elementwise_div_op.h 10.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14

F
fengjiayi 已提交
15 16
#pragma once

17 18
#include <vector>
#include "paddle/fluid/operators/elementwise/elementwise_mul_op.h"
W
Wu Yi 已提交
19
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
20
#include "paddle/fluid/operators/elementwise/elementwise_op_function.cu.h"
W
Wu Yi 已提交
21
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
22
#include "paddle/fluid/operators/elementwise/elementwise_sub_op.h"
23
#include "paddle/fluid/operators/math/blas.h"
24 25
#include "paddle/fluid/operators/reduce_ops/reduce_op.h"

G
gongweibao 已提交
26 27 28
namespace paddle {
namespace operators {

29 30 31 32 33
template <typename DeviceContext, typename T>
void default_elementwise_div(const framework::ExecutionContext& ctx,
                             const framework::Tensor* x,
                             const framework::Tensor* y, framework::Tensor* z) {
  int axis = ctx.Attr<int>("axis");
34 35 36
  auto x_dims = x->dims();
  auto y_dims = y->dims();
  if (x_dims.size() >= y_dims.size()) {
37 38 39 40 41 42
    ElementwiseComputeEx<DivFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                          DivFunctor<T>(), z);
  } else {
    ElementwiseComputeEx<InverseDivFunctor<T>, DeviceContext, T>(
        ctx, x, y, axis, InverseDivFunctor<T>(), z);
  }
43 44 45 46 47 48 49
}

template <typename DeviceContext, typename T, class Enable = void>
struct SameDimsElemwiseDiv {
  void operator()(const framework::ExecutionContext& ctx,
                  const framework::Tensor* x, const framework::Tensor* y,
                  framework::Tensor* z);
50 51
};

Q
QI JUN 已提交
52
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
53
class ElementwiseDivKernel : public framework::OpKernel<T> {
G
gongweibao 已提交
54 55
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduo 已提交
56 57 58
    auto* x = ctx.Input<framework::LoDTensor>("X");
    auto* y = ctx.Input<framework::LoDTensor>("Y");
    auto* z = ctx.Output<framework::LoDTensor>("Out");
C
chengduoZH 已提交
59
    z->mutable_data<T>(ctx.GetPlace());
60 61 62 63 64 65 66 67

    auto dims_equal = x->dims() == y->dims();
    if (dims_equal) {
      SameDimsElemwiseDiv<DeviceContext, T> same_dims_div;
      same_dims_div(ctx, x, y, z);
    } else {
      default_elementwise_div<DeviceContext, T>(ctx, x, y, z);
    }
G
gongweibao 已提交
68 69 70 71
  }
};

template <typename T>
C
chengduoZH 已提交
72 73
struct DivGradDX {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout / y; }
G
gongweibao 已提交
74 75
};

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
template <>
struct DivGradDX<paddle::platform::complex64> {
  HOSTDEVICE paddle::platform::complex64 operator()(
      paddle::platform::complex64 x, paddle::platform::complex64 y,
      paddle::platform::complex64 out, paddle::platform::complex64 dout) const {
    paddle::platform::complex64 y_conj(y.real, -y.imag);
    return dout / y_conj;
  }
};

template <>
struct DivGradDX<paddle::platform::complex128> {
  HOSTDEVICE paddle::platform::complex128 operator()(
      paddle::platform::complex128 x, paddle::platform::complex128 y,
      paddle::platform::complex128 out,
      paddle::platform::complex128 dout) const {
    paddle::platform::complex128 y_conj(y.real, -y.imag);
    return dout / y_conj;
  }
};

G
gongweibao 已提交
97
template <typename T>
C
chengduoZH 已提交
98 99
struct DivGradDY {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
100
    return -dout * out / y;
G
gongweibao 已提交
101 102 103
  }
};

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
template <>
struct DivGradDY<paddle::platform::complex64> {
  HOSTDEVICE paddle::platform::complex64 operator()(
      paddle::platform::complex64 x, paddle::platform::complex64 y,
      paddle::platform::complex64 out, paddle::platform::complex64 dout) const {
    paddle::platform::complex64 out_div_y_conj((out / y).real, -(out / y).imag);
    return -dout * out_div_y_conj;
  }
};

template <>
struct DivGradDY<paddle::platform::complex128> {
  HOSTDEVICE paddle::platform::complex128 operator()(
      paddle::platform::complex128 x, paddle::platform::complex128 y,
      paddle::platform::complex128 out,
      paddle::platform::complex128 dout) const {
    paddle::platform::complex128 out_div_y_conj((out / y).real,
                                                -(out / y).imag);
    return -dout * out_div_y_conj;
  }
};

126 127 128 129 130 131 132
template <typename T>
struct DivDoubleDY {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
    return y * out * dout - x * dout;
  }
};

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
elementwise_div_grad(const framework::ExecutionContext& ctx,
                     const framework::Tensor* x, const framework::Tensor* y,
                     const framework::Tensor* out,
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy) {
  int axis = ctx.Attr<int>("axis");
  ElemwiseGradCompute<DeviceContext, T, DivGradDX<T>, DivGradDY<T>>(
      ctx, *x, *y, *out, *dout, axis, dx, dy, DivGradDX<T>(), DivGradDY<T>());
}

#ifdef PADDLE_WITH_CUDA
// cuda definition
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CUDADeviceContext>::value>::type
elementwise_div_grad(const framework::ExecutionContext& ctx,
                     const framework::Tensor* x, const framework::Tensor* y,
                     const framework::Tensor* out,
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy);
#endif

Q
QI JUN 已提交
158
template <typename DeviceContext, typename T>
159
class ElementwiseDivGradKernel : public ElemwiseGradKernel<T> {
G
gongweibao 已提交
160 161
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
162
    ElemwiseGradKernel<T>::Compute(ctx);
C
chengduoZH 已提交
163 164
    using Tensor = framework::Tensor;

165
    auto* x = ctx.Input<Tensor>("X");
C
chengduoZH 已提交
166 167 168 169 170 171
    auto* y = ctx.Input<Tensor>("Y");
    auto* out = ctx.Input<Tensor>("Out");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    int axis = ctx.Attr<int>("axis");
172

173 174 175 176 177 178 179
    if (dx != nullptr && dy != nullptr && (dx->dims() == dy->dims())) {
      elementwise_div_grad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
    } else {
      ElemwiseGradCompute<DeviceContext, T, DivGradDX<T>, DivGradDY<T>>(
          ctx, *x, *y, *out, *dout, axis, dx, dy, DivGradDX<T>(),
          DivGradDY<T>());
    }
G
gongweibao 已提交
180 181 182
  }
};

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
class ElementwiseDivOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

  void InferShape(framework::InferShapeContext* ctx) const override {
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput("DOut")) {
      ctx->ShareDim("DX", "DOut");
      ctx->ShareLoD("DX", "DOut");
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->ShareDim("Y", y_grad_name);
      ctx->ShareLoD("Y", y_grad_name);
    }
    if (ctx->HasOutput("DDOut")) {
      ctx->ShareDim("DX", "DDOut");
      ctx->ShareLoD("DX", "DDOut");
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
206
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DDX");
207 208

#ifdef PADDLE_WITH_MKLDNN
209
    if (this->CanMKLDNNBeUsed(ctx)) {
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
};

template <typename DeviceContext, typename T>
class ElementwiseDivDoubleGradKernel : public framework::OpKernel<T> {
  using Tensor = framework::Tensor;

 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* Y = ctx.Input<Tensor>("Y");
    auto* Out = ctx.Input<Tensor>("Out");
    auto* ddX = ctx.Input<Tensor>("DDX");
    auto* ddY = ctx.Input<Tensor>("DDY");
    auto* dX = ctx.Input<Tensor>("DX");

    auto* dY = ctx.Output<Tensor>(framework::GradVarName("Y"));
    auto* dOut = ctx.Output<Tensor>("DOut");
    auto* ddOut = ctx.Output<Tensor>("DDOut");

    int axis = ctx.Attr<int>("axis");

    if (dY) dY->mutable_data<T>(Y->dims(), ctx.GetPlace());
    if (dOut) dOut->mutable_data<T>(Out->dims(), ctx.GetPlace());
    if (ddOut) ddOut->mutable_data<T>(Out->dims(), ctx.GetPlace());

    // ddX_safe == null ? 0 : ddX
    // ddY_safe == null ? 0 : ddY
    Tensor ddX_safe, ddY_safe;
244
    GetDoubleGradSafeTensor<DeviceContext, T>(ctx, dX, ddX, &ddX_safe);
245 246
    GetDoubleGradSafeTensor<DeviceContext, T>(ctx, Y, ddY, &ddY_safe);

247 248 249 250 251 252
    // ddOut = ddX / Y - Out * ddY / Y = (ddX - Out * ddY) / Y
    // dY = Out * dX * ddY / Y - dX * ddX / Y
    // dOut = - dX * ddY
    // To save memory, (1) dout can be used as 'tmp' tensor, (2) ddout can
    // inplace ddx
    Tensor tmp;
253
    if (dOut) {
254 255 256 257
      tmp = *dOut;
    } else {
      auto& dev_ctx = ctx.template device_context<DeviceContext>();
      tmp = ctx.AllocateTmpTensor<T, DeviceContext>(Out->dims(), dev_ctx);
258 259 260
    }
    if (dY) {
      // dX_div_Y = dX / Y;
261
      Tensor dX_div_Y = tmp;
262
      default_elementwise_div<DeviceContext, T>(ctx, dX, Y, &dX_div_Y);
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277

      // NOTE(dengkaipeng): in the following ElemwiseGradCompute, for the
      // first output tensor is nullptr, the branch to calculate first
      // output tensor will not be activated, DivGradDx function will not
      // be called and can be ignored, the first branch has little effect
      // on running speed.

      // dY = Out * dX * ddY / Y - dX * ddX / Y
      ElemwiseGradCompute<DeviceContext, T, DivGradDX<T>, DivDoubleDY<T>>(
          ctx, ddX_safe, ddY_safe, *Out, dX_div_Y, axis, nullptr, dY,
          DivGradDX<T>(), DivDoubleDY<T>());
    }

    if (ddOut) {
      // ddOut = ddX / Y - Out * ddY / Y = (ddX - Out * ddY) / Y
278
      default_elementwise_mul<DeviceContext, T>(ctx, Out, &ddY_safe, &tmp);
279 280
      default_elementwise_sub<DeviceContext, T>(ctx, &ddX_safe, &tmp, &tmp);
      default_elementwise_div<DeviceContext, T>(ctx, &tmp, Y, ddOut);
281 282 283 284 285 286 287 288 289
    }

    if (dOut) {
      // dOut = - dX * ddY
      default_elementwise_mul<DeviceContext, T>(ctx, dX, &ddY_safe, dOut);
      auto& place =
          *ctx.template device_context<DeviceContext>().eigen_device();
      auto dout = framework::EigenVector<T>::Flatten(*dOut);
      dout.device(place) = static_cast<T>(-1) * dout;
290 291 292 293
    }
  }
};

G
gongweibao 已提交
294 295
}  // namespace operators
}  // namespace paddle