dgc_optimizer.py 4.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

from paddle.fluid.optimizer import Momentum, DGCMomentumOptimizer
from .meta_optimizer_base import MetaOptimizerBase
import logging

18 19
__all__ = []

20 21 22 23 24 25 26 27

class DGCOptimizer(MetaOptimizerBase):
    def __init__(self, optimizer):
        super(DGCOptimizer, self).__init__(optimizer)
        self.inner_opt = optimizer
        self.dgc_opt = None
        # we do not allow meta optimizer to be inner optimizer currently
        self.meta_optimizers_white_list = []
28
        self.meta_optimizers_black_list = []
29

30 31 32 33 34 35
    def _set_basic_info(
        self, loss, role_maker, user_defined_optimizer, user_defined_strategy
    ):
        super(DGCOptimizer, self)._set_basic_info(
            loss, role_maker, user_defined_optimizer, user_defined_strategy
        )
36

37 38 39 40
    def _init_dgc_opt(self):
        if self.dgc_opt is not None:
            return

41
        opt = self.inner_opt
42 43 44 45

        if not self.role_maker._is_collective:
            return

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
        if not isinstance(opt, Momentum):
            return

        configs = self.user_defined_strategy.dgc_configs
        if len(configs['sparsity']) == 0:
            # default is [0.999]
            configs['sparsity'] = [0.999]

        self.dgc_opt = DGCMomentumOptimizer(
            learning_rate=opt._learning_rate,
            momentum=opt._momentum,
            rampup_begin_step=configs['rampup_begin_step'],
            rampup_step=configs['rampup_step'],
            sparsity=configs['sparsity'],
            parameter_list=opt._parameter_list,
            use_nesterov=opt._use_nesterov,
62
            num_trainers=self.role_maker._worker_num(),
63 64
            regularization=opt.regularization,
            grad_clip=opt._grad_clip,
65 66
            name=opt._name,
        )
67 68

    def _can_apply(self):
69 70 71
        if not self.role_maker._is_collective:
            return False

72 73 74 75
        if self.user_defined_strategy.dgc:
            if not isinstance(self.inner_opt, Momentum):
                logging.warn("dgc only works on Momentum optimizer")
                return False
76
            if self.role_maker._worker_num() <= 1:
77 78 79 80 81 82 83 84 85
                logging.warn("dgc only works on multi cards")
                return False

            return True

        return False

    def _disable_strategy(self, dist_strategy):
        dist_strategy.dgc = False
86
        dist_strategy.dgc_configs = {}
87

88
    def _enable_strategy(self, dist_strategy, context):
89 90 91
        dist_strategy.dgc = True
        dist_strategy.dgc_configs = {"rampup_begin_step": 0, "rampup_step": 1}

92 93 94 95 96 97 98 99
    def backward(
        self,
        loss,
        startup_program=None,
        parameter_list=None,
        no_grad_set=None,
        callbacks=None,
    ):
100
        self._init_dgc_opt()
101 102 103
        return self.dgc_opt.backward(
            loss, startup_program, parameter_list, no_grad_set, callbacks
        )
104

105
    def apply_gradients(self, params_grads):
106
        self._init_dgc_opt()
107 108 109
        return self.dgc_opt.apply_gradients(params_grads=params_grads)

    def apply_optimize(self, loss, startup_program, params_grads):
110
        self._init_dgc_opt()
111 112 113 114 115 116 117
        return self.dgc_opt.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads
        )

    def minimize_impl(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
118
        self._init_dgc_opt()
119 120 121
        optimize_ops, params_grads = self.dgc_opt.minimize(
            loss, startup_program, parameter_list, no_grad_set
        )
122
        return optimize_ops, params_grads