reducer.cc 47.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/reducer.h"

17 18
#include <iostream>

19
#include "paddle/fluid/framework/tensor_util.h"
20 21 22 23 24 25 26 27
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/string/string_helper.h"

#include "paddle/fluid/operators/math/concat_and_split.h"
#include "paddle/fluid/operators/strided_memcpy.h"

#include "paddle/fluid/imperative/parallel_context.h"

28
#include "paddle/phi/core/dense_tensor.h"
29 30 31
namespace paddle {
namespace imperative {

K
kuizhiqing 已提交
32 33
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) ||     \
    defined(PADDLE_WITH_XPU_BKCL) || defined(PADDLE_WITH_GLOO) || \
Z
zn 已提交
34
    defined(PADDLE_WITH_ASCEND_CL) || defined(PADDLE_WITH_CNCL)
35 36 37 38
// div the nranks
void Group::DivNRanks(const platform::DeviceContext &context, int64_t nranks) {
  framework::Tensor *tensor =
      is_sparse_
39
          ? sparse_contents_->GetMutable<phi::SelectedRows>()->mutable_value()
40 41 42
          : dense_contents_.GetMutable<framework::LoDTensor>();

  if (platform::is_gpu_place(tensor->place())) {
43
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
44 45
    DivNRanks(tensor, nranks, context);
#endif
K
kuizhiqing 已提交
46 47 48
  } else if (platform::is_npu_place(tensor->place())) {
    // TODO(kuizhiqing)
    VLOG(4) << "divnrank for npu not support yet";
49
  } else if (platform::is_cpu_place(tensor->place())) {
50 51
    VLOG(4) << "before div 2" << *tensor;
    VLOG(4) << "NDiv for cpu devices : rank = " << nranks;
52 53 54 55 56 57
#ifdef PADDLE_WITH_HIP
    if (dtype_ == paddle::framework::proto::VarType_Type_BF16) {
      PADDLE_THROW(paddle::platform::errors::Fatal(
          "Unsupport BF16 in DataParallel for now"));
    }
    framework::VisitDataTypeForHIP(
58 59
        dtype_, DivNRanksForAllReduce<platform::CPUDeviceContext>(
                    tensor, nranks, context));
60 61 62 63 64
#else
    framework::VisitDataType(dtype_,
                             DivNRanksForAllReduce<platform::CPUDeviceContext>(
                                 tensor, nranks, context));
#endif
65
    VLOG(4) << "after div 2" << *tensor;
66 67 68 69
  } else if (platform::is_xpu_place(tensor->place())) {
#ifdef PADDLE_WITH_XPU_BKCL
// TODO(liuyuhui) support xpu about div nranks in the future
#endif
Z
zn 已提交
70 71 72
  } else if (platform::is_mlu_place(tensor->place())) {
    // TODO(zhangna)
    VLOG(4) << "divnrank for mlu not support yet";
73 74 75
  }
}

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
template <typename DeviceContext, typename T>
static void ConcatTensorsForAllReduce(
    const DeviceContext &context,
    const std::vector<framework::Tensor> &dense_tensors_,
    framework::Variable *p_dense_contents) {
  operators::math::ConcatFunctor<DeviceContext, T> concat_functor_;
  concat_functor_(context, dense_tensors_, 0,
                  p_dense_contents->GetMutable<framework::LoDTensor>());
}

template <typename DeviceContext, typename T>
static void SplitTensorsForAllReduce(
    const DeviceContext &context, framework::Variable *p_dense_contents,
    std::vector<framework::Tensor> *p_dense_tensors) {
  auto *in = p_dense_contents->GetMutable<framework::LoDTensor>();
  std::vector<framework::Tensor *> outs;
  std::vector<const framework::Tensor *> shape_refer;

  outs.reserve(p_dense_tensors->size());
  shape_refer.reserve(p_dense_tensors->size());
96

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
  for (auto &tensor : *p_dense_tensors) {
    outs.emplace_back(&tensor);
    shape_refer.emplace_back(&tensor);
  }
  // Sometimes direct copies will be faster
  if (p_dense_tensors->size() < 10) {
    operators::StridedMemcpyWithAxis0<T>(context, *in, shape_refer, &outs);
  } else {
    operators::math::SplitFunctor<DeviceContext, T> split_functor_;
    split_functor_(context, *in, shape_refer, 0, &outs);
  }
}

// context is used to select the stream for concat
template <typename DeviceContext>
static void ConcatTensorsWithType(
    const DeviceContext &context,
    const std::vector<framework::Tensor> &dense_tensors_,
    framework::Variable *p_dense_contents,
    framework::proto::VarType::Type type) {
  switch (type) {
118
    case framework::proto::VarType::FP16:
119 120
      ConcatTensorsForAllReduce<DeviceContext, platform::float16>(
          context, dense_tensors_, p_dense_contents);
121 122
      break;
    case framework::proto::VarType::FP32:
123 124
      ConcatTensorsForAllReduce<DeviceContext, float>(context, dense_tensors_,
                                                      p_dense_contents);
125 126
      break;
    case framework::proto::VarType::FP64:
127 128
      ConcatTensorsForAllReduce<DeviceContext, double>(context, dense_tensors_,
                                                       p_dense_contents);
129 130 131 132 133
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it concats tensors for "
          "allreduce.",
134
          framework::DataTypeToString(type)));
135 136 137 138
  }
}

// context is used to select the stream for split
139 140 141 142 143 144
template <typename DeviceContext>
static void SplitTensorsWithType(
    const DeviceContext &context, framework::Variable *p_dense_contents,
    std::vector<framework::Tensor> *p_dense_tensors,
    framework::proto::VarType::Type type) {
  switch (type) {
145
    case framework::proto::VarType::FP16:
146 147
      SplitTensorsForAllReduce<DeviceContext, platform::float16>(
          context, p_dense_contents, p_dense_tensors);
148 149
      break;
    case framework::proto::VarType::FP32:
150 151
      SplitTensorsForAllReduce<DeviceContext, float>(context, p_dense_contents,
                                                     p_dense_tensors);
152 153
      break;
    case framework::proto::VarType::FP64:
154 155
      SplitTensorsForAllReduce<DeviceContext, double>(context, p_dense_contents,
                                                      p_dense_tensors);
156 157 158 159 160
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it splits tensors for "
          "allreduce.",
161 162 163 164
          framework::DataTypeToString(type)));
  }
}

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
#ifdef PADDLE_WITH_XPU_BKCL
template <>
void SplitTensorsForAllReduce<platform::XPUDeviceContext, float>(
    const platform::XPUDeviceContext &context,
    framework::Variable *p_dense_contents,
    std::vector<framework::Tensor> *p_dense_tensors) {
  auto *in = p_dense_contents->GetMutable<framework::LoDTensor>();
  std::vector<framework::Tensor *> outs;
  std::vector<const framework::Tensor *> shape_refer;

  outs.reserve(p_dense_tensors->size());
  shape_refer.reserve(p_dense_tensors->size());

  for (auto &tensor : *p_dense_tensors) {
    outs.emplace_back(&tensor);
    shape_refer.emplace_back(&tensor);
  }
  operators::math::SplitFunctor<platform::XPUDeviceContext, float>
      split_functor_;
  split_functor_(context, *in, shape_refer, 0, &outs);
}

// context is used to select the stream for concat
template <>
void ConcatTensorsWithType<platform::XPUDeviceContext>(
    const platform::XPUDeviceContext &context,
    const std::vector<framework::Tensor> &dense_tensors_,
    framework::Variable *p_dense_contents,
    framework::proto::VarType::Type type) {
  switch (type) {
    case framework::proto::VarType::FP32:
      ConcatTensorsForAllReduce<platform::XPUDeviceContext, float>(
          context, dense_tensors_, p_dense_contents);
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it concats tensors for "
          "allreduce.",
          framework::DataTypeToString(type)));
  }
}

// context is used to select the stream for split
template <>
void SplitTensorsWithType<platform::XPUDeviceContext>(
    const platform::XPUDeviceContext &context,
    framework::Variable *p_dense_contents,
    std::vector<framework::Tensor> *p_dense_tensors,
    framework::proto::VarType::Type type) {
  switch (type) {
    case framework::proto::VarType::FP32:
      SplitTensorsForAllReduce<platform::XPUDeviceContext, float>(
          context, p_dense_contents, p_dense_tensors);
      break;
K
kuizhiqing 已提交
219 220 221 222 223 224 225 226 227
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it splits tensors for "
          "allreduce.",
          framework::DataTypeToString(type)));
  }
}
#endif

Z
zn 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
#ifdef PADDLE_WITH_CNCL
// context is used to select the stream for concat
template <>
void ConcatTensorsWithType<platform::MLUDeviceContext>(
    const platform::MLUDeviceContext &context,
    const std::vector<framework::Tensor> &dense_tensors_,
    framework::Variable *p_dense_contents,
    framework::proto::VarType::Type type) {
  switch (type) {
    case framework::proto::VarType::FP16:
      ConcatTensorsForAllReduce<platform::MLUDeviceContext, platform::float16>(
          context, dense_tensors_, p_dense_contents);
      break;
    case framework::proto::VarType::FP32:
      ConcatTensorsForAllReduce<platform::MLUDeviceContext, float>(
          context, dense_tensors_, p_dense_contents);
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it concats tensors for "
          "allreduce.",
          framework::DataTypeToString(type)));
  }
}

// context is used to select the stream for split
template <>
void SplitTensorsWithType<platform::MLUDeviceContext>(
    const platform::MLUDeviceContext &context,
    framework::Variable *p_dense_contents,
    std::vector<framework::Tensor> *p_dense_tensors,
    framework::proto::VarType::Type type) {
  switch (type) {
    case framework::proto::VarType::FP16:
      SplitTensorsForAllReduce<platform::MLUDeviceContext, platform::float16>(
          context, p_dense_contents, p_dense_tensors);
      break;
    case framework::proto::VarType::FP32:
      SplitTensorsForAllReduce<platform::MLUDeviceContext, float>(
          context, p_dense_contents, p_dense_tensors);
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it splits tensors for "
          "allreduce.",
          framework::DataTypeToString(type)));
  }
}
#endif

278 279 280
void Group::ConcatTensors(const platform::DeviceContext &context) {
  auto place = context.GetPlace();
  if (platform::is_gpu_place(place)) {
281
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
282 283 284 285 286 287 288
    ConcatTensorsWithType(
        static_cast<const platform::CUDADeviceContext &>(context),
        dense_tensors_, &dense_contents_, dtype_);
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't concat grad tensors since it's not compiled with NCCL,"
        "Please recompile or reinstall Paddle with NCCL support."));
289 290 291 292 293 294 295 296 297 298
#endif
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU_BKCL
    ConcatTensorsWithType(
        static_cast<const platform::XPUDeviceContext &>(context),
        dense_tensors_, &dense_contents_, dtype_);
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't concat xpu grads since it's not compiled with BKCL,"
        "Please recompile or reinstall Paddle with BKCL support."));
299 300 301 302 303 304 305 306 307 308
#endif
  } else if (platform::is_npu_place(place)) {
#ifdef PADDLE_WITH_ASCEND_CL
    ConcatTensorsWithType(
        static_cast<const platform::NPUDeviceContext &>(context),
        dense_tensors_, &dense_contents_, dtype_);
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't concat npu grads since it's not compiled with HCCL,"
        "Please recompile or reinstall Paddle with HCCL support."));
Z
zn 已提交
309 310 311 312 313 314 315 316 317 318
#endif
  } else if (platform::is_mlu_place(place)) {
#ifdef PADDLE_WITH_CNCL
    ConcatTensorsWithType(
        static_cast<const platform::MLUDeviceContext &>(context),
        dense_tensors_, &dense_contents_, dtype_);
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't concat mlu grads since it's not compiled with CNCL,"
        "Please recompile or reinstall Paddle with CNCL support."));
319 320 321 322 323 324 325 326 327 328 329 330 331 332
#endif
  } else if (platform::is_cpu_place(place)) {
    ConcatTensorsWithType(
        static_cast<const platform::CPUDeviceContext &>(context),
        dense_tensors_, &dense_contents_, dtype_);
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Concat grad tensor not supported on place (%s)", place));
  }
}

void Group::SplitTensors(const platform::DeviceContext &context) {
  auto place = context.GetPlace();
  if (platform::is_gpu_place(place)) {
333
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
334 335 336 337 338 339 340
    SplitTensorsWithType(
        static_cast<const platform::CUDADeviceContext &>(context),
        &dense_contents_, &dense_tensors_, dtype_);
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't split grad tensor since it's not compiled with NCCL,"
        "Please recompile or reinstall Paddle with NCCL support."));
341 342 343 344 345 346 347 348 349 350
#endif
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU_BKCL
    SplitTensorsWithType(
        static_cast<const platform::XPUDeviceContext &>(context),
        &dense_contents_, &dense_tensors_, dtype_);
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't split xpu grad since it's not compiled with BKCL,"
        "Please recompile or reinstall Paddle with BKCL support."));
351 352 353 354 355 356 357 358 359 360
#endif
  } else if (platform::is_npu_place(place)) {
#ifdef PADDLE_WITH_ASCEND_CL
    SplitTensorsWithType(
        static_cast<const platform::NPUDeviceContext &>(context),
        &dense_contents_, &dense_tensors_, dtype_);
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't split npu grad since it's not compiled with HCCL,"
        "Please recompile or reinstall Paddle with HCCL support."));
Z
zn 已提交
361 362 363 364 365 366 367 368 369 370
#endif
  } else if (platform::is_mlu_place(place)) {
#ifdef PADDLE_WITH_CNCL
    SplitTensorsWithType(
        static_cast<const platform::MLUDeviceContext &>(context),
        &dense_contents_, &dense_tensors_, dtype_);
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't split mlu grad since it's not compiled with CNCL,"
        "Please recompile or reinstall Paddle with CNCL support."));
371 372 373 374 375 376 377 378
#endif
  } else if (platform::is_cpu_place(place)) {
    SplitTensorsWithType(
        static_cast<const platform::CPUDeviceContext &>(context),
        &dense_contents_, &dense_tensors_, dtype_);
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Split grad tensor not supported on place (%s)", place));
379 380 381 382 383
  }
}

std::ostream &operator<<(std::ostream &out, const Group &group) {
  const auto &vars = group.variable_indices_;
384
  out << "numel: " << group.all_length_ << " ;is_sparse: " << group.is_sparse_
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
      << " ;var number: " << vars.size() << "\n";
  auto begin = vars.begin();
  auto end = vars.end();
  out << "[";
  for (int i = 0; begin != end && i < 100; ++i, ++begin) {
    if (i > 0) out << ' ';
    out << *begin;
  }
  if (begin != end) {
    out << " ...";
  }
  out << "]\n";
  return out;
}

400 401 402
Reducer::Reducer(const std::vector<std::shared_ptr<imperative::VarBase>> &vars,
                 const std::vector<std::vector<size_t>> &group_indices,
                 const std::vector<bool> &is_sparse_gradient,
403
                 std::shared_ptr<imperative::ParallelContext> parallel_ctx,
404 405
                 const std::vector<size_t> &group_size_limits,
                 bool find_unused_vars)
406 407 408
    : vars_(vars),
      group_indices_(group_indices),
      is_sparse_gradient_(is_sparse_gradient),
409
      parallel_ctx_(parallel_ctx),
410
      group_size_limits_(group_size_limits),
411
      find_unused_vars_each_step_(find_unused_vars) {
412
  VLOG(3) << "Start construct the Reducer ...";
413
  nrings_ = parallel_ctx->GetNRings();
414
  nranks_ = parallel_ctx->GetNRanks();
415 416 417 418
#ifdef PADDLE_WITH_XPU_BKCL
  comm_pool_.reset(new ::ThreadPool(1));
  comm_op_count_ = 0;
#endif
419 420
  // initialize groups
  InitializeGroups(group_indices);
421 422
  for (size_t global_var_index = 0; global_var_index < vars_.size();
       ++global_var_index) {
423
    auto var = vars_[global_var_index];
424 425
    var->GradVarBase()->AddVoidHook(std::make_shared<std::function<void()>>(
        [=]() { this->AddDistHook(global_var_index); }));
426
    var_index_map_[var->GradVarBase()->SharedVar().get()] = global_var_index;
427
  }
428 429 430 431 432 433

  // for checking var is ready once
  vars_marked_ready_.resize(vars_.size(), false);

  // Initialize local used vars
  local_used_vars_.resize(vars_.size(), 0);
434 435
}

436
void Reducer::InitializeDenseGroups(
437 438 439 440 441
    const std::vector<size_t> &variable_indices_, Group *p_group) {
  int64_t all_length = 0;
  for (size_t index = 0; index < variable_indices_.size(); ++index) {
    const auto variable_index = variable_indices_[index];
    const auto &var = vars_[variable_index];
442
    const auto &var_name = var->Name();
443 444
    PADDLE_ENFORCE_EQ(is_sparse_gradient_[variable_index], false,
                      platform::errors::PreconditionNotMet(
445
                          "Tensor %s's GRAD must be LoDTensor, but received "
446 447 448 449 450 451
                          "GRAD is SelectedRows",
                          var_name));

    auto lod_tensor = var->MutableVar()->GetMutable<framework::LoDTensor>();
    PADDLE_ENFORCE_EQ(lod_tensor->IsInitialized(), true,
                      platform::errors::PreconditionNotMet(
452
                          "Tensor %s is not initialized.", var_name));
453
    const auto size = lod_tensor->numel();
454 455
    PADDLE_ENFORCE_GT(
        size, 0, platform::errors::PreconditionNotMet(
456
                     "The number of tensor %s's elements is 0.", var_name));
457 458 459 460
    all_length += size;

    p_group->length_.push_back(size);

461 462 463
    // for concat operator
    p_group->dense_tensors_.push_back(framework::Tensor());

464
    // check the dtype and place, it must be same.
465 466
    const auto &dtype = var->DataType();
    const auto &place = var->Place();
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
    if (index > 0) {
      PADDLE_ENFORCE_EQ(
          dtype, p_group->dtype_,
          platform::errors::PreconditionNotMet(
              "Tensor %s has different dtype. Expected dtype is %s, but actual "
              "dtype is %s",
              var_name, framework::DataTypeToString(p_group->dtype_),
              framework::DataTypeToString(dtype)));
      PADDLE_ENFORCE_EQ(place, place_,
                        platform::errors::PreconditionNotMet(
                            "Tensor %s has different place. Expected place is "
                            "%s, but actual place is %s",
                            var_name, place_, place));
    } else {
      p_group->dtype_ = dtype;
      place_ = place;
    }
  }
485
  p_group->all_length_ = all_length;
486 487 488 489 490
}

// Each parameter will be initialized according to the group information.
// For the sparse parameter, sparse_contents_ in the group directly points
// to the parameter. For dense parameters, first construct an empty Tensor().
491
// Then specify the actual memory in MarkDenseVarReady.
492 493 494 495 496 497
void Reducer::InitializeGroups(
    const std::vector<std::vector<size_t>> &group_indices) {
  VLOG(3) << "Start initialize groups ..";
  // clear the group
  groups_.clear();
  groups_.reserve(group_indices.size());
498 499
  variable_locators_.clear();
  variable_locators_.resize(vars_.size());
500 501 502 503 504 505 506

  auto group_nums = group_indices.size();
  for (size_t group_index = 0; group_index < group_nums; ++group_index) {
    const auto &variable_indices_ = group_indices[group_index];
    PADDLE_ENFORCE_GT(
        variable_indices_.size(), 0,
        platform::errors::PreconditionNotMet(
507
            "The number of group[%d]'s elements is 0.", group_index));
508 509 510 511 512 513 514 515 516 517 518
    Group group;

    // It's just for check the sparse or dense
    auto first_varbase = vars_[variable_indices_.front()];
    if (variable_indices_.size() == 1 &&
        is_sparse_gradient_[variable_indices_.front()]) {
      // process the sparse gradient. one sparse, one group
      group.dtype_ = first_varbase->DataType();
      group.is_sparse_ = true;
    } else {
      // process the dense gradient.
519
      InitializeDenseGroups(variable_indices_, &group);
520
      auto tensor = group.dense_contents_.GetMutable<framework::LoDTensor>();
521
      tensor->Resize(phi::make_ddim({group.all_length_}))
522
          .mutable_data(place_, framework::TransToPhiDataType(group.dtype_));
523
    }
524 525 526

    // map variables to this group by VariableLocator
    size_t inside_group_index = 0;
527
    for (const auto var_index : variable_indices_) {
528 529 530 531 532 533
      variable_locators_[var_index] = VariableLocator{
          .group_index = group_index,
          .inside_group_index = inside_group_index++,
      };
    }
    group.variable_indices_ = std::move(variable_indices_);
534
    groups_.emplace_back(std::move(group));
535
    // Debug Message For Reducer
536
    VLOG(3) << "The Group[" << group_index << "]:" << groups_.back();
537 538 539
  }
}

540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
void Reducer::PrepareDeps(const std::unordered_set<GradOpNode *> &init_nodes) {
  PADDLE_ENFORCE_EQ(
      node_deps_.empty(), true,
      platform::errors::AlreadyExists("Op deps must be initialized here"));

  std::queue<GradOpNode *> q;
  std::unordered_set<GradOpNode *> visited;

  for (auto pos = init_nodes.begin(); pos != init_nodes.end(); pos++) {
    q.push(*pos);
    visited.insert(*pos);
  }

  while (!q.empty()) {
    auto *cur_node = q.front();
    q.pop();

    const auto &grad_pending_nodes = cur_node->GradPendingNodes();
    for (auto &grad_pending_node : grad_pending_nodes) {
      PADDLE_ENFORCE_NOT_NULL(
          grad_pending_node,
          platform::errors::NotFound("Grad pending node should not be null"));
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
      // py_layer is not supported in DataParallel
      auto begin = grad_pending_node->begin();
      auto end = grad_pending_node->end();
      for (auto op_base = begin; op_base != end; op_base++) {
        PADDLE_ENFORCE_EQ(
            op_base->Type() != "py_layer", true,
            platform::errors::PreconditionNotMet(
                "Note: Currently PyLayer is not supported in DataParallel. For "
                "using PyLayer in a DataParallel model, you can skip gradient "
                "synchronization among multiple cards by 'no_sync', and "
                "manually implement 'all_reduce' before model optimization. "
                "There is an example showing specific implemetation processing "
                "in offical docs: https://www.paddlepaddle.org.cn/documentation"
                "/docs/api/paddle/DataParallel_cn.html"));
      }
577 578 579 580 581 582 583 584 585
      ++node_deps_[grad_pending_node.get()];
      if (visited.count(grad_pending_node.get()) == 0) {
        visited.insert(grad_pending_node.get());
        q.push(grad_pending_node.get());
      }
    }
  }
}

586
void Reducer::TraverseBackwardGraph(
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
    const std::vector<std::shared_ptr<imperative::VarBase>> &outputs) {
  node_deps_.clear();
  std::queue<std::shared_ptr<GradOpNode>> q;
  std::unordered_set<VariableWrapper *> var_visited;
  std::unordered_set<GradOpNode *> init_nodes;

  for (const auto &output : outputs) {
    const auto &grad_node = output->GradVarBase()->GradNode();
    if (grad_node == nullptr || output->OverridedStopGradient()) {
      VLOG(3) << "Skip auto grad since there is no grad op or output is "
                 "stop_gradient=True: "
              << output->Name();
      continue;
    } else {
      init_nodes.insert(grad_node.get());
      var_visited.insert(output->SharedVar().get());
      q.push(grad_node);
    }
  }

  PrepareDeps(init_nodes);
  // Traverse the autograd graph starting at the specified output
  while (!q.empty()) {
    auto cur_node = q.front();
    q.pop();

    for (const auto &cur_op : *cur_node) {
      auto &bwd_outs = cur_op.GetOutsMap();
      for (const auto &pair : bwd_outs) {
        if (!pair.second.IsGrad()) {
          continue;
        }
        for (auto &var : pair.second) {
          if (!var || var->OverridedStopGradient()) {
            continue;
          } else {
            var_visited.insert(var.get());
          }
        }
      }
    }
    for (const auto &grad_pending_node : cur_node->GradPendingNodes()) {
      PADDLE_ENFORCE_NOT_NULL(grad_pending_node,
                              platform::errors::NotFound(
                                  "Grad pending node should not be nullptr"));
      auto iter = node_deps_.find(grad_pending_node.get());
      if (iter == node_deps_.end()) {
        continue;
      }
      if (--(iter->second) == 0) {
        q.push(grad_pending_node);
      }
    }
  }

  for (const auto &it : var_index_map_) {
    if (var_visited.count(it.first) == 0) {
      unused_vars_.push_back(it.second);
      VLOG(3) << "Var[" << it.second << "] [" << it.first->Name()
              << "] is not used";
    }
  }
649
}
650

651 652 653 654 655
// After each batch is calculated, the counter of each group(group.pending_)
// and allreudce sequence counter(next_group_) will be cleaned up again.
void Reducer::PrepareForBackward(
    const std::vector<std::shared_ptr<imperative::VarBase>> &outputs) {
  VLOG(3) << "after forward, then reset count for backward.";
656
  grad_need_hooks_ = true;
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
  next_group_ = 0;
  std::for_each(groups_.begin(), groups_.end(), [](Group &group) {
    group.pending_ = group.variable_indices_.size();
    group.sparse_contents_ = nullptr;
  });

  // reinitialize vars_marked_ready_ for next iteration
  vars_marked_ready_.clear();
  vars_marked_ready_.resize(vars_.size(), false);

  PADDLE_ENFORCE_EQ(
      groups_need_finalize_, false,
      platform::errors::PreconditionNotMet(
          "A serious error has occurred here. Please "
          "set find_unused_parameters=True to traverse backward graph "
          "in each step to prepare reduce in advance. If you have "
          "set, There may be several reasons for this error: "
          "1) Please note that all forward outputs derived from the module "
          "parameters must participate in the calculation of losses and "
          "subsequent gradient calculations. If not, the wrapper will hang, "
          "waiting for autograd to generate gradients for these parameters. "
          "you can use detach or stop_gradient to make the unused parameters "
          "detached from the autograd graph. "
          "2) Used multiple forwards and one backward. You may be able to wrap "
          "multiple forwards in a model."));

  // The first var to trigger the unused parameter
  has_marked_unused_vars_ = false;

  if (find_unused_vars_once_ || find_unused_vars_each_step_) {
    unused_vars_.clear();
    TraverseBackwardGraph(outputs);
    // only check once in first step
    find_unused_vars_once_ = false;
  }

  if (find_unused_vars_each_step_ && unused_vars_.empty()) {
694 695 696 697 698 699 700 701
    LOG_FIRST_N(WARNING, 1)
        << "All parameters are involved in the backward pass. "
           "It is recommended to set find_unused_parameters to False "
           "to improve performance. However, if unused parameters "
           "appear in subsequent iterative training, then an error "
           "will occur. Please make it clear that in the subsequent "
           "training, there will be no parameters that are not used "
           "in the backward pass, and then set find_unused_parameters";
702 703 704
  }

  if (unused_vars_.size() == vars_.size()) {
705 706 707 708 709 710
    LOG_FIRST_N(WARNING, 1)
        << "There is no parameter in the device involved "
           "in the backward calculation. If there are "
           "parameters on other devices involved in the "
           "backward, then a serious error will occur here.";
  }
711 712 713 714 715
}

// Add hook function to each leaf node. When the gradient of a leaf node is
// generated, if it is the sparse parameter, it will directly execute allreduce,
// if it is the dense parameter, it will execute three steps: 1,
716
// MarkDenseVarReady. Find the position of the corresponding group
717 718 719 720 721
// through var_index, share the gradient memory and the group dense_tensors,
// the group counter is reduced by 1. 2, MarkGroupReady: When the group
// counter is 0, it means that allreduce can be emitted, and
// concat + allreduce + split is emitted in turn according to next_group_.
// 3, FinalizeBackward: after the end, synchronize each stream.
722
void Reducer::AddDistHook(size_t var_index) {
723 724 725 726 727 728
  PADDLE_ENFORCE_LT(var_index, variable_locators_.size(),
                    platform::errors::OutOfRange(
                        "Out of bounds variable index. it must be less"
                        "than %d, but it is %d",
                        variable_locators_.size(), var_index));

729 730 731 732 733
  // gradient synchronization is not required when grad_need_hooks_ is false.
  if (!grad_need_hooks_) {
    return;
  }

734 735 736
  VLOG(3) << "Var[" << var_index << "] ["
          << vars_[var_index]->GradVarBase()->Name()
          << "] arrived and triggered disthook";
737

738 739
  local_used_vars_[var_index] = 1;

740
  // rebuild group when find_unused_vars_each_step_ is false
741
  if (NeedRebuildGroup()) {
742 743 744
    rebuild_vars_.push_back(vars_[var_index]);
    rebuild_var_indices_.push_back(var_index);
  }
745

746
  if (!has_marked_unused_vars_) {
747 748 749 750 751 752
    has_marked_unused_vars_ = true;
    for (const auto &unused_index : unused_vars_) {
      MarkVarReady(unused_index, false);
    }
  }

753 754
  MarkVarReady(var_index, true);
}
755

756
void Reducer::MarkVarReady(const size_t var_index, const bool is_used_var) {
757 758
  groups_need_finalize_ = true;

759
  const auto &var_locator = variable_locators_[var_index];
760
  const auto group_index = var_locator.group_index;
761
  auto &group = groups_[group_index];
762

763 764 765 766
  // error happened, if the var is ready before.
  if (vars_marked_ready_[var_index]) {
    auto error_info = string::Sprintf(
        "Error happened, when parameter[%d][%s] has been ready before. "
767 768 769
        "Please set find_unused_parameters=True to traverse backward graph "
        "in each step to prepare reduce in advance. If you have set, "
        "there may be several reasons for this error: "
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
        "1) In multiple reentrant backward phase, some parameters are reused."
        "2) Using model parameters outside of forward function. Please "
        "make sure that model parameters are not shared in concurrent "
        "forward-backward passes.",
        var_index, vars_[var_index]->GradVarBase()->Name());

    PADDLE_ENFORCE_EQ(has_marked_unused_vars_, false,
                      platform::errors::PreconditionNotMet(error_info));

    error_info +=
        "3) Unused parameters retrieval is incorrect. "
        "The return value of forward will be used to retrieve"
        " the unused parameters of the entire model. These "
        "gradients of unused parameters will not be synchronized "
        "between multiple cards. However, if the unused "
        "parameters participate in the backward calculation "
        "again at a later time (e.g. after the forward function, "
        "the loss calculation uses the unused "
        "paramters of the forward and trigger backward), "
        "its gradient will be wrong.";

    PADDLE_ENFORCE_EQ(has_marked_unused_vars_, true,
                      platform::errors::PreconditionNotMet(error_info));
  } else {
    vars_marked_ready_[var_index] = true;
  }

797 798
  if (!group.is_sparse_) {
    // process dense group
799 800
    const auto inside_group_index = var_locator.inside_group_index;
    const auto length = group.length_[inside_group_index];
801
    auto &group_tensor = group.dense_tensors_[inside_group_index];
802

803
    if (is_used_var) {
804 805
      auto var_base = vars_[var_index]->GradVarBase();
      auto tensor = var_base->MutableVar()->GetMutable<framework::LoDTensor>();
806 807
      group_tensor.ShareDataWith(*tensor).Resize(
          {static_cast<int64_t>(length)});
808
    } else {
809 810
      // TODO(shenliang03): maybe save the memory
      // by avoiding tensor construction
811 812
      if (!group_tensor.IsInitialized()) {
        group_tensor.Resize({static_cast<int64_t>(length)});
813
        group_tensor.mutable_data(place_,
814
                                  framework::TransToPhiDataType(group.dtype_));
815 816
      }

817
#ifdef PADDLE_WITH_XPU_BKCL
818 819 820 821
      if (platform::is_xpu_place(group_tensor.place())) {
        // TODO(liuyuhui) support XPU set constant
        VLOG(3) << "XPU doesn't support set_constant";
      }
Z
zn 已提交
822 823 824 825 826
#elif defined(PADDLE_WITH_CNCL)
      if (platform::is_mlu_place(group_tensor.place())) {
        // TODO(liuyuhui) support MLU set constant
        VLOG(3) << "MLU doesn't support set_constant";
      }
827
#else
828 829 830 831 832
      auto *dev_ctx = platform::DeviceContextPool::Instance().Get(place_);
      if (HasGrad(var_index)) {
        auto var_base = vars_[var_index]->GradVarBase();
        auto tensor =
            var_base->MutableVar()->GetMutable<framework::LoDTensor>();
833 834
        group_tensor.ShareDataWith(*tensor).Resize(
            {static_cast<int64_t>(length)});
835 836
      } else {
        group_tensor.Resize({static_cast<int64_t>(length)});
837
        phi::funcs::set_constant(*dev_ctx, &group_tensor, 0.0);
838
      }
839
#endif
840 841 842
    }
  } else {
    // process sparse group
843 844 845 846 847 848 849 850 851 852
    PADDLE_ENFORCE_EQ(
        HasGrad(var_index), true,
        platform::errors::PreconditionNotMet(
            "The sparse parameter[%d][%s] should have gradient. "
            "Currently, DataParallel does not support sparse "
            "parameters without generating gradients during training. "
            "For example, if is_sparese=True is used in Embedding, "
            "the current step of this parameter cannot generate gradient "
            "because of stop_gradient/detatch, where error will occur.",
            var_index, vars_[var_index]->Name()));
853 854 855
    auto var_base = vars_[var_index]->GradVarBase();
    // need to check tensor type
    PADDLE_ENFORCE_EQ(
856
        var_base->Var().IsType<phi::SelectedRows>(), true,
857 858 859 860 861 862 863 864 865 866 867 868
        platform::errors::PreconditionNotMet(
            "The sparse parameter[%d][%s] must have a selectedrows gradient. "
            "Before forward pass, the parameter type is inferred to be "
            "SelectedRows, but after backward pass, its actual type becomes "
            "LodTensor. It is currently not supported by DataParallel. "
            "For example, if sparse embedding is used, and the weight of "
            "embedding is shared with subsequent dense parameters, then "
            "the parameter gradient of the embedding will be converted "
            "to dense parameters.",
            var_index, vars_[var_index]->Name()));

    group.sparse_contents_ = var_base->MutableVar();
869
  }
870

871 872 873 874 875 876 877 878 879 880
  if (--group.pending_ == 0) {
    // can start allreduce
    MarkGroupReady(group_index);
  }

  if (next_group_ == groups_.size()) {
    FinalizeBackward();
  }
}

881 882
// TODO(liuyuhui): If BKCL support non-blocking communication, it should be
// fixed as same as multi gpus card trainging.
883
void Reducer::MarkGroupReady(size_t group_index) {
884 885 886 887 888 889 890 891
  PADDLE_ENFORCE_GE(
      group_index, next_group_,
      platform::errors::PreconditionNotMet(
          "The index of the incoming group must be greater "
          "than or equal to the previously synchronized group index, "
          "expect it to greater than or equal to %d, but got %d.",
          next_group_, group_index));

892
  if (group_index > next_group_) {
893
    VLOG(3) << "It will adjust the order of group in next batch automatically";
894 895 896 897 898
    return;
  }

  for (; next_group_ < groups_.size() && groups_[next_group_].pending_ == 0;
       ++next_group_) {
899 900
    UNUSED auto &group = groups_[next_group_];
    UNUSED const int run_order = next_group_ % nrings_;
901 902 903 904 905 906 907

    // For CUDA or XPU, compute_stream --> comm_stream.
    // For CPU, do nothing.
    // NOTE. Because concat uses the comm_stream,
    // so we expose WaitCompute() interface and call
    // it here.
    parallel_ctx_->WaitCompute(run_order);
908 909 910 911 912 913 914 915
#ifdef PADDLE_WITH_XPU_BKCL
    {
      std::lock_guard<std::mutex> lock(mutex_);
      comm_op_count_ += 1;  // lock
    }
    // TODO(liuyuhui): Add try catch to deal with exception later,
    // otherwise the main thread will continue to run when an exception is
    // thrown in comm_pool_.
916 917
    auto next_group = next_group_;
    comm_pool_->enqueue([this, run_order, next_group, &group] {
918
      auto dev_id = place_.device;
919
      platform::SetXPUDeviceId(dev_id);
920
      FusedAllReduceSchedule(run_order, group, next_group);
921 922 923 924
      {
        std::lock_guard<std::mutex> lock(mutex_);
        comm_op_count_ -= 1;  // lock
        cv_.notify_all();
925
      }
926
    });
Z
zn 已提交
927 928 929
#elif defined(PADDLE_WITH_RCCL) || defined(PADDLE_WITH_NCCL) ||    \
    defined(PADDLE_WITH_GLOO) || defined(PADDLE_WITH_ASCEND_CL) || \
    defined(PADDLE_WITH_CNCL)
930
    FusedAllReduceSchedule(run_order, group, next_group_);
931 932
#else
    PADDLE_THROW(platform::errors::PreconditionNotMet(
Z
zn 已提交
933
        "Not compiled with BKCL or NCCL or CNCL or GLOO."));
934 935 936 937
#endif
  }
}

938 939 940 941 942
void Reducer::FusedAllReduceSchedule(const int run_order, Group &group,
                                     const int curr_group_index) {
  // The overall timeline: concat > div_nranks > allreduce > split
  // dev_context is used to select different stream
  const auto &dev_context = *parallel_ctx_->GetDeviceContext(run_order);
943
  if (group.is_sparse_) {
944 945 946 947 948
    VLOG(3) << "sparse group [" << curr_group_index
            << "] start allreduce in ring[" << run_order << "]";
    group.DivNRanks(dev_context, nranks_);
    parallel_ctx_->AllReduceByStream(*group.sparse_contents_,
                                     group.sparse_contents_, run_order, false);
949
  } else {
950 951
    VLOG(3) << "dense group [" << curr_group_index
            << "] start allreduce in ring[" << run_order << "]";
952 953
    // Select common commstream to concat tensors
    // group.dense_tensors ---> group.dense_contents_
954
    group.ConcatTensors(dev_context);
955

956
// NOTE(liuyuhui): ConcatTensors use communication stream, but BKCL only support
957 958
// default stream for communicating, so there exist some problems in
// synchronization. And need to add a WaitComm there.
959 960
// TODO(liuyuhui): If BKCL support non-blocking communication, it should be
// fixed as multi gpus card trainging.
961
#ifdef PADDLE_WITH_XPU_BKCL
962 963 964
    if (platform::is_xpu_place(group.dense_tensors_[0].place())) {
      parallel_ctx_->WaitComm(run_order);
    }
965 966
#endif

967
    group.DivNRanks(dev_context, nranks_);
968 969 970
    // Start allreduce
    parallel_ctx_->AllReduceByStream(
        group.dense_contents_, &(group.dense_contents_), run_order, false);
971

972
    // Select communication stream to split tensors
973
    // group.dense_contents_ ---> group.dense_tensors
974
    group.SplitTensors(dev_context);
975 976 977
  }
}

978
std::vector<std::vector<size_t>> Reducer::RebuildGruops() {
979 980 981 982 983 984 985 986 987
  VLOG(3) << "The order of parameter arrival: "
          << string::join_strings(rebuild_var_indices_, ',');

  PADDLE_ENFORCE_EQ(
      rebuild_vars_.size(), vars_.size(),
      platform::errors::PreconditionNotMet(
          "Rebuild vars's number should be equal to original vars'number, "
          "expect it to be %d, but got %d.",
          vars_.size(), rebuild_vars_.size()));
988 989 990 991 992 993 994 995 996 997 998 999
  std::reverse(rebuild_vars_.begin(), rebuild_vars_.end());
  std::reverse(rebuild_var_indices_.begin(), rebuild_var_indices_.end());
  auto rebuild_group_indices =
      AssignGroupBySize(rebuild_vars_, is_sparse_gradient_, group_size_limits_,
                        rebuild_var_indices_);
  has_rebuilt_group_ = true;
  rebuild_vars_.clear();
  rebuild_var_indices_.clear();
  std::reverse(rebuild_group_indices.begin(), rebuild_group_indices.end());
  return rebuild_group_indices;
}

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
void Reducer::ProcessUnusedDenseVars() {
  // The calculation stream must be used here to
  // avoid conflicts with communication.
  VLOG(3) << "Local used vars : "
          << string::join_strings(local_used_vars_, ',');
  const auto *dev_ctx = platform::DeviceContextPool::Instance().Get(place_);
  // H2D is to allreduce the local_used_vars_
  auto *global_used_tensor =
      global_used_vars_.GetMutable<framework::LoDTensor>();
  framework::TensorFromVector<int>(local_used_vars_, *dev_ctx,
                                   global_used_tensor);
  parallel_ctx_->AllReduceByStream(global_used_vars_, &global_used_vars_, 0,
                                   true);
  framework::TensorToVector<int>(*global_used_tensor, *dev_ctx,
                                 &local_used_vars_);

  // sync compute stream to get global used var message,
  // but maybe affect speed performance
  parallel_ctx_->SynchronizeCompute();
  VLOG(3) << "Global used vars : "
          << string::join_strings(local_used_vars_, ',');

  for (const auto var_index : unused_vars_) {
    const bool global_unused = (local_used_vars_[var_index] == 0);

    // global used but local unused, set grad
    VLOG(3) << "Var [" << var_index << "] [" << vars_[var_index]->Name()
            << "] global_unused:" << global_unused
            << "  has grad: " << HasGrad(var_index);

    if (!global_unused) {
      VLOG(3) << "Start process unused Var";
      // 1. source var base
      const auto &var_locator = variable_locators_[var_index];
      const auto group_index = var_locator.group_index;
      const auto &group = groups_[group_index];
      const auto inside_group_index = var_locator.inside_group_index;
      const auto &src_tensor = group.dense_tensors_[inside_group_index];
      // sparse no need to check and no support find_unused_parameters
      if (group.is_sparse_) {
        continue;
      }
      // 2. destination var base
      auto dest_var_base = vars_[var_index];
      auto *dest_tensor =
          dest_var_base->MutableVar()->GetMutable<framework::LoDTensor>();
      const auto &dest_dims = dest_tensor->dims();

      // 3. create grad var base or get grad var base
      auto grad_var_base_tmp = dest_var_base->MutableGradVarBase();
1050 1051 1052 1053
      // NOTE(haohongxiang): Calling SetIsEmpty here is to make sure that
      // gradient accumulation can continue normally after clear_gradients()
      // especiall in cases including complex control flow.
      grad_var_base_tmp->SharedVar()->SetIsEmpty(false);
1054 1055 1056 1057 1058

      // 4. set grad tensor
      auto *dest_grad_tensor =
          grad_var_base_tmp->MutableVar()->GetMutable<framework::LoDTensor>();
      const auto *dev_ctx = platform::DeviceContextPool::Instance().Get(place_);
1059 1060
      paddle::framework::TensorCopy(src_tensor, place_, *dev_ctx,
                                    dest_grad_tensor);
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
      dest_grad_tensor->Resize(dest_dims);
    }
  }
}

bool Reducer::HasGrad(size_t var_index) {
  const auto grad_var = vars_[var_index]->GradVarBase();
  if (!grad_var || !grad_var->Var().IsInitialized()) {
    return false;
  }

  const auto &var = grad_var->Var();
  if (var.IsType<framework::LoDTensor>()) {
    if (var.Get<framework::LoDTensor>().IsInitialized()) {
      return true;
    }
1077 1078
  } else if (var.IsType<phi::SelectedRows>()) {
    if (var.Get<phi::SelectedRows>().value().IsInitialized()) {
1079 1080 1081 1082 1083 1084 1085 1086 1087
      return true;
    }
  } else {
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Only support LoDTensor and SelectedRows for gradient var"));
  }
  return false;
}

1088
void Reducer::FinalizeBackward() {
1089
  groups_need_finalize_ = false;
1090
  grad_need_hooks_ = false;
1091 1092 1093 1094 1095 1096
#ifdef PADDLE_WITH_XPU_BKCL
  {
    std::unique_lock<std::mutex> lock(mutex_);
    cv_.wait(lock, [&] { return comm_op_count_ == 0; });
  }
#endif
1097

1098 1099
  // Must prevent compute_stream_ starting until all comm streams have finished
  for (int i = 0; i < nrings_; ++i) {
1100
    parallel_ctx_->WaitComm(i);
1101 1102
  }

1103
  if (NeedRebuildGroup()) {
1104 1105 1106 1107 1108
    VLOG(3) << "Start rebuilding the groups";
    auto rebuild_group_indices = RebuildGruops();
    group_indices_ = std::move(rebuild_group_indices);
    InitializeGroups(group_indices_);
  }
1109

1110
  if (find_unused_vars_each_step_) {
1111
// TODO(liuyuhui) support xpu about Tensorcopy/TensorFromVector/TensorToVector
1112
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
K
kuizhiqing 已提交
1113
    defined(PADDLE_WITH_GLOO) || defined(PADDLE_WITH_ASCEND_CL)
1114 1115 1116 1117 1118 1119 1120 1121 1122
    ProcessUnusedDenseVars();
#endif
    // Initialize local used vars
    local_used_vars_.clear();
    local_used_vars_.resize(vars_.size(), 0);
    VLOG(3) << "ProcessUnusedDenseVars is finished.";
  }

  VLOG(3) << "In the batch, Reducer is finished.";
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
}

// According to the size of each parameter, it is allocated to different groups.
// The sparse parameter occupies a group exclusively. The dense parameters of
// the same data type are assigned to the same group. When dividing groups, the
// size of each group will be limited according to each value in
// group_size_limits in turn. When it is not enough, it will be divided
// by the last value of group_size_limits. The limit value is 0, which
// means that the parameter will monopolize the group.
std::vector<std::vector<size_t>> AssignGroupBySize(
    const std::vector<std::shared_ptr<imperative::VarBase>> &vars,
    const std::vector<bool> &is_sparse_gradient,
1135 1136
    const std::vector<size_t> &group_size_limits,
    const std::vector<int64_t> &tensor_indices) {
1137 1138 1139 1140 1141
  PADDLE_ENFORCE_EQ(vars.size(), is_sparse_gradient.size(),
                    platform::errors::PreconditionNotMet(
                        "vars len must be equal to is_sparse_gradient len, but "
                        "[%lu] != [%lu]",
                        vars.size(), is_sparse_gradient.size()));
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
  auto check_perm = [](const std::vector<int64_t> &x) -> bool {
    size_t len = x.size();
    std::vector<size_t> cnt(len, 0);
    for (size_t i = 0; i < len; ++i) {
      if (x[i] >= static_cast<int64_t>(len) || x[i] < 0 || cnt[x[i]]) {
        return false;
      }
      cnt[x[i]]++;
    }
    return true;
  };
  PADDLE_ENFORCE_EQ(true, check_perm(tensor_indices),
                    platform::errors::PreconditionNotMet(
                        "tensor_indices must be a permutation from 0 to %lu",
                        tensor_indices.size()));
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
  // the return vector
  std::vector<std::vector<size_t>> res;

  // Key: the var type
  // Value: should use which index in group_size_limits for group size limit
  std::unordered_map<std::string, size_t> group_limit_index;

  // Key: the var type
  // Value: <the var index in input tensors, total numel in this group>
  std::unordered_map<std::string, std::pair<std::vector<size_t>, size_t>>
      next_group;

  for (size_t i = 0; i < vars.size(); ++i) {
    const auto &var = vars[i];
1171 1172 1173 1174 1175 1176 1177

    size_t tensor_real_index = i;
    if (!tensor_indices.empty()) {
      tensor_real_index = tensor_indices[i];
    }

    if (is_sparse_gradient[tensor_real_index]) {
1178
      // we keep sparse var a single group
1179
      res.push_back({tensor_real_index});
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
      continue;
    }

    const auto &var_dtype = var->DataType();
    const auto var_dtype_str = framework::DataTypeToString(var_dtype);
    VLOG(3) << "var[" << var->GradVarName() << "] 's type is "
            << var->DataType();
    auto &group_info = next_group[var_dtype_str];
    int64_t var_size = -1;
    if (var->Var().IsType<framework::LoDTensor>()) {
      var_size = var->Var().Get<framework::LoDTensor>().numel();
    } else {
      VLOG(3) << "var " << var->Name()
              << " is not tensor or selected_rows, so skip it";
      continue;
    }
1196
    group_info.first.push_back(tensor_real_index);
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
    group_info.second += framework::SizeOfType(var_dtype) * var_size;

    if (group_limit_index.find(var_dtype_str) == group_limit_index.end()) {
      // means it is the first var of var_dtype
      group_limit_index[var_dtype_str] = 0;
    }
    auto &cur_limit_index = group_limit_index[var_dtype_str];
    if (group_info.second >= group_size_limits[cur_limit_index]) {
      // exceed group capacity and create a new group
      res.emplace_back(std::move(group_info.first));
      group_info = std::pair<std::vector<size_t>, size_t>();
      cur_limit_index =
          (std::min)(cur_limit_index + 1, group_size_limits.size() - 1);
    }
  }

  // add the final groups
  for (auto &e : next_group) {
    auto &group_info = e.second;
    if (!group_info.first.empty()) {
      res.emplace_back(std::move(group_info.first));
    }
  }

  for (const auto &group_index : res) {
    PADDLE_ENFORCE_NE(
        group_index.empty(), true,
        platform::errors::PreconditionNotMet(
            "AssignGroupBySize construct empty group, please check."));
  }
1227 1228 1229 1230 1231 1232
  if (tensor_indices.empty()) {
    std::sort(res.begin(), res.end(),
              [](const std::vector<size_t> &x, const std::vector<size_t> &y) {
                return x.front() < y.front();
              });
  }
1233 1234 1235 1236 1237 1238
  return res;
}
#endif

}  // namespace imperative
}  // namespace paddle