dirac.py 10.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from ...fluid.initializer import Initializer
from ...fluid.data_feeder import check_variable_and_dtype
from ...fluid.core import VarDesc
Z
zhiboniu 已提交
18
from ...fluid import framework
19
from ...fluid.framework import _current_expected_place
Z
zhiboniu 已提交
20 21
from paddle import in_dynamic_mode
from paddle.utils import unique_name
22
from paddle import _C_ops
J
Jiabin Yang 已提交
23
from ... import fluid
24

25 26 27 28
__all__ = []


class Dirac(Initializer):
29
    r"""Initialize the 3D/4D/5D Tensor with Dirac delta function.
30

31 32 33 34
    It can reserve the feature of convolution layer input, which means that
    as many channels are reserved as possible.

    In this initialize method, elements in the middle of convolution kernels will
35
    be set to 1 . The formula can be described as follow.
36

37
    .. math::
38

39
        X[d, d, shape[2]//2, shape[3]//2, ...]=1,  \   d=0,1...N
40

41
    where, ``N`` is the minimum value of ``in_channels`` and ``out_channels``
42 43

    Args:
44
        groups(int, optional): 0-dimension of the Tensor will be divided by groups,
45
            each group has the same value. Default: 1.
46 47 48 49 50 51 52 53 54 55
        name(str, optional): The default value is None. Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Dirac initializer instance objects.

    Examples:
        .. code-block:: python

            import paddle
56

57
            #1. For kernel_size is uneven number:
58

59 60 61 62 63 64 65
            attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Dirac())
            conv = paddle.nn.Conv1D(3, 2, 3, weight_attr=attr)
            conv.weight
            # Tensor(shape=[2, 3, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
            #       [[[0., 1., 0.],
            #         [0., 0., 0.],
            #         [0., 0., 0.]],
66
            #
67 68 69 70 71 72
            #        [[0., 0., 0.],
            #         [0., 1., 0.],
            #         [0., 0., 0.]]])

            input = paddle.rand([8, 3, 10])
            output = conv(input)
73
            output == input[:, 0:2, 1:9]
74 75 76 77 78 79 80 81 82 83 84
            # output.shape is [8, 2, 8], It means output is almost the same with input, 2 channels are reserved


            #2. For kernel_size is even number:
            attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Dirac())
            conv = paddle.nn.Conv1D(3, 2, 4, weight_attr=attr)
            conv.weight
            # Tensor(shape=[2, 3, 4], dtype=float32, place=CPUPlace, stop_gradient=False,
            #       [[[0., 0., 1., 0.],
            #         [0., 0., 0., 0.],
            #         [0., 0., 0., 0.]],
85
            #
86 87 88 89 90 91 92
            #        [[0., 0., 0., 0.],
            #         [0., 0., 1., 0.],
            #         [0., 0., 0., 0.]]])
    """

    def __init__(self, groups=1, name=None):
        assert groups > 0 and isinstance(
93 94
            groups, int
        ), " 'groups' must be a positive integer. "
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
        super(Dirac, self).__init__()
        self._groups = groups

    def __call__(self, var, block=None):
        """Initialize the input tensor with dirac initializer.

        Args:
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.

        Returns:
            The most critical OP(scatter) in this initializer, which contains 7~8 ops in total.
        """
        block = self._check_block(block)
        assert isinstance(var, framework.Parameter)
        assert isinstance(block, framework.Block)
112 113 114
        check_variable_and_dtype(
            var, "Out", ['float16', 'bfloat16', 'float32', 'float64'], 'Dirac'
        )
115 116

        assert len(var.shape) in [
117 118 119
            3,
            4,
            5,
120
        ], "Only Tensor with 3/4/5 dimensions can be initialized by Dirac"
121
        assert (
122 123
            var.shape[0] % self._groups
        ) == 0, "Tensor 0-dimension must be divisible by groups"
124 125

        if var.dtype != VarDesc.VarType.FP32:
126 127 128 129 130 131 132
            out_var = block.create_var(
                name=unique_name.generate(".".join(['dirac', var.name, 'tmp'])),
                shape=var.shape,
                dtype=VarDesc.VarType.FP32,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False,
            )
133 134
        else:
            out_var = var
J
Jiabin Yang 已提交
135 136 137
        op = None
        if framework.in_dygraph_mode():
            with fluid.dygraph.no_grad():
138
                place = _current_expected_place()
139 140 141
                _C_ops.full_(
                    out_var, out_var.shape, str(float(0)), out_var.dtype, place
                )
142

J
Jiabin Yang 已提交
143
        else:
144 145 146 147 148 149 150 151 152 153 154
            block.append_op(
                type='fill_constant',
                inputs={},
                outputs={'Out': out_var},
                attrs={
                    'value': float(0),
                    'dtype': out_var.dtype,
                    'shape': out_var.shape,
                },
                stop_gradient=True,
            )
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171

        origin_shape = var.shape
        num_per_group = origin_shape[0] // self._groups
        min_shape = min(num_per_group, origin_shape[1])

        idx_list = []
        value_list = []
        strides = []
        prod = 1
        for dim in reversed(origin_shape):
            strides.insert(0, prod)
            prod *= dim
        for i in range(self._groups):
            for j in range(min_shape):
                value_list.append(1.0)
                offset = 0
                for (k, stride) in enumerate(strides):
172
                    if k == 0:
173
                        offset += (j + i * num_per_group) * stride
174
                    elif k == 1:
175 176 177 178
                        offset += j * stride
                    else:
                        offset += origin_shape[k] // 2 * stride
                idx_list.append(offset)
J
Jiabin Yang 已提交
179 180
        if framework.in_dygraph_mode():
            with fluid.dygraph.no_grad():
181
                tmp_out = _C_ops.reshape(out_var, [-1])
J
Jiabin Yang 已提交
182 183
                tmp_out._share_underline_tensor_to(out_var)
        else:
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
            x_shape = block.create_var(
                name=unique_name.generate(".".join([out_var.name, "XShape"])),
                dtype=out_var.dtype,
                shape=out_var.shape,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False,
                stop_gradient=True,
            )
            block.append_op(
                type="reshape2",
                inputs={"X": out_var},
                attrs={'shape': [-1]},
                outputs={"Out": out_var, "XShape": x_shape},
                stop_gradient=True,
            )
199 200 201 202

        index_tensor = block.create_var(
            name=unique_name.generate('scatter_index'),
            persistable=False,
203 204
            stop_gradient=True,
        )
205

J
Jiabin Yang 已提交
206 207
        if framework.in_dygraph_mode():
            with fluid.dygraph.no_grad():
W
wanghuancoder 已提交
208
                tmp_tensor = framework._varbase_creator()
209 210 211 212 213 214 215
                _C_ops.assign_value_(
                    tmp_tensor,
                    [len(idx_list)],
                    VarDesc.VarType.INT64,
                    idx_list,
                    _current_expected_place(),
                )
J
Jiabin Yang 已提交
216 217
                tmp_tensor._share_underline_tensor_to(index_tensor)
        else:
218 219 220 221 222 223 224 225 226 227
            block.append_op(
                type='assign_value',
                outputs={'Out': index_tensor},
                attrs={
                    'dtype': VarDesc.VarType.INT64,
                    'shape': [len(idx_list)],
                    'int64_values': idx_list,
                },
                stop_gradient=True,
            )
228 229 230 231

        value_tensor = block.create_var(
            name=unique_name.generate('scatter_value'),
            persistable=False,
232 233
            stop_gradient=True,
        )
234

J
Jiabin Yang 已提交
235 236
        if framework.in_dygraph_mode():
            with fluid.dygraph.no_grad():
W
wanghuancoder 已提交
237
                tmp_tensor = framework._varbase_creator()
238 239 240 241 242 243 244
                _C_ops.assign_value_(
                    tmp_tensor,
                    [len(value_list)],
                    VarDesc.VarType.FP32,
                    value_list,
                    _current_expected_place(),
                )
245

J
Jiabin Yang 已提交
246 247
                tmp_tensor._share_underline_tensor_to(value_tensor)
        else:
248 249 250 251 252 253 254 255 256 257
            block.append_op(
                type='assign_value',
                outputs={'Out': value_tensor},
                attrs={
                    'dtype': VarDesc.VarType.FP32,
                    'shape': [len(value_list)],
                    'fp32_values': value_list,
                },
                stop_gradient=True,
            )
258

J
Jiabin Yang 已提交
259 260
        if framework.in_dygraph_mode():
            with fluid.dygraph.no_grad():
261 262 263
                tmp_out = _C_ops.scatter(
                    out_var, index_tensor, value_tensor, True
                )
J
Jiabin Yang 已提交
264
                tmp_out._share_underline_tensor_to(out_var)
265
                tmp_reshape_out = _C_ops.reshape(out_var, origin_shape)
J
Jiabin Yang 已提交
266 267
                tmp_reshape_out._share_underline_tensor_to(out_var)
                if var.dtype != VarDesc.VarType.FP32:
268
                    tmp_cast_out = _C_ops.cast(out_var, var.dtype)
J
Jiabin Yang 已提交
269 270
                    tmp_cast_out._share_underline_tensor_to(var)
        else:
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
            op = block.append_op(
                type="scatter",
                inputs={
                    "X": out_var,
                    "Ids": index_tensor,
                    "Updates": value_tensor,
                },
                attrs={'overwrite': True},
                outputs={"Out": out_var},
                stop_gradient=True,
            )
            x_shape = block.create_var(
                name=unique_name.generate(".".join([out_var.name, "XShape"])),
                dtype=out_var.dtype,
                shape=out_var.shape,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False,
                stop_gradient=True,
            )
            block.append_op(
                type="reshape2",
                inputs={"X": out_var},
                attrs={'shape': origin_shape},
                outputs={"Out": out_var, "XShape": x_shape},
                stop_gradient=True,
            )
J
Jiabin Yang 已提交
297
            if var.dtype != VarDesc.VarType.FP32:
298 299 300 301 302 303 304
                block.append_op(
                    type="cast",
                    inputs={"X": out_var},
                    outputs={"Out": var},
                    attrs={"in_dtype": out_var.dtype, "out_dtype": var.dtype},
                    stop_gradient=True,
                )
Z
zhiboniu 已提交
305
        if not in_dynamic_mode():
306 307
            var.op = op
        return op