naive_executor.cc 10.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

X
Xin Pan 已提交
15
#include "paddle/fluid/framework/naive_executor.h"
16

17
#include <string>
18 19
#include <unordered_map>
#include <unordered_set>
20

21
#include "paddle/fluid/framework/op_registry.h"
22
#include "paddle/fluid/framework/scope.h"
W
Wang Guibao 已提交
23
#include "paddle/fluid/framework/variable_helper.h"
24
#include "paddle/fluid/platform/denormal.h"
25 26 27
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
28
#ifdef PADDLE_WITH_TENSORRT
W
wenbin 已提交
29 30
#include "paddle/fluid/operators/tensorrt/tensorrt_engine_op.h"
#endif
31
#ifdef PADDLE_WITH_NVTX
32 33
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
#endif
Z
zhupengyang 已提交
34 35 36
#ifdef PADDLE_WITH_LITE
#include "paddle/fluid/operators/lite/lite_engine_op.h"
#endif
37 38 39

namespace paddle {
namespace framework {
40 41 42 43
void NaiveExecutor::Prepare(Scope *scope,
                            const ProgramDesc &program_desc,
                            int block_id,
                            bool with_feed_fetch_ops) {
44
  if (!scope) {
45 46
    scope_ = new framework::Scope;
  } else {
47
    scope_ = scope;
48
  }
49 50

  VLOG(3) << "NaiveExecutor init with scope " << scope;
51 52 53 54
  CreateOps(program_desc, block_id, with_feed_fetch_ops);
}

void NaiveExecutor::Run() {
55 56
#ifdef PADDLE_WITH_MKLDNN
  platform::AttachPointerHashToMKLDNNKey(this, place_);
J
Jacek Czaja 已提交
57
  platform::RegisterModelLayout(ops_, place_);
58
#endif
59
  platform::ScopedFlushDenormal flush;
60
#ifdef PADDLE_WITH_NVTX
61 62
  platform::CudaNvtxRangePush("model", platform::NvtxRangeColor::Yellow);
#endif
63
  for (auto &op : ops_) {
Y
Yan Chunwei 已提交
64 65
    VLOG(4) << std::this_thread::get_id() << " run "
            << op->DebugStringEx(scope_) << " on scope " << scope_;
66
    op->SetIsCalledByExecutor(false);
67

68 69 70 71
    for (auto &func : input_hookfuncs_) {
      func(op.get(), scope_);
    }

72
    if (op->Type() == "while") {
73
      op->SetOutputHooks(output_hookfuncs_);
74 75
    }

76 77 78 79
#ifdef PADDLE_WITH_NVTX
    platform::CudaNvtxRangePush(op->Type() + "|" + op->OutputVars(true).front(),
                                platform::NvtxRangeColor::Green);
#endif
80
    op->Run(*scope_, place_);
81 82 83
#ifdef PADDLE_WITH_NVTX
    platform::CudaNvtxRangePop();
#endif
84 85 86 87 88 89 90

    // Update the shared_holder so that only records the max one.
    if (reuse_cache_.count(op.get())) {
      for (auto &it : reuse_cache_[op.get()]) {
        if (it.first->memory_size() >
            cluster_buffer_[it.second]->memory_size()) {
          cluster_buffer_[it.second] = it.first;
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
          int updated_cluster_id = it.second;

          // cluster_buffer_[it.second] has been updated to be a new
          // phi::DenseTensor*, we need change all phi::DenseTensor's
          // shared_holder in this cluster. The following two loops code looks
          // ugly, it does work. The following two loops seem time-consuming,
          // but once the memory reaches its peak, the cluster will not update,
          // so it's ok.
          for (auto &op_map : reuse_cache_) {
            // op_map.second is std::unordered_map<phi::DenseTensor*, int>.
            for (auto &it2 : op_map.second) {
              if (it2.second == updated_cluster_id) {
                it2.first->ShareBufferWith(*cluster_buffer_[it2.second], true);
              }
            }
          }
107 108 109 110
        }
      }
    }

111
    for (auto &func : output_hookfuncs_) {
112
      func(op.get(), scope_);
113
    }
114
  }
115
#ifdef PADDLE_WITH_NVTX
116 117
  platform::CudaNvtxRangePop();
#endif
118 119
}

120 121 122 123
void NaiveExecutor::CreateVariables(const ProgramDesc &desc,
                                    int block_id,
                                    bool persistable,
                                    Scope *scope) {
124 125 126
  PADDLE_ENFORCE_NOT_NULL(scope,
                          platform::errors::InvalidArgument(
                              "The Scope to hold variables is nullptr."));
127

128 129
  auto &global_block = desc.Block(block_id);

130
  const auto *anc = scope;
131
  PADDLE_ENFORCE_NE(
132 133
      anc->parent(),
      anc,
134
      platform::errors::InvalidArgument("Input scope should be child scope."));
135 136
  while (anc->parent()) {
    anc = anc->parent();
137 138
  }

Y
Yan Chunwei 已提交
139
  int num_vars = 0;
140 141 142 143
  for (auto &var : global_block.AllVars()) {
    if (var->Name() == framework::kEmptyVarName) {
      continue;
    }
Y
Yan Chunwei 已提交
144
    num_vars++;
145 146 147 148 149 150 151 152 153 154 155 156 157

    if (persistable == var->Persistable()) {
      if (persistable) {
        if (!anc->FindVar(var->Name())) {
          auto *ptr = const_cast<Scope *>(anc)->Var(var->Name());
          VLOG(3) << scope << " Create persistable variable " << var->Name()
                  << ", which pointer is " << ptr;
          InitializeVariable(ptr, var->GetType());
        }
      } else {
        auto *ptr = const_cast<Scope *>(scope)->Var(var->Name());
        VLOG(3) << scope << " Create variable " << var->Name()
                << ", which pointer is " << ptr;
158 159 160 161
        InitializeVariable(ptr, var->GetType());
      }
    }
  }
Y
Yan Chunwei 已提交
162
  VLOG(4) << "naive executor create " << num_vars << " vars";
163 164
}

165 166
void NaiveExecutor::CreateOps(const ProgramDesc &desc,
                              int block_id,
167 168 169 170
                              bool with_feed_fetch_ops) {
  for (const auto &op_desc : desc.Block(block_id).AllOps()) {
    if (!with_feed_fetch_ops &&
        (op_desc->Type() == "feed" || op_desc->Type() == "fetch")) {
171 172
      LOG(INFO) << "---  skip [" << op_desc->Input("X")[0] << "], "
                << op_desc->Type() << " -> " << op_desc->Output("Out")[0];
173 174 175 176 177 178
      continue;
    }
    ops_.emplace_back(OpRegistry::CreateOp(*op_desc));
  }
}

179
phi::DenseTensor *NaiveExecutor::FindTensor(const std::string &name) {
180 181 182
  PADDLE_ENFORCE_NOT_NULL(scope_,
                          platform::errors::PreconditionNotMet(
                              "Need to init scope in NaiveExecutor firstly."));
183
  auto *var = scope_->FindVar(name);
184 185 186
  PADDLE_ENFORCE_NOT_NULL(
      var,
      platform::errors::NotFound("No variable [%s] in current scope.", name));
187
  auto *tensor = const_cast<phi::DenseTensor *>(&var->Get<phi::DenseTensor>());
188 189 190
  return tensor;
}

191
void NaiveExecutor::RegisterOutputHook(const HookFunc &hookfunc) {
192 193 194 195 196
  output_hookfuncs_.push_back(hookfunc);
}

void NaiveExecutor::RegisterInputHook(const HookFunc &hookfunc) {
  input_hookfuncs_.push_back(hookfunc);
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
}

void NaiveExecutor::MakeReusePlan(
    const std::unordered_map<std::string, std::string> &reuse_table) {
  std::unordered_map<std::string, std::unordered_set<std::string>> clusters;
  for (auto &it : reuse_table) {
    clusters[it.second].insert(it.first);
  }

  std::vector<std::string> cluster_names;
  for (auto &it : clusters) {
    cluster_names.push_back(it.first);
  }
  cluster_buffer_.resize(cluster_names.size());

  for (auto &op : ops_) {
    for (auto &name : op->OutputVars(true)) {
      if (reuse_table.count(name)) {
        const auto &reuse_name = reuse_table.at(name);
        auto it =
            std::find(cluster_names.begin(), cluster_names.end(), reuse_name);
        int idx = it - cluster_names.begin();
        auto *var = scope_->FindVar(name);
        auto *reuse_var = scope_->FindVar(reuse_name);
        if (var && reuse_var && var->IsType<phi::DenseTensor>() &&
            reuse_var->IsType<phi::DenseTensor>()) {
          auto *tensor = var->GetMutable<phi::DenseTensor>();
          auto *reuse_tensor = reuse_var->GetMutable<phi::DenseTensor>();
          cluster_buffer_[idx] = reuse_tensor;
          if (reuse_cache_.count(op.get())) {
            reuse_cache_[op.get()].emplace(tensor, idx);
          } else {
            reuse_cache_[op.get()] =
                std::unordered_map<phi::DenseTensor *, int>{{tensor, idx}};
          }
        }
      }
    }
  }
236 237
}

238 239 240 241
NaiveExecutor::~NaiveExecutor() {
#ifdef PADDLE_WITH_MKLDNN
  // Clear mkl-dnn cache,
  // this is needed to have mkl-dnn unit tests working
242
  platform::ClearMKLDNNCache(place_, this);
243 244 245
#endif
}

W
wenbin 已提交
246
void NaiveExecutor::ResetTrtOps(int num) {
247
#ifdef PADDLE_WITH_TENSORRT
W
wenbin 已提交
248 249 250 251 252 253 254 255 256
  for (auto &op : ops_) {
    if (op->Type() == "tensorrt_engine") {
      operators::TensorRTEngineOp *trtop =
          dynamic_cast<operators::TensorRTEngineOp *>(op.get());
      if (!trtop) return;
      std::string engine_key = trtop->Attr<std::string>("engine_key");
      int engine_predictor_id = trtop->Attr<int>("predictor_id");
      std::string engine_name =
          engine_key + std::to_string(engine_predictor_id);
W
wenbin 已提交
257 258 259
      operators::TensorRTEngine *trt_engine = nullptr;
      // can't get trt engine if int8 calibration table data process.
      if (paddle::inference::Singleton<
W
wenbin 已提交
260
              inference::tensorrt::TRTEngineManager>::Global()
W
wenbin 已提交
261 262 263 264 265 266
              .Has(engine_name)) {
        trt_engine = paddle::inference::Singleton<
                         inference::tensorrt::TRTEngineManager>::Global()
                         .Get(engine_name);
      }
      if (trt_engine && trt_engine->with_dynamic_shape()) {
W
wenbin 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
        LOG(INFO) << "rebuild trt engine, this may cost a lot of time!";
        trt_engine->ResetContext();
        trt_engine->ClearTensorMap();
        trt_engine->SetProfileNum(num);
        auto *anc = scope_->parent();
        while (anc && anc->parent()) {
          anc = anc->parent();
        }
        if (anc == nullptr) {
          anc = scope_;
        }
        trtop->PrepareTRTEngine(*anc, trt_engine);
      }
    }
  }
#endif
}
284

Z
zhupengyang 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
void NaiveExecutor::CloneLiteEnigne(int num, void *stream) {
#ifdef PADDLE_WITH_LITE
  for (auto &op : ops_) {
    if (op->Type() == "lite_engine") {
      operators::LiteEngineOp *lite_op =
          dynamic_cast<operators::LiteEngineOp *>(op.get());
      PADDLE_ENFORCE_NOT_NULL(
          lite_op,
          phi::errors::InvalidArgument(
              "lite_op(type: lite_engine) should be created."));
      std::string engine_key = lite_op->Attr<std::string>("engine_key");
      std::string new_engine_key = engine_key + "_" + std::to_string(num);
      PADDLE_ENFORCE(
          paddle::inference::Singleton<inference::lite::EngineManager>::Global()
              .Has(engine_key),
          phi::errors::InvalidArgument(
              "lite_engine(key: %s) should be created.", engine_key));
      auto *lite_engine =
          paddle::inference::Singleton<inference::lite::EngineManager>::Global()
              .Get(engine_key);
      auto new_lite_engine = lite_engine->Clone();
#ifdef LITE_SUBGRAPH_WITH_XPU
      new_lite_engine->SetStream(TARGET(kXPU), stream);
#endif
      paddle::inference::Singleton<inference::lite::EngineManager>::Global()
          .Set(new_engine_key, new_lite_engine);
      lite_op->SetAttr("engine_key", new_engine_key);
      lite_op->SetEngine(new_lite_engine.get());
    }
  }
#endif
}

318 319
}  // namespace framework
}  // namespace paddle