=attrs,
            stop_gradient=True,
        )
        out.stop_gradient = True
        return out


952
def ones(shape, dtype=None, name=None):
953
    """
B
BrilliantYuKaimin 已提交
954
    Create a Tensor of specified :attr:`shape` and :attr:`dtype` and fill it with 1.
955 956

    Args:
957 958 959
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, the elements of it should be integers or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
B
BrilliantYuKaimin 已提交
960 961 962
        dtype (np.dtype|str, optional): Data type of output Tensor, it should be one of
            bool, float16, float32, float64, int32 and int64. If it is set to None, the data type will be float32.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
963

964
    Returns:
B
BrilliantYuKaimin 已提交
965
        Tensor: A Tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements are 1.
966 967 968 969

    Examples:
        .. code-block:: python

970
            import paddle
971

972
            # shape is a list/tuple
973
            data1 = paddle.ones(shape=[3, 2])
974 975 976 977 978
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor
979 980 981 982 983 984 985 986 987 988 989 990
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.ones(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.ones(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]
991
    """
992
    if dtype is None:
W
Weilong Wu 已提交
993
        dtype = core.VarDesc.VarType.FP32
994
    return fill_constant(value=1.0, shape=shape, dtype=dtype, name=name)
995 996


997
def ones_like(x, dtype=None, name=None):
998
    """
C
Chen Long 已提交
999
    Returns a Tensor filled with the value 1, with the same shape and
1000
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
1001 1002

    Args:
1003 1004
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
1005
        dtype(str|np.dtype, optional): The data type of the
1006 1007 1008
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
1009
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1010

1011
    Returns:
1012 1013 1014
        Tensor: A Tensor filled with the value 1, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.

1015 1016 1017
    Examples:
        .. code-block:: python

1018
            import paddle
1019

1020
            x = paddle.to_tensor([1,2,3])
Z
zhupengyang 已提交
1021 1022
            out1 = paddle.ones_like(x) # [1., 1., 1.]
            out2 = paddle.ones_like(x, dtype='int32') # [1, 1, 1]
1023

1024 1025
    """
    return full_like(x=x, fill_value=1, dtype=dtype, name=name)
1026 1027


1028
def zeros(shape, dtype=None, name=None):
1029
    """
C
Chen Long 已提交
1030
    Creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
1031 1032

    Args:
1033 1034 1035
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
W
wangchaochaohu 已提交
1036
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
1037 1038 1039
            bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1040 1041

    Returns:
1042
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1043 1044 1045 1046

    Examples:
        .. code-block:: python

1047
            import paddle
1048

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
            # shape is a list/tuple
            data1 = paddle.zeros(shape=[3, 2])
            # [[0. 0.]
            #  [0. 0.]
            #  [0. 0.]]

            # shape is a Tensor
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.zeros(shape=shape)
            # [[0. 0.]
            #  [0. 0.]
            #  [0. 0.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.zeros(shape=shape)
            # [[0. 0.]
            #  [0. 0.]
            #  [0. 0.]]
1068
    """
1069 1070 1071
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name)
1072 1073


1074
def zeros_like(x, dtype=None, name=None):
1075
    """
1076
    Returns a Tensor filled with the value 0, with the same shape and
1077
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
1078 1079

    Args:
1080 1081
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
1082
        dtype(str|np.dtype, optional): The data type of the
1083 1084 1085
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
1086
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1087 1088

    Returns:
1089 1090
        Tensor: A Tensor filled with the value 0, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
1091

1092

1093 1094 1095
    Examples:
        .. code-block:: python

1096
            import paddle
1097

Z
zhupengyang 已提交
1098
            x = paddle.to_tensor([1, 2, 3])
1099 1100
            out1 = paddle.zeros_like(x) # [0., 0., 0.]
            out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0]
1101

1102 1103
    """
    return full_like(x=x, fill_value=0, dtype=dtype, name=name)
1104 1105


1106
def eye(num_rows, num_columns=None, dtype=None, name=None):
1107
    """
1108

1109
    This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere.
1110

1111
    Args:
1112 1113
        num_rows(int): the number of rows in each batch Tensor.
        num_columns(int, optional): the number of columns in each batch Tensor.
1114
            If None, default: num_rows.
W
wangchaochaohu 已提交
1115
        dtype(np.dtype|str, optional): The data type of the returned Tensor.
1116 1117
            It should be int32, int64, float16, float32, float64. Default: if None, the data type
            is float32.
1118
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1119

1120
    Returns:
1121
        Tensor: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
1122

1123 1124
    Examples:
        .. code-block:: python
1125

1126
          import paddle
1127

1128
          data = paddle.eye(3, dtype='int32')
1129 1130 1131
          # [[1 0 0]
          #  [0 1 0]
          #  [0 0 1]]
1132
          data = paddle.eye(2, 3, dtype='int32')
1133 1134
          # [[1 0 0]
          #  [0 1 0]]
1135 1136
    """

1137
    def _check_attr(attr, message):
1138
        if isinstance(attr, ((Variable, core.eager.Tensor))):
1139 1140
            assert len(attr.shape) == 1 and attr.shape[0] in [1, -1]
        elif not isinstance(attr, int) or attr < 0:
1141
            raise TypeError(f"{message} should be a non-negative int.")
1142 1143 1144

    _check_attr(num_rows, "num_rows")

1145
    if dtype is None:
1146 1147
        dtype = core.VarDesc.VarType.FP32
    elif not isinstance(dtype, core.VarDesc.VarType):
1148 1149
        dtype = convert_np_dtype_to_dtype_(dtype)
    if num_columns is not None:
1150
        _check_attr(num_columns, "num_columns")
1151 1152 1153
    else:
        num_columns = num_rows

1154 1155 1156 1157
    if in_dygraph_mode():
        out = _C_ops.eye(
            num_rows, num_columns, dtype, _current_expected_place()
        )
1158 1159
    else:
        helper = LayerHelper("eye", **locals())
1160 1161 1162 1163 1164 1165
        check_dtype(
            dtype,
            'dtype',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'eye',
        )
1166
        out = helper.create_variable_for_type_inference(dtype=dtype)
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype,
            },
            stop_gradient=True,
        )
1178 1179 1180

    out.stop_gradient = True
    return out
1181 1182


1183
def full(shape, fill_value, dtype=None, name=None):
W
wangchaochaohu 已提交
1184
    """
S
swtkiwi 已提交
1185

1186
    Return a Tensor with the ``fill_value`` which size is same as ``shape``.
1187

W
wangchaochaohu 已提交
1188
    Args:
1189 1190 1191 1192 1193
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
        fill_value(bool|float|int|Tensor): The constant value used to initialize the Tensor to be created.
            If ``fill_value`` is an Tensor, it shoule be an 0-D Tensor which represents a scalar.
W
wangchaochaohu 已提交
1194
        dtype(np.dtype|str, optional): Data type of the output Tensor
W
wangchaochaohu 已提交
1195
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
1196 1197
            type of created Tensor is `float32`.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1198

1199
    Returns:
1200
        Tensor: Tensor which is created according to ``shape``, ``fill_value`` and ``dtype``.
1201

W
wangchaochaohu 已提交
1202 1203 1204
    Examples:
        .. code-block:: python

1205
            import paddle
W
wangchaochaohu 已提交
1206

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
            # shape is a list/tuple
            data1 = paddle.full(shape=[3, 2], fill_value=1.)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.full(shape=shape, fill_value=2.)
            # [[2. 2.]
            #  [2. 2.]
            #  [2. 2.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.full(shape=shape, fill_value=3.)
            # [[3. 3.]
            #  [3. 3.]
            #  [3. 3.]]

            # fill_value is a Tensor.
            val = paddle.full([], 2.0, "float32")
            data5 = paddle.full(shape=[3, 2], fill_value=val)
            # [[2. 2.]
            #  [2. 2.]
            #  [2. 2.]]
W
wangchaochaohu 已提交
1233 1234 1235 1236 1237
    """

    if dtype is None:
        dtype = 'float32'

1238
    return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name)
1239 1240


1241
def arange(start=0, end=None, step=1, dtype=None, name=None):
1242
    """
1243
    Returns a 1-D Tensor with spaced values within a given interval.
1244

1245 1246
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1247

1248 1249
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
1250 1251

    Parameters:
1252 1253
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``end`` is None, the half-open interval is [0, ``start``).
1254 1255
            If ``start`` is a Tensor, it is a 0-D Tensor which represents a scalar
            and data type is int32, int64, float32, float64. Default is 0.
1256
        end(float|int|Tensor, optional): End of interval. The interval does not
1257 1258 1259 1260
            include this value. If ``end`` is a Tensor, it is a 0-D Tensor which
            represents a scalar and data type is int32, int64, float32, float64.
            If ``end`` is None, the half-open interval is [0, ``start``).
            Default is None.
1261 1262
        step(float|int|Tensor, optional): Spacing between values. For any out,
            it is the istance between two adjacent values, out[i+1] - out[i].
1263 1264
            If ``step`` is a Tensor, it is a 0-D Tensor which represents a scalar
            and data type is int32, int64, float32, float64. . Default is 1.
1265
        dtype(str|np.dtype, optional): The data type of the
1266 1267
            output tensor. Supported data types: int32, int64, float32, float64.
            If ``dytpe`` is None, the data type is float32. Default is None.
1268
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1269

1270
    Returns:
1271
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
Z
zhupengyang 已提交
1272 1273
        taken with common difference ``step`` beginning from ``start``. Its
        data type is set by ``dtype``.
1274

Z
zhupengyang 已提交
1275
    Examples:
1276 1277
        .. code-block:: python

Z
zhupengyang 已提交
1278
            import paddle
1279

Z
zhupengyang 已提交
1280 1281
            out1 = paddle.arange(5)
            # [0, 1, 2, 3, 4]
1282

Z
zhupengyang 已提交
1283 1284
            out2 = paddle.arange(3, 9, 2.0)
            # [3, 5, 7]
1285

Z
zhupengyang 已提交
1286 1287 1288
            # use 4.999 instead of 5.0 to avoid floating point rounding errors
            out3 = paddle.arange(4.999, dtype='float32')
            # [0., 1., 2., 3., 4.]
1289

1290
            start_var = paddle.to_tensor(3)
Z
zhupengyang 已提交
1291 1292
            out4 = paddle.arange(start_var, 7)
            # [3, 4, 5, 6]
1293

1294 1295 1296 1297 1298 1299
    """
    if dtype is None:
        dtype = 'int64'
    if end is None:
        end = start
        start = 0
1300

1301 1302 1303 1304 1305 1306 1307 1308
    out_shape = None
    if not in_dygraph_mode() and (
        not isinstance(start, Variable)
        and not isinstance(end, Variable)
        and not isinstance(step, Variable)
    ):
        out_shape = [int(math.ceil((end - start) / step))]

1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if not isinstance(start, Variable):
        with device_guard("cpu"):
            start = fill_constant([1], dtype, start, force_cpu=True)
    elif start.dtype != dtype:
        start = paddle.cast(start, dtype)

    if not isinstance(end, Variable):
        with device_guard("cpu"):
            end = fill_constant([1], dtype, end, force_cpu=True)
    elif end.dtype != dtype:
        end = paddle.cast(end, dtype)

    if not isinstance(step, Variable):
        with device_guard("cpu"):
            step = fill_constant([1], dtype, step, force_cpu=True)
    elif step.dtype != dtype:
        step = paddle.cast(step, dtype)

    if in_dygraph_mode():
1331
        return _C_ops.arange(start, end, step, dtype, _current_expected_place())
1332 1333 1334 1335
    else:
        check_dtype(
            dtype,
            'dtype',
1336
            ['float32', 'float64', 'int32', 'int64', 'float16', 'uint16'],
1337 1338 1339 1340 1341 1342 1343 1344 1345
            'range/arange',
        )
        helper = LayerHelper('range', **locals())
        out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
        helper.append_op(
            type='range',
            inputs={'Start': start, 'End': end, 'Step': step},
            outputs={'Out': out},
        )
1346
        out.stop_gradient = True
1347 1348
        if out_shape is not None:
            out.desc.set_shape(out_shape)
1349 1350
        return out

W
WuHaobo 已提交
1351 1352

def _tril_triu_op(helper):
1353
    """Base op of tril_op and triu_op"""
W
WuHaobo 已提交
1354
    op_type = helper.layer_type
Y
yaoxuefeng 已提交
1355
    x = helper.kwargs.get('x', None)
W
WuHaobo 已提交
1356

1357
    assert x is not None, f'x cannot be None in {op_type}'
1358
    check_variable_and_dtype(
1359 1360
        x,
        'x',
1361
        ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64', 'bool'],
1362 1363
        op_type,
    )
W
WuHaobo 已提交
1364
    if len(x.shape) < 2:
1365
        raise ValueError(f"x shape in {op_type} must be at least 2-D")
W
WuHaobo 已提交
1366
    diagonal = helper.kwargs.get('diagonal', 0)
1367
    if not isinstance(diagonal, (int,)):
1368
        raise TypeError(f"diagonal in {op_type} must be a python Int")
W
WuHaobo 已提交
1369 1370 1371 1372 1373
    name = helper.kwargs.get('name', None)

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
1374 1375 1376
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False
        )
W
WuHaobo 已提交
1377 1378 1379 1380 1381 1382 1383 1384

    helper.append_op(
        type="tril_triu",
        inputs={"X": x},
        attrs={
            "diagonal": diagonal,
            "lower": True if op_type == 'tril' else False,
        },
1385 1386
        outputs={"Out": out},
    )
W
WuHaobo 已提交
1387 1388 1389 1390

    return out


Y
yaoxuefeng 已提交
1391
def tril(x, diagonal=0, name=None):
1392
    r"""
1393
    Returns the lower triangular part of a matrix (2-D tensor) or batch
1394 1395
    of matrices :attr:`x`, the other elements of the result tensor are set
    to 0. The lower triangular part of the matrix is defined as the elements
W
WuHaobo 已提交
1396 1397 1398
    on and below the diagonal.

    Args:
Y
yaoxuefeng 已提交
1399
        x (Tensor): The input x which is a Tensor.
L
liuyuhui 已提交
1400
            Support data types: ``bool``, ``float64``, ``float32``, ``int32``, ``int64``.
W
WuHaobo 已提交
1401 1402 1403 1404 1405 1406 1407
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and below the main diagonal are
            retained. A positive value includes just as many diagonals above the main
            diagonal, and similarly a negative value excludes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
1408
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
WuHaobo 已提交
1409 1410

    Returns:
Y
yaoxuefeng 已提交
1411
        Tensor: Results of lower triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
1412
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
1413 1414 1415 1416

    Examples:
        .. code-block:: python

Y
yaoxuefeng 已提交
1417
            import paddle
W
WuHaobo 已提交
1418

1419 1420 1421 1422 1423
            data = paddle.arange(1, 13, dtype="int64").reshape([3,-1])
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
Y
yaoxuefeng 已提交
1424

1425 1426 1427 1428 1429
            tril1 = paddle.tril(data)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 0 , 0 , 0 ],
            #         [5 , 6 , 0 , 0 ],
            #         [9 , 10, 11, 0 ]])
W
WuHaobo 已提交
1430 1431

            # example 2, positive diagonal value
1432 1433 1434 1435 1436
            tril2 = paddle.tril(data, diagonal=2)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 0 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
W
WuHaobo 已提交
1437 1438

            # example 3, negative diagonal value
1439 1440 1441 1442 1443
            tril3 = paddle.tril(data, diagonal=-1)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0 , 0 , 0 , 0 ],
            #         [5 , 0 , 0 , 0 ],
            #         [9 , 10, 0 , 0 ]])
1444
    """
F
From00 已提交
1445
    if in_dygraph_mode():
Z
zyfncg 已提交
1446
        return _C_ops.tril(x, diagonal)
1447 1448
    else:
        return _tril_triu_op(LayerHelper('tril', **locals()))
W
WuHaobo 已提交
1449 1450


Y
yaoxuefeng 已提交
1451
def triu(x, diagonal=0, name=None):
1452
    r"""
1453
    Return the upper triangular part of a matrix (2-D tensor) or batch of matrices
Y
yaoxuefeng 已提交
1454
    :attr:`x`, the other elements of the result tensor are set to 0.
W
WuHaobo 已提交
1455 1456 1457 1458
    The upper triangular part of the matrix is defined as the elements on and
    above the diagonal.

    Args:
Y
yaoxuefeng 已提交
1459
        x (Tensor): The input x which is a Tensor.
W
WuHaobo 已提交
1460 1461 1462 1463 1464 1465 1466 1467
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and above the main diagonal are
            retained. A positive value excludes just as many diagonals above the main
            diagonal, and similarly a negative value includes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
1468
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
WuHaobo 已提交
1469 1470

    Returns:
Y
yaoxuefeng 已提交
1471
        Tensor: Results of upper triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
1472
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
1473 1474 1475 1476

    Examples:
        .. code-block:: python

Y
yaoxuefeng 已提交
1477
            import paddle
W
WuHaobo 已提交
1478

1479 1480 1481 1482 1483
            x = paddle.arange(1, 13, dtype="int64").reshape([3,-1])
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
W
WuHaobo 已提交
1484 1485

            # example 1, default diagonal
Y
yaoxuefeng 已提交
1486
            triu1 = paddle.tensor.triu(x)
1487 1488 1489 1490
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [0 , 6 , 7 , 8 ],
            #         [0 , 0 , 11, 12]])
W
WuHaobo 已提交
1491 1492

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
1493
            triu2 = paddle.tensor.triu(x, diagonal=2)
1494 1495 1496 1497
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 3, 4],
            #         [0, 0, 0, 8],
            #         [0, 0, 0, 0]])
W
WuHaobo 已提交
1498 1499

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
1500
            triu3 = paddle.tensor.triu(x, diagonal=-1)
1501 1502 1503 1504
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [0 , 10, 11, 12]])
W
WuHaobo 已提交
1505 1506

    """
F
From00 已提交
1507
    if in_dygraph_mode():
Z
zyfncg 已提交
1508
        return _C_ops.triu(x, diagonal)
1509 1510
    else:
        return _tril_triu_op(LayerHelper('triu', **locals()))
S
suytingwan 已提交
1511 1512


1513
def meshgrid(*args, **kwargs):
S
suytingwan 已提交
1514
    """
1515

1516
    Takes a list of N tensors as input :attr:`*args`, each of which is 1-dimensional vector, and creates N-dimensional grids.
1517

S
suytingwan 已提交
1518
    Args:
1519
        *args(Tensor|list of Tensor) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,),
1520
            (N2,),..., (Nk,). Support data types: ``float64``, ``float16``, ``float32``, ``int32``, ``int64``.
1521
        **kwargs (optional): Currently, only accept name in **kwargs
1522
            The default value is None. Normally there is no need for
S
suytingwan 已提交
1523
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
1524

S
suytingwan 已提交
1525
    Returns:
Y
yaoxuefeng 已提交
1526
         Tensor: k tensors. The shape of each tensor is (N1, N2, ..., Nk)
S
suytingwan 已提交
1527 1528 1529 1530 1531 1532

    Examples:
      .. code-block:: python

          import paddle

Y
yaoxuefeng 已提交
1533 1534 1535 1536
          x = paddle.randint(low=0, high=100, shape=[100])
          y = paddle.randint(low=0, high=100, shape=[200])

          grid_x, grid_y = paddle.meshgrid(x, y)
S
suytingwan 已提交
1537

Y
yaoxuefeng 已提交
1538 1539
          print(grid_x.shape)
          print(grid_y.shape)
S
suytingwan 已提交
1540 1541 1542 1543 1544 1545

          #the shape of res_1 is (100, 200)
          #the shape of res_2 is (100, 200)

    """

1546 1547
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        args = args[0]
Y
YuanRisheng 已提交
1548
    if in_dygraph_mode():
1549
        return _C_ops.meshgrid(list(args))
1550 1551 1552
    else:
        name = kwargs.get("name", None)
        helper = LayerHelper('meshgrid', **locals())
S
suytingwan 已提交
1553

1554 1555 1556 1557
        if not isinstance(args, (list, tuple)):
            raise TypeError(
                "The type of input args in meshgrid should be list."
            )
S
suytingwan 已提交
1558

1559 1560 1561 1562 1563 1564 1565
        for id, input_ in enumerate(args):
            check_dtype(
                input_.dtype,
                'create data type',
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                'meshgrid',
            )
S
suytingwan 已提交
1566

1567 1568 1569 1570 1571 1572 1573
        num = len(args)
        out = [
            helper.create_variable_for_type_inference(dtype=args[i].dtype)
            for i in range(num)
        ]
        helper.append_op(
            type='meshgrid', inputs={'X': list(args)}, outputs={'Out': out}
1574
        )
S
suytingwan 已提交
1575

1576
        return out
1577 1578


L
Li Min 已提交
1579 1580
def diagflat(x, offset=0, name=None):
    """
1581
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
L
Li Min 已提交
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594

    If ``x`` is a tensor (more than 1-D), a 2-D square tensor with the elements of flattened ``x`` as the diagonal is returned.

    The argument ``offset`` controls the diagonal offset.


    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
1595
        x (Tensor): The input tensor. It can be any shape. Its data type should be float16, float32, float64, int32, int64.
L
Li Min 已提交
1596
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal. Default: 0 (main diagonal).
1597
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
L
Li Min 已提交
1598 1599 1600 1601 1602 1603

    Returns:
        Tensor, a square matrix. The output data type is the same as input data type.

    Examples:
        .. code-block:: python
1604
            :name: code-example-1
L
Li Min 已提交
1605

1606 1607 1608 1609
            import paddle

            x = paddle.to_tensor([1, 2, 3])
            y = paddle.diagflat(x)
1610 1611 1612 1613 1614
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0],
            #         [0, 2, 0],
            #         [0, 0, 3]])
1615 1616

            y = paddle.diagflat(x, offset=1)
1617 1618 1619 1620 1621 1622
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0],
            #         [0, 0, 2, 0],
            #         [0, 0, 0, 3],
            #         [0, 0, 0, 0]])
1623 1624

            y = paddle.diagflat(x, offset=-1)
1625 1626 1627 1628 1629 1630
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 0, 0],
            #         [1, 0, 0, 0],
            #         [0, 2, 0, 0],
            #         [0, 0, 3, 0]])
L
Li Min 已提交
1631 1632

        .. code-block:: python
1633
            :name: code-example-2
L
Li Min 已提交
1634

1635
            import paddle
L
Li Min 已提交
1636

1637 1638
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.diagflat(x)
1639 1640 1641 1642 1643 1644
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0, 0],
            #         [0, 2, 0, 0],
            #         [0, 0, 3, 0],
            #         [0, 0, 0, 4]])
1645 1646

            y = paddle.diagflat(x, offset=1)
1647 1648 1649 1650 1651 1652 1653
            print(y)
            # Tensor(shape=[5, 5], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0, 0],
            #         [0, 0, 2, 0, 0],
            #         [0, 0, 0, 3, 0],
            #         [0, 0, 0, 0, 4],
            #         [0, 0, 0, 0, 0]])
1654 1655

            y = paddle.diagflat(x, offset=-1)
1656 1657 1658 1659 1660 1661 1662
            print(y)
            # Tensor(shape=[5, 5], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 0, 0, 0],
            #         [1, 0, 0, 0, 0],
            #         [0, 2, 0, 0, 0],
            #         [0, 0, 3, 0, 0],
            #         [0, 0, 0, 4, 0]])
L
Li Min 已提交
1663
    """
1664
    if in_dygraph_mode():
1665
        if len(x.shape) <= 1:
1666
            return _C_ops.diag(x, offset, 0)
1667
        else:
1668
            y = _C_ops.flatten(x, 0, -1)
1669 1670 1671 1672 1673
            return _C_ops.diag(y, offset, 0)
    else:
        padding_value = 0
        check_type(x, 'x', (Variable), 'diagflat')
        check_dtype(
1674 1675 1676 1677
            x.dtype,
            'x',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'diagflat',
1678 1679
        )
        check_type(offset, 'offset', (int), 'diagflat')
1680

1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
        helper = LayerHelper("diagflat", **locals())
        out1 = helper.create_variable_for_type_inference(dtype=x.dtype)
        out1_shape = helper.create_variable_for_type_inference(x.dtype)
        out2 = helper.create_variable_for_type_inference(dtype=x.dtype)

        if len(x.shape) <= 1:
            helper.append_op(
                type='diag_v2',
                inputs={'X': x},
                outputs={'Out': out2},
                attrs={'offset': offset, 'padding_value': padding_value},
1692
            )
L
Li Min 已提交
1693
        else:
1694 1695 1696 1697 1698
            helper.append_op(
                type='flatten_contiguous_range',
                inputs={'X': x},
                outputs={'Out': out1, 'XShape': out1_shape},
                attrs={'start_axis': 0, 'stop_axis': -1},
1699
            )
1700
            out1.stop_gradient = True
L
Li Min 已提交
1701

1702 1703 1704 1705 1706 1707 1708 1709
            helper.append_op(
                type='diag_v2',
                inputs={'X': out1},
                outputs={'Out': out2},
                attrs={'offset': offset, 'padding_value': padding_value},
            )
        out2.stop_gradient = True
        return out2
L
Li Min 已提交
1710 1711


1712 1713
def diag(x, offset=0, padding_value=0, name=None):
    """
1714
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726

    If ``x`` is a matrix (2-D tensor), a 1-D tensor with the diagonal elements of ``x`` is returned.

    The argument ``offset`` controls the diagonal offset:

    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
1727
        x (Tensor): The input tensor. Its shape is either 1-D or 2-D. Its data type should be float16, float32, float64, int32, int64.
1728 1729
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal.
        padding_value (int|float, optional): Use this value to fill the area outside the specified diagonal band. Only takes effect when the input is a 1-D Tensor. The default value is 0.
1730
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1731

1732 1733 1734 1735 1736
    Returns:
        Tensor, a square matrix or a vector. The output data type is the same as input data type.

    Examples:
        .. code-block:: python
1737
            :name: code-example-1
1738

1739
            import paddle
1740

1741 1742 1743
            paddle.disable_static()
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.diag(x)
1744 1745 1746 1747 1748
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0],
            #         [0, 2, 0],
            #         [0, 0, 3]])
1749 1750

            y = paddle.diag(x, offset=1)
1751 1752 1753 1754 1755 1756
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0],
            #         [0, 0, 2, 0],
            #         [0, 0, 0, 3],
            #         [0, 0, 0, 0]])
1757 1758

            y = paddle.diag(x, padding_value=6)
1759 1760 1761 1762 1763
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 6, 6],
            #         [6, 2, 6],
            #         [6, 6, 3]])
1764 1765

        .. code-block:: python
1766
            :name: code-example-2
1767

1768
            import paddle
1769

1770 1771 1772
            paddle.disable_static()
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            y = paddle.diag(x)
1773 1774 1775
            print(y)
            # Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [1, 5])
1776

1777
            y = paddle.diag(x, offset=1)
1778 1779 1780
            print(y)
            # Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [2, 6])
1781

1782
            y = paddle.diag(x, offset=-1)
1783 1784 1785
            print(y)
            # Tensor(shape=[1], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [4])
1786
    """
J
Jiabin Yang 已提交
1787
    if in_dygraph_mode():
1788
        return _C_ops.diag(x, offset, padding_value)
J
Jiabin Yang 已提交
1789
    else:
1790 1791 1792 1793
        check_type(x, 'x', (Variable), 'diag_v2')
        check_dtype(
            x.dtype,
            'x',
1794
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
1795 1796 1797 1798 1799 1800 1801 1802
            'diag_v2',
        )
        check_type(offset, 'offset', (int), 'diag_v2')
        check_type(padding_value, 'padding_value', (int, float), 'diag_v2')
        if len(x.shape) != 1 and len(x.shape) != 2:
            raise ValueError(
                "The dimension of input x must be either 1 or 2, but received {}".format(
                    len(x.shape)
1803
                )
1804
            )
1805

1806
        helper = LayerHelper("diag_v2", **locals())
1807

1808
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1809

1810 1811 1812 1813 1814 1815
        helper.append_op(
            type='diag_v2',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'offset': offset, 'padding_value': padding_value},
        )
1816

1817 1818
        out.stop_gradient = True
        return out
1819 1820 1821 1822


def empty(shape, dtype=None, name=None):
    """
1823
    Returns a Tensor with uninitialized data which size is same as ``shape``.
1824

1825
    Args:
1826 1827 1828
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
1829
        dtype(np.dtype|str, optional): Data type of the output Tensor
1830
            which can be bool, float16, float32, float64, int32, int64, complex64, complex128 if dytpe is `None`, the data
1831 1832
            type of created Tensor use global default dtype (see ``get_default_dtype``
            for details).
1833
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1834

1835 1836 1837 1838 1839 1840
    Returns:
        Tensor: Tensor which is created according to ``shape`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

1841
            import paddle
1842

1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
            # shape is a list/tuple
            data1 = paddle.empty(shape=[3, 2])
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.empty(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.empty(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]
1862 1863 1864 1865 1866 1867 1868
    """

    if dtype is None:
        dtype = paddle.get_default_dtype()

    dtype = convert_dtype(dtype)

1869
    if in_dygraph_mode():
1870
        shape = paddle.utils.convert_shape_to_list(shape)
1871 1872 1873
        out = _C_ops.empty(
            shape, convert_np_dtype_to_dtype_(dtype), _current_expected_place()
        )
1874 1875
        out.stop_gradient = True
        return out
1876 1877 1878
    else:
        helper = LayerHelper("empty", **locals())
        inputs = {}
1879

1880 1881 1882
        check_dtype(
            dtype,
            'dtype',
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
1893
            'empty',
1894
        )
1895
        check_type(shape, 'shape', (Variable, list, tuple), 'empty')
1896

1897 1898
        if isinstance(shape, Variable):
            check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'empty')
1899

1900
        attrs = {}
1901
        paddle.utils.get_shape_tensor_inputs(
1902 1903
            inputs=inputs, attrs=attrs, shape=shape, op_type='empty'
        )
1904

1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
        out = helper.create_variable_for_type_inference(dtype=dtype)
        attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
        helper.append_op(
            type='empty',
            inputs=inputs,
            outputs={'Out': [out]},
            attrs=attrs,
            stop_gradient=True,
        )
        out.stop_gradient = True
        return out
1916 1917 1918 1919


def empty_like(x, dtype=None, name=None):
    """
C
Chen Long 已提交
1920
    Returns a Tensor with uninitialized data which has identical shape of ``x`` and ``dtype``.
1921
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
1922

1923 1924 1925
    Args:
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
1926
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output
1927
            data type is the same as input.
1928
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1929

1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
    Returns:
        Tensor: Tensor which is created according to ``x`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

          import paddle

          paddle.set_device("cpu")  # and use cpu device

          x = paddle.randn([2, 3], 'float32')
          output = paddle.empty_like(x)
          #[[1.8491974e+20 1.8037303e+28 1.7443726e+28]     # uninitialized
          # [4.9640171e+28 3.0186127e+32 5.6715899e-11]]    # uninitialized
    """

    if dtype is None:
        dtype = x.dtype
    dtype = convert_dtype(dtype)

1950
    if in_dygraph_mode():
1951 1952 1953 1954 1955
        out = _C_ops.empty(
            x.shape,
            convert_np_dtype_to_dtype_(dtype),
            _current_expected_place(),
        )
1956 1957
        out.stop_gradient = True
        return out
1958 1959 1960 1961 1962
    else:
        helper = LayerHelper("empty_like", **locals())
        check_variable_and_dtype(
            x,
            'x',
1963 1964 1965 1966 1967 1968 1969 1970 1971
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
1972 1973 1974 1975 1976
            'empty_like',
        )
        check_dtype(
            dtype,
            'dtype',
1977 1978 1979 1980 1981 1982 1983 1984 1985
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
1986 1987 1988
            'empty_like',
        )
        out = helper.create_variable_for_type_inference(dtype=dtype)
1989

1990 1991 1992 1993
        inputs = {}
        attrs = {}
        attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
        shape = paddle.shape(x)
1994
        paddle.utils.get_shape_tensor_inputs(
1995 1996 1997 1998 1999 2000 2001 2002 2003
            inputs=inputs, attrs=attrs, shape=shape, op_type='empty_like'
        )

        helper.append_op(
            type='empty',
            inputs=inputs,
            outputs={'Out': [out]},
            attrs=attrs,
            stop_gradient=True,
2004
        )
2005 2006 2007
        out.stop_gradient = True
        return out

2008 2009 2010

def assign(x, output=None):
    """
2011

2012
    Copy value of the :attr:`x` to the :attr:`output`.
2013

2014
    Parameters:
2015 2016
        x (Tensor|np.ndarray|list|tuple|scalar): A Tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type can be float16, float32, float64, int32, int64 or bool. Note: the float64 data will be converted to float32 because of current platform protobuf
2017
            data limitation.
2018
        output (Tensor, optional): A Tensor. If :attr:`output` is None, a new Tensor will be created as :attr:`output`. Default: None.
2019

2020
    Returns:
2021
        Tensor: A Tensor with the same shape, data type and value as :attr:`x`.
2022

2023 2024
    Examples:
        .. code-block:: python
2025

2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
            import paddle
            import numpy as np
            data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
            array = np.array([[1, 1],
                                [3, 4],
                                [1, 3]]).astype(np.int64)
            result1 = paddle.zeros(shape=[3, 3], dtype='float32')
            paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
            result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
            result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
2036
    """
2037 2038 2039 2040
    # speed up
    if x is output and isinstance(x, Variable):
        return x

2041 2042
    input = x
    helper = LayerHelper('assign', **locals())
2043 2044 2045 2046 2047 2048
    check_type(
        input,
        'input',
        (Variable, np.ndarray, list, tuple, float, int, bool),
        'assign',
    )
2049 2050 2051 2052 2053

    if np.isscalar(input) and not isinstance(input, str):
        input = np.array([input])
    elif isinstance(input, (list, tuple)):
        input = np.array(input)
W
wanghuancoder 已提交
2054 2055
    # NOTE(Aurelius84): Why we judge core.Tensor?
    # In case of @to_static, a Tensor can be as input of `assign`,
2056
    # but _non_static_mode()==False under @to_static, which means
W
wanghuancoder 已提交
2057
    # isinstance(Tensor, Variable) == False. It will cause return None
2058
    # after this api.
W
wanghuancoder 已提交
2059
    if isinstance(input, (Variable, core.eager.Tensor)):
Z
zyfncg 已提交
2060
        if in_dygraph_mode():
2061
            if output is None:
2062
                output = _C_ops.assign(input)
Z
zyfncg 已提交
2063
            else:
2064
                _C_ops.assign_out_(input, output)
2065
        else:
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
            check_dtype(
                input.dtype,
                'input',
                [
                    'float16',
                    'uint16',
                    'float32',
                    'float64',
                    'int32',
                    'int64',
                    'uint8',
2077
                    'int8',
2078 2079 2080 2081 2082
                    'bool',
                ],
                'assign',
                '(When the type of input in assign is Variable.)',
            )
2083 2084
            if output is None:
                output = helper.create_variable_for_type_inference(
2085 2086 2087 2088 2089
                    dtype=input.dtype
                )
            helper.append_op(
                type='assign', inputs={'X': [input]}, outputs={'Out': [output]}
            )
2090
    elif isinstance(input, np.ndarray):
2091
        # We now support the form of [var, VAR...] if the Var.shape=[1,]
2092
        if len(input.shape) > 0 and any(isinstance(x, Variable) for x in input):
2093
            # We only deal with the case where the list is nested one level, convert all scalars into variables, and then use stack to process. It is necessary to ensure the consistency of types.
2094 2095 2096 2097
            if not all(
                [
                    x.shape == (1,)
                    for x in input
2098
                    if isinstance(x, (Variable, core.eager.Tensor))
2099 2100
                ]
            ):
2101 2102 2103 2104 2105
                raise TypeError(
                    "Unsupport paddle.assign([Variable, Variable...]) with non-scalar variable."
                )

            def convert_scalar(x):
2106
                if not isinstance(x, (Variable, core.eager.Tensor)):
2107 2108 2109 2110 2111 2112 2113 2114 2115
                    return assign(x)
                return x

            to_stack_list = list(map(convert_scalar, input))
            ret = paddle.stack(to_stack_list)
            ret = paddle.squeeze(ret, -1)
            return ret

        if input.dtype == 'object':
2116
            """may be this form [[Var], [Var], [3], [4]], we reject them."""
2117
            raise TypeError(
2118
                "The type of received input == `object`, it is not supported to convert to tensor, such as [[Var], [Var], [3], [4]]"
2119
            )
2120

2121 2122 2123 2124 2125 2126 2127
        dtype = convert_np_dtype_to_dtype_(input.dtype)
        if dtype == core.VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
2128 2129
                "it to float32"
            )
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
            dtype = core.VarDesc.VarType.FP32
        if dtype == core.VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.FP32:
            value_name = "fp32_values"
            values = [float(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT32:
            value_name = "int32_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
        else:
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
                "the data type of 'input' must be bool, float32, int32 or int64, but "
2147 2148
                "received %s." % convert_dtype(dtype)
            )
2149
        if input.size > 1024 * 1024:
2150 2151 2152 2153
            raise ValueError(
                "The size of input is too big. Please consider "
                "saving it to file and 'load_op' to load it"
            )
2154 2155 2156
        if in_dygraph_mode():
            if output is None:
                output = zeros(list(input.shape), dtype)
2157 2158 2159 2160 2161 2162 2163
            _C_ops.assign_value_(
                output,
                list(input.shape),
                dtype,
                values,
                _current_expected_place(),
            )
2164
        else:
2165 2166
            if output is None:
                output = helper.create_variable_for_type_inference(
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
                    dtype=input.dtype
                )
            helper.append_op(
                type='assign_value',
                outputs={'Out': [output]},
                attrs={
                    'dtype': dtype,
                    'shape': list(input.shape),
                    value_name: values,
                },
            )
2178 2179

    return output
2180 2181


2182 2183
def clone(x, name=None):
    """
2184 2185
    Returns a copy of input Tensor. It will always have a Tensor copy.

2186 2187 2188 2189
    In addition, This function is derivable, so gradients will flow back from the output to input.

    Parameters:
        x (Tensor): The input Tensor.
2190
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
2191

2192
    Returns:
2193
        Tensor, A Tensor copied from ``input``.
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones([2])
            x.stop_gradient = False
            clone_x = paddle.clone(x)

            y = clone_x**3
            y.backward()
            print(clone_x.grad)          # [3]
            print(x.grad)                # [3]
    """
    return x.clone()


2212
# NOTE(zhiqiu): not public
2213 2214 2215 2216
def _memcpy(input, place=None, output=None):
    """

    The OP copies the :attr:`input` to the :attr:`output`.
张春乔 已提交
2217
    NOTE: currently, only support CUDAPlace <-> CUDAPinnedPlace.
2218 2219 2220 2221 2222 2223 2224 2225

    Parameters:
        input (Tensor): A tensor. Its data type supports float16, float32, float64, int32, int64, and bool.
        device (Place): Target place for the output.
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.

    Returns:
2226
        Tensor, A tensor with the same shape, data type and value as :attr:`input`.
2227 2228 2229 2230 2231

    Examples:
        .. code-block:: python

          import paddle
2232

2233 2234 2235 2236 2237 2238
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result = paddle._memcpy(data, place=paddle.CPUPlace())  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
    """
    helper = LayerHelper('memcpy', **locals())
    check_type(input, 'input', (Variable), 'memcpy')

W
wanghuancoder 已提交
2239
    if isinstance(input, (Variable, core.eager.Tensor)):
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
        check_dtype(
            input.dtype,
            'input',
            [
                'float16',
                'uint16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint8',
2251
                'int8',
2252 2253 2254 2255 2256
                'bool',
            ],
            'memcpy',
            '(When the type of input in memcpy is Variable.)',
        )
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
    if output is None:
        output = helper.create_variable_for_type_inference(dtype=input.dtype)

    dst_place_type = -1
    if place is None:
        dst_place_type = -1
    else:
        p = core.Place()
        p.set_place(place)
        if p.is_cpu_place():
            dst_place_type = 0
        elif p.is_gpu_place():
            dst_place_type = 1
        elif p.is_cuda_pinned_place():
            dst_place_type = 2
        elif p.is_xpu_place():
            dst_place_type = 3

    attrs = {'dst_place_type': dst_place_type}
2276 2277 2278 2279 2280 2281
    helper.append_op(
        type='memcpy',
        inputs={'X': [input]},
        outputs={'Out': [output]},
        attrs=attrs,
    )
2282
    return output
F
Feiyu Chan 已提交
2283 2284 2285 2286 2287 2288 2289 2290


def complex(real, imag, name=None):
    """Return a compelx tensor given the real and image component.

    Args:
        real (Tensor): The real component. The data type should be 'float32' or 'float64'.
        imag (Tensor): The image component. The data type should be the same as ``real``.
2291
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
F
Feiyu Chan 已提交
2292 2293 2294 2295

    Returns:
        Tensor: The output tensor. The data type is 'complex64' or 'complex128', with the same precision as ``real`` and ``imag``.

I
Infinity_lee 已提交
2296 2297 2298 2299
    Note:
        ``paddle.complex`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
F
Feiyu Chan 已提交
2300 2301 2302 2303 2304 2305 2306 2307

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(2, dtype=paddle.float32).unsqueeze(-1)
            y = paddle.arange(3, dtype=paddle.float32)
            z = paddle.complex(x, y)
2308 2309 2310 2311
            print(z)
            # Tensor(shape=[2, 3], dtype=complex64, place=Place(cpu), stop_gradient=True,
            #        [[0j    , 1j    , 2j    ],
            #         [(1+0j), (1+1j), (1+2j)]])
F
Feiyu Chan 已提交
2312
    """
2313
    if in_dygraph_mode():
2314
        return _C_ops.complex(real, imag)
2315 2316 2317 2318 2319 2320 2321
    else:
        check_variable_and_dtype(
            real, 'real', ['float32', 'float64'], 'complex'
        )
        check_variable_and_dtype(
            imag, 'imag', ['float32', 'float64'], 'complex'
        )
2322

2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
        op_type = "complex"
        helper = LayerHelper(op_type, **locals())
        inputs = {"X": real, "Y": imag}
        out = helper.create_variable_for_type_inference(
            dtype=_real_to_complex_dtype(real.dtype)
        )
        outputs = {"Out": out}
        attrs = {}
        helper.append_op(
            type=op_type, inputs=inputs, attrs=attrs, outputs=outputs
        )
        return out
2335 2336 2337 2338


def tril_indices(row, col, offset=0, dtype='int64'):
    """
2339 2340
    Return the indices of the lower triangular part of the 2-D matrix
    whose row and col is knowed.Indices are ordered based on row and then columns.
2341 2342
    The lower triangular part of the matrix is defined as the elements on
    and below the diagonal.
2343

2344 2345 2346 2347 2348
    Args:
        row (int): The input x which is a int number describe the number of row of the matrix.
        col (int): The input x which is a int number describe the number of col of the matrix.
        offset (int, optional): The offset to consider, default value is 0.

2349 2350 2351 2352
            - If offset = 0, all elements on and below the main diagonal are retained.
            - If offset > 0, include just as many diagonals above the main diagonal.
            - If offset < 0, excludes just as many diagonals below the main diagonal.

2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
        dtype (int, optional): the data type of the output tensor, can be int32, int64.

    Returns:
        Tensor: Results of the indices of lower triangular part of a row * col matrix,
        where the first row contains row coordinates of and the second row contains column coordinates.

    Examples:
        .. code-block:: python

            import paddle
2363

2364 2365 2366
            # example 1, default offset value
            data1 = paddle.tril_indices(4,4,0)
            print(data1)
2367
            # [[0, 1, 1, 2, 2, 2, 3, 3, 3, 3],
2368 2369 2370 2371 2372
            #  [0, 0, 1, 0, 1, 2, 0, 1, 2, 3]]

            # example 2, positive offset value
            data2 = paddle.tril_indices(4,4,2)
            print(data2)
2373
            # [[0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
            #  [0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]]

            # example 3, negative offset value
            data3 = paddle.tril_indices(4,4,-1)
            print(data3)
            # [[ 1, 2, 2, 3, 3, 3],
            #  [ 0, 0, 1, 0, 1, 2]]
    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
2386 2387
        if col is None:
            col = row
2388 2389 2390
        out = _C_ops.tril_indices(
            row, col, offset, dtype, _current_expected_place()
        )
2391
        return out
2392 2393 2394
    else:
        if not isinstance(row, int) or row < 0:
            raise TypeError("row should be a non-negative int")
2395

2396 2397 2398 2399 2400 2401 2402 2403
        if col is not None:
            if not isinstance(col, int) or col < 0:
                raise TypeError("col should be a non-negative int")
        else:
            col = row

        if not isinstance(offset, int):
            raise TypeError("offset should be a  int")
2404 2405 2406 2407 2408

        helper = LayerHelper("tril_indices", **locals())

        out = helper.create_variable_for_type_inference(dtype=dtype)

2409 2410 2411 2412 2413 2414
        helper.append_op(
            type='tril_indices',
            inputs={},
            outputs={'out': [out]},
            attrs={'rows': row, 'cols': col, 'offset': offset, 'dtype': dtype},
        )
2415
    return out
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464


def triu_indices(row, col=None, offset=0, dtype='int64'):
    """
    Return the indices of the upper triangular part of the 2-D matrix
    whose row and col is known. Indices are ordered based on row and then columns.
    The upper triangular part of the matrix is defined as the elements on
    and above the diagonal.

    Args:
        row (int): The input x which is a int number describe the number of row of the matrix.
        col (int, optional): The input x which is a int number describe the number of col of the matrix.
            default value for col is None, then it will be set equal to row, indicting a square matix.
        offset (int, optional): The offset to consider, default value is 0.

            - If offset = 0, all elements on and above the main diagonal are retained.
            - If offset > 0, include just as few diagonals above the main diagonal.
            - If offset < 0, excludes just as few diagonals below the main diagonal.

        dtype (str|np.dtype|paddle.dtype, optional): the data type of the output tensor,
            can be int32, int64, default value is int64.
    Returns:
        Tensor: Results of the indices of upper triangular part of a row * col matrix,
        where the first row contains row coordinates of and the second row contains column coordinates.

    Examples:
        .. code-block:: python

            import paddle
            # example 1, default offset value
            data1 = paddle.triu_indices(4,4,0)
            print(data1)
            # [[0, 0, 0, 0, 1, 1, 1, 2, 2, 3],
            #  [0, 1, 2, 3, 1, 2, 3, 2, 3, 3]]
            # example 2, positive offset value
            data2 = paddle.triu_indices(4,4,2)
            print(data2)
            # [[0, 0, 1],
            #  [2, 3, 3]]
            # example 3, negative offset value
            data3 = paddle.triu_indices(4,4,-1)
            print(data3)
            # [[0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3],
            #  [0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 2, 3]]
    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
2465 2466
        if col is None:
            col = row
2467 2468 2469
        out = _C_ops.triu_indices(
            row, col, offset, dtype, _current_expected_place()
        )
2470
        return out
2471 2472 2473
    else:
        if not isinstance(row, int) or row < 0:
            raise TypeError("row should be a non-negative int")
2474

2475 2476 2477 2478 2479 2480 2481 2482
        if col is not None:
            if not isinstance(col, int) or col < 0:
                raise TypeError("col should be a non-negative int")
        else:
            col = row

        if not isinstance(offset, int):
            raise TypeError("offset should be a int")
2483 2484 2485 2486 2487

        helper = LayerHelper("triu_indices", **locals())

        out = helper.create_variable_for_type_inference(dtype=dtype)

2488 2489 2490 2491 2492 2493
        helper.append_op(
            type='triu_indices',
            inputs={},
            outputs={'out': [out]},
            attrs={'row': row, 'col': col, 'offset': offset, 'dtype': dtype},
        )
2494
    return out
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532


def polar(abs, angle, name=None):
    """Return a Cartesian coordinates corresponding to the polar coordinates compelx tensor given the ``abs`` and ``angle`` component.

    Args:
        abs (Tensor): The abs component. The data type should be 'float32' or 'float64'.
        angle (Tensor): The anglee component. The data type should be the same as ``abs``.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        Tensor: The output tensor. The data type is 'complex64' or 'complex128', with the same precision as ``abs`` and ``angle``.

    Note:
        ``paddle.polar`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            abs = paddle.to_tensor([1, 2], dtype=paddle.float64)
            angle = paddle.to_tensor([np.pi / 2, 5 * np.pi / 4], dtype=paddle.float64)
            out = paddle.polar(abs, angle)
            print(out)
            # Tensor(shape=[2], dtype=complex128, place=Place(cpu), stop_gradient=True,
            #       [ (6.123233995736766e-17+1j) ,
            #       (-1.4142135623730954-1.414213562373095j)])
    """
    check_variable_and_dtype(abs, 'abs', ['float32', 'float64'], 'paddle.polar')
    check_variable_and_dtype(
        angle, 'angle', ['float32', 'float64'], 'paddle.polar'
    )

    return paddle.complex(abs * paddle.cos(angle), abs * paddle.sin(angle))