p_norm_op.cu 9.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Indicesou may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <algorithm>
#include "cub/cub.cuh"
#include "paddle/fluid/operators/p_norm_op.h"

namespace paddle {
namespace operators {

template <typename T>
__device__ __forceinline__ int sgn(T val) {
  return (T(0) < val) - (val < T(0));
}

__device__ __forceinline__ float inline_abs(float x) { return abs(x); }
__device__ __forceinline__ double inline_abs(double x) { return abs(x); }

__device__ __forceinline__ int inline_sign(float x) { return sgn<float>(x); }
__device__ __forceinline__ int inline_sign(double x) { return sgn<double>(x); }

__device__ __forceinline__ float inline_pow(float base, float exponent) {
  return pow(base, exponent);
}
__device__ __forceinline__ double inline_pow(double base, double exponent) {
  return pow(base, exponent);
}

template <typename T, int BlockDim>
__global__ void Pnorm(const T* x, const int pre,
                      const int axis_n,  // dim in axis
                      const int post, float porder, T* out_norm) {
  typedef cub::BlockReduce<T, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage temp_storage;
  int num = pre * post;
47 48 49
  auto porder_t = static_cast<T>(porder);
  auto porder_inv = static_cast<T>(1.0 / porder);

50 51 52 53 54
  for (int i = blockIdx.x; i < num; i += gridDim.x) {
    int base = (i / post) * post * axis_n + (i % post);
    T sum = 0.0;
    for (int j = threadIdx.x; j < axis_n; j += blockDim.x) {
      const T x_ij = x[base + j * post];
55
      sum += inline_pow(inline_abs(x_ij), porder_t);
56 57
    }
    T reduce_result = BlockReduce(temp_storage).Sum(sum);
58 59 60
    if (threadIdx.x == 0) out_norm[i] = inline_pow(reduce_result, porder_inv);
  }
}
61

62 63 64 65 66 67 68 69 70 71 72 73 74
template <typename T, int BlockDim>
__global__ void ZeorNorm(const T* x, const int pre,
                         const int axis_n,  // dim in axis
                         const int post, T* out_norm) {
  typedef cub::BlockReduce<T, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage temp_storage;
  int num = pre * post;
  for (int i = blockIdx.x; i < num; i += gridDim.x) {
    int base = (i / post) * post * axis_n + (i % post);
    T sum = 0.0;
    for (int j = threadIdx.x; j < axis_n; j += blockDim.x) {
      const T x_ij = x[base + j * post];
      sum += static_cast<T>(x_ij != 0);
75
    }
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
    T reduce_result = BlockReduce(temp_storage).Sum(sum);
    if (threadIdx.x == 0) out_norm[i] = reduce_result;
  }
}

template <typename T, int BlockDim>
__global__ void InfNorm(const T* x, const int pre,
                        const int axis_n,  // dim in axis
                        const int post, T* out_norm) {
  typedef cub::BlockReduce<T, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage temp_storage;
  int num = pre * post;
  for (int i = blockIdx.x; i < num; i += gridDim.x) {
    int base = (i / post) * post * axis_n + (i % post);
    T cur_max = inline_abs(x[base]);
    for (int j = threadIdx.x; j < axis_n; j += blockDim.x) {
      T x_ij_abs = inline_abs(x[base + j * post]);
      if (cur_max < x_ij_abs) cur_max = x_ij_abs;
    }
    T reduce_result = BlockReduce(temp_storage).Reduce(cur_max, cub::Max());
    if (threadIdx.x == 0) out_norm[i] = reduce_result;
  }
}

template <typename T, int BlockDim>
__global__ void NegInfNorm(const T* x, const int pre,
                           const int axis_n,  // dim in axis
                           const int post, T* out_norm) {
  typedef cub::BlockReduce<T, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage temp_storage;
  int num = pre * post;
  for (int i = blockIdx.x; i < num; i += gridDim.x) {
    int base = (i / post) * post * axis_n + (i % post);
    T cur_min = inline_abs(x[base]);
    for (int j = threadIdx.x; j < axis_n; j += blockDim.x) {
      T x_ij_abs = inline_abs(x[base + j * post]);
      if (cur_min > x_ij_abs) cur_min = x_ij_abs;
    }
    T reduce_result = BlockReduce(temp_storage).Reduce(cur_min, cub::Min());
    if (threadIdx.x == 0) out_norm[i] = reduce_result;
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
  }
}

template <typename DeviceContext, typename T>
class PnormCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in_x = ctx.Input<framework::Tensor>("X");
    auto* out_norm = ctx.Output<framework::Tensor>("Out");
    const T* x = in_x->data<T>();
    T* norm = out_norm->mutable_data<T>(ctx.GetPlace());

    auto xdim = in_x->dims();
    auto ndim = out_norm->dims();
    float porder = ctx.Attr<float>("porder");
    int axis = ctx.Attr<int>("axis");
    if (axis < 0) axis = xdim.size() + axis;
    int pre, n, post;
    GetDims(xdim, axis, &pre, &n, &post);

    auto& dev_ctx = ctx.cuda_device_context();

    const int block = 512;
    int max_threads = dev_ctx.GetMaxPhysicalThreadCount();
    const int max_blocks = std::max(max_threads / block, 1);
    int grid = std::min(max_blocks, pre * post);
142 143 144 145 146 147 148 149 150 151 152 153 154
    if (porder == 0) {
      ZeorNorm<T, block><<<grid, block, 0, dev_ctx.stream()>>>(x, pre, n, post,
                                                               norm);
    } else if (porder == INFINITY) {
      InfNorm<T, block><<<grid, block, 0, dev_ctx.stream()>>>(x, pre, n, post,
                                                              norm);
    } else if (porder == -INFINITY) {
      NegInfNorm<T, block><<<grid, block, 0, dev_ctx.stream()>>>(x, pre, n,
                                                                 post, norm);
    } else {
      Pnorm<T, block><<<grid, block, 0, dev_ctx.stream()>>>(x, pre, n, post,
                                                            porder, norm);
    }
155 156 157 158 159 160 161 162 163 164
  }
};

template <typename T, int BlockDim>
__global__ void PnormGradient(const T* x, const T* x_norm, const T* y_grad,
                              const float porder, const int pre,
                              const int axis_n, const int post, const T eps,
                              T* x_grad) {
  // dx = (x/pnorm_broadcast).pow(p-1) * norm_dy.broadcast * sign(x)
  int num = pre * post;
165
  auto porder_grad = static_cast<T>(porder - 1.0f);
166
  for (int i = blockIdx.x; i < num; i += gridDim.x) {
167 168
    __shared__ T pnorm_i;
    __shared__ T yout_i;
169 170 171 172

    auto base = (i / post) * post * axis_n + (i % post);

    if (threadIdx.x == 0) {
173 174
      pnorm_i = x_norm[i];
      yout_i = y_grad[i];
175
    }
176
    __syncthreads();
177 178 179 180

    for (int j = threadIdx.x; j < axis_n; j += blockDim.x) {
      int index = base + j * post;
      const T x_ij = inline_abs(x[index]);
181 182
      x_grad[index] = inline_pow(x_ij, porder_grad) /
                      (inline_pow(pnorm_i, porder_grad) + eps) * yout_i *
183 184 185 186 187
                      inline_sign(x[index]);
    }
  }
}

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
template <typename T, int BlockDim>
__global__ void InfNormGradient(const T* x, const T* x_norm, const T* y_grad,
                                const int pre, const int axis_n, const int post,
                                T* x_grad) {
  int num = pre * post;
  for (int i = blockIdx.x; i < num; i += gridDim.x) {
    __shared__ T pnorm_i;
    __shared__ T yout_i;
    auto base = (i / post) * post * axis_n + (i % post);
    if (threadIdx.x == 0) {
      pnorm_i = x_norm[i];
      yout_i = y_grad[i];
    }
    __syncthreads();

    for (int j = threadIdx.x; j < axis_n; j += blockDim.x) {
      int index = base + j * post;
      const T x_ij = inline_abs(x[index]);
      if (x_ij == pnorm_i) {
        x_grad[index] = inline_sign(x[index]) * yout_i;
      } else {
        x_grad[index] = static_cast<T>(0);
      }
    }
  }
}

215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
template <typename DeviceContext, typename T, typename AttrType = T>
class PnormGradCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in_x = ctx.Input<framework::Tensor>("X");
    auto* in_norm = ctx.Input<framework::Tensor>("Out");
    auto* in_norm_dy =
        ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* out_dx = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
    T* dx = out_dx->mutable_data<T>(ctx.GetPlace());
    const T* x = in_x->data<T>();
    const T* x_norm = in_norm->data<T>();
    const T* norm_dy = in_norm_dy->data<T>();

    auto xdim = in_x->dims();
    float porder = ctx.Attr<float>("porder");
    T eps = static_cast<T>(ctx.Attr<float>("epsilon"));
    int axis = ctx.Attr<int>("axis");
    if (axis < 0) axis = xdim.size() + axis;
    int pre, n, post;
    GetDims(xdim, axis, &pre, &n, &post);

    auto& dev_ctx = ctx.cuda_device_context();

    const int block = 512;
    int max_threads = dev_ctx.GetMaxPhysicalThreadCount();
    const int max_blocks = std::max(max_threads / block, 1);
    int grid = std::min(max_blocks, pre * post);
243 244 245 246 247 248 249 250 251 252 253
    if (porder == 0) {
      math::SetConstant<DeviceContext, T> set_zero;
      auto& dev_ctx = ctx.template device_context<DeviceContext>();
      set_zero(dev_ctx, out_dx, static_cast<T>(0));
    } else if (porder == INFINITY || porder == -INFINITY) {
      InfNormGradient<T, block><<<grid, block, 0, dev_ctx.stream()>>>(
          x, x_norm, norm_dy, pre, n, post, dx);
    } else {
      PnormGradient<T, block><<<grid, block, 0, dev_ctx.stream()>>>(
          x, x_norm, norm_dy, porder, pre, n, post, eps, dx);
    }
254 255 256 257 258 259 260 261 262 263 264 265 266
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
using CUDA = paddle::platform::CUDADeviceContext;

REGISTER_OP_CUDA_KERNEL(p_norm, ops::PnormCUDAKernel<CUDA, float>,
                        ops::PnormCUDAKernel<CUDA, double>);
REGISTER_OP_CUDA_KERNEL(p_norm_grad, ops::PnormGradCUDAKernel<CUDA, float>,
                        ops::PnormGradCUDAKernel<CUDA, double>);