fused_attention_op.cu 32.3 KB
Newer Older
L
Li Min 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <cuda_fp16.h>
16

L
Li Min 已提交
17
#include <cub/cub.cuh>
18

L
Li Min 已提交
19 20
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
21 22 23 24
#include "paddle/fluid/operators/fused/attention_layer_norm.h"
#include "paddle/fluid/operators/fused/attn_gemm.h"
#include "paddle/fluid/operators/fused/fmha_ref.h"
#include "paddle/fluid/operators/fused/fused_dropout_helper.h"
25 26
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
27
#include "paddle/phi/api/include/tensor.h"
28 29
#include "paddle/phi/kernels/funcs/broadcast_function.h"
#include "paddle/phi/kernels/funcs/elementwise_functor.h"
30
#include "paddle/phi/kernels/funcs/math_function.h"
L
Li Min 已提交
31

32
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
33
#include "paddle/fluid/distributed/collective/ProcessGroup.h"
34 35 36 37
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
#endif

L
Li Min 已提交
38 39 40 41 42
namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

43 44 45
template <typename T>
static void AllReduce(framework::Tensor &tensor,  // NOLINT
                      const int ring_id,
L
Leo Chen 已提交
46
                      const phi::GPUContext &ctx) {
47 48
  if (ring_id == -1) return;
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
  auto map = paddle::distributed::ProcessGroupMapFromGid::getInstance();

  if (map->has(ring_id)) {
    paddle::distributed::ProcessGroup *pg = map->get(ring_id);
    std::vector<phi::DenseTensor> in_tensor;
    std::vector<phi::DenseTensor> out_tensor;
    in_tensor.push_back(tensor);
    out_tensor.push_back(tensor);
    paddle::distributed::AllreduceOptions opts;
    opts.reduce_op = distributed::ReduceOp::SUM;
    auto task = pg->AllReduce(in_tensor, out_tensor, opts);
    task->Wait();
  } else {
    auto dtype = platform::ToNCCLDataType(
        framework::TransToProtoVarType(tensor.dtype()));
    int64_t numel = tensor.numel();
    const void *sendbuff = tensor.data<T>();
    auto place = ctx.GetPlace();
67
    void *recvbuff = ctx.template Alloc<T>(&tensor, tensor.numel() * sizeof(T));
68 69 70 71 72
    auto comm = platform::NCCLCommContext::Instance().Get(ring_id, place);
    auto stream = ctx.stream();
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclAllReduce(
        sendbuff, recvbuff, numel, dtype, ncclSum, comm->comm(), stream));
  }
73 74 75 76 77 78 79
#else
  PADDLE_THROW(platform::errors::Unimplemented(
      "PaddlePaddle should compile with NCCL or RCCL when used tensor model "
      "parallel op."));
#endif
}

L
Li Min 已提交
80 81 82 83 84 85
template <typename T>
class FusedAttentionOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    using U = LayerNormParamType<T>;
    auto *input_x = ctx.Input<Tensor>("X");
86
    auto &dev_ctx = ctx.template device_context<phi::GPUContext>();
L
Li Min 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
    const auto pre_layer_norm = ctx.Attr<bool>("pre_layer_norm");
    const float epsilon = ctx.Attr<float>("epsilon");
    auto *ln_scale = ctx.Input<Tensor>("LnScale");
    auto *ln_bias = ctx.Input<Tensor>("LnBias");
    auto *ln_mean = ctx.Output<Tensor>("LnMean");
    auto *ln_var = ctx.Output<Tensor>("LnVariance");
    auto *ln_out = ctx.Output<Tensor>("LnOut");

    // x: qkv's input [batch_size, seq_len, dim_embed]
    // y: qkv's weight: [3, num_head, dim_head, dim_embed]
    auto *qkv_weight = ctx.Input<Tensor>("QKVW");
    auto *qkv_bias = ctx.Input<Tensor>("QKVBias");
    auto *qkv_out = ctx.Output<Tensor>("QKVOut");
    auto *qkv_bias_out = ctx.Output<Tensor>("QKVBiasOut");

    auto *src_mask = ctx.Input<Tensor>("SrcMask");
    auto *transpose_out_2 = ctx.Output<Tensor>("TransposeOut2");
104 105
    auto *cache_kv = ctx.Input<Tensor>("CacheKV");
    auto *cache_kv_out = ctx.Output<Tensor>("CacheKVOut");
L
Li Min 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
    auto *qk_out = ctx.Output<Tensor>("QKOut");
    auto *qktv_out = ctx.Output<Tensor>("QKTVOut");
    auto *softmax_out = ctx.Output<Tensor>("SoftmaxOut");
    auto *attn_dropout_mask_out = ctx.Output<Tensor>("AttnDropoutMaskOut");
    auto *attn_dropout_out = ctx.Output<Tensor>("AttnDropoutOut");
    auto *src_mask_out = ctx.Output<Tensor>("SrcMaskOut");
    auto *fmha_out = ctx.Output<Tensor>("FMHAOut");

    auto *out_linear_weight = ctx.Input<Tensor>("OutLinearW");
    auto *out_linear_bias = ctx.Input<Tensor>("OutLinearBias");
    auto *out_linear_out = ctx.Output<Tensor>("OutLinearOut");

    auto *ln_scale_2 = ctx.Input<Tensor>("Ln2Scale");
    auto *ln_bias_2 = ctx.Input<Tensor>("Ln2Bias");
    auto *dropout_mask_out = ctx.Output<Tensor>("DropoutMaskOut");
    auto *bias_dropout_residual_out =
        ctx.Output<Tensor>("BiasDropoutResidualOut");
    auto *ln_mean_2 = ctx.Output<Tensor>("Ln2Mean");
    auto *ln_var_2 = ctx.Output<Tensor>("Ln2Variance");
    const float ln_epsilon = ctx.Attr<float>("ln_epsilon");

    float attn_dropout_rate = ctx.Attr<float>("attn_dropout_rate");
L
Li Min 已提交
128
    bool is_test_1 = ctx.Attr<bool>("is_test");
L
Li Min 已提交
129 130 131 132 133 134 135
    auto &dropout_implementation_1 =
        ctx.Attr<std::string>("attn_dropout_implementation");
    bool is_upscale_in_train_1 =
        (dropout_implementation_1 == "upscale_in_train");
    auto *seed_1 = ctx.HasInput("Seed1") ? ctx.Input<Tensor>("Seed1") : nullptr;
    bool is_fix_seed_1 = ctx.Attr<bool>("attn_dropout_fix_seed");
    int seed_val_1 = ctx.Attr<int>("attn_dropout_seed");
136
    int ring_id = ctx.Attr<int>("ring_id");
L
Li Min 已提交
137 138 139 140 141 142 143 144 145 146

    // final output.
    auto *out = ctx.Output<Tensor>("Y");

    // get data ptr for qkv part.
    const auto input_x_dims = input_x->dims();
    const auto qkv_w_dims = qkv_weight->dims();

    auto *x_data = input_x->data<T>();
    auto *qkv_weight_data = qkv_weight->data<T>();
147
    auto *qkv_bias_data = (qkv_bias == nullptr) ? nullptr : qkv_bias->data<T>();
148 149
    auto *qkv_out_data =
        dev_ctx.template Alloc<T>(qkv_out, qkv_out->numel() * sizeof(T));
150
    auto *qkv_bias_out_data =
151 152 153 154
        (qkv_bias == nullptr)
            ? nullptr
            : dev_ctx.template Alloc<T>(qkv_bias_out,
                                        qkv_bias_out->numel() * sizeof(T));
L
Li Min 已提交
155 156

    // get data ptr for FMHA.
157 158
    auto *transpose_out_2_data = dev_ctx.template Alloc<T>(
        transpose_out_2, transpose_out_2->numel() * sizeof(T));
159 160 161
    auto *cache_kv_out_data =
        (cache_kv_out == nullptr)
            ? nullptr
162 163 164 165 166 167
            : dev_ctx.template Alloc<T>(cache_kv_out,
                                        cache_kv_out->numel() * sizeof(T));
    auto *qk_out_data =
        dev_ctx.template Alloc<T>(qk_out, qk_out->numel() * sizeof(T));
    auto *qktv_out_data =
        dev_ctx.template Alloc<T>(qktv_out, qktv_out->numel() * sizeof(T));
168
    auto *src_mask_out_data =
169 170 171 172 173 174 175 176 177 178 179 180 181
        (src_mask == nullptr)
            ? nullptr
            : dev_ctx.template Alloc<T>(src_mask_out,
                                        src_mask_out->numel() * sizeof(T));
    auto *softmax_out_data = dev_ctx.template Alloc<T>(
        softmax_out, softmax_out->numel() * sizeof(T));
    auto *attn_dropout_mask_out_data = dev_ctx.template Alloc<uint8_t>(
        attn_dropout_mask_out,
        attn_dropout_mask_out->numel() * sizeof(uint8_t));
    auto *attn_dropout_out_data = dev_ctx.template Alloc<T>(
        attn_dropout_out, attn_dropout_out->numel() * sizeof(T));
    auto *fmha_out_data =
        dev_ctx.template Alloc<T>(fmha_out, fmha_out->numel() * sizeof(T));
L
Li Min 已提交
182 183 184

    // get data ptr for out_linear.
    auto *out_linear_weight_data = out_linear_weight->data<T>();
185 186
    auto *out_linear_bias_data =
        (out_linear_bias == nullptr) ? nullptr : out_linear_bias->data<T>();
187 188
    auto *out_linear_out_data = dev_ctx.template Alloc<T>(
        out_linear_out, out_linear_out->numel() * sizeof(T));
L
Li Min 已提交
189 190

    // get data ptr for bias+dropout+residual+layernorm
191 192 193 194
    auto *dropout_mask_out_data = dev_ctx.template Alloc<uint8_t>(
        dropout_mask_out, dropout_mask_out->numel() * sizeof(uint8_t));
    auto *final_out_data =
        dev_ctx.template Alloc<T>(out, out->numel() * sizeof(T));
L
Li Min 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207

    int batch_size = input_x_dims[0];
    int max_seq_len = input_x_dims[1];
    int dim_embed = input_x_dims[2];

    int num_head = qkv_w_dims[1];
    int dim_head = qkv_w_dims[2];

    int bsz_seq = batch_size * max_seq_len;
    int hidden_size = num_head * dim_head;
    int output_size = 3 * hidden_size;
    int input_size = dim_embed;

208 209
    auto layer_norm_compute = AttnLayerNorm<T>(
        ctx.cuda_device_context(), epsilon, bsz_seq, dim_embed);
210 211 212 213 214

    bool compute_bias = true;
    if (qkv_bias == nullptr) {
      compute_bias = false;
    }
L
Li Min 已提交
215
    // (transA, transB, compute_bias) = (false, true, true)
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
    auto qkv_compute = AttnMatMul<T>(ctx.cuda_device_context(),
                                     false,
                                     true,
                                     bsz_seq,
                                     output_size,
                                     input_size,
                                     compute_bias);

    AttnDropoutParam attn_dropout_param(is_test_1,
                                        dropout_implementation_1,
                                        attn_dropout_rate,
                                        is_upscale_in_train_1,
                                        is_fix_seed_1,
                                        seed_val_1,
                                        seed_1);
    auto fmha_ref_compute = FMHARef<T>(ctx.cuda_device_context(),
                                       batch_size,
                                       max_seq_len,
                                       num_head,
                                       dim_head,
                                       attn_dropout_param);
L
Li Min 已提交
237 238 239

    output_size = hidden_size;
    // (transA, transB, compute_bias) = (false, false, false)
240 241 242 243 244
    // NOTE(Yuang Liu): For general input size == output size, change the
    // position won't have effects. For mp, the output size is mp_head * dkey
    // which is actually the input size. While the input size is hidden size,
    // which is actually the output size. So for out linear, switch the
    // input size and output size.
245 246 247 248 249 250 251
    auto out_linear_compute = AttnMatMul<T>(ctx.cuda_device_context(),
                                            false,
                                            false,
                                            bsz_seq,
                                            input_size,
                                            output_size,
                                            false);
L
Li Min 已提交
252 253
    DropoutParam dropout_param2(ctx, 0);
    FusedDropoutLayerNormHelper<T, uint8_t> fused_dropout_layernorm_helper(
254 255 256 257
        ctx.cuda_device_context(),
        bsz_seq,
        dim_embed,
        dropout_param2,
L
Li Min 已提交
258 259 260
        ln_epsilon);

    if (pre_layer_norm) {
L
Li Min 已提交
261 262 263
      auto *ln_scale_data =
          (ln_scale == nullptr ? nullptr : ln_scale->data<U>());
      auto *ln_bias_data = (ln_bias == nullptr ? nullptr : ln_bias->data<U>());
264 265 266 267 268 269
      auto *ln_mean_data =
          dev_ctx.template Alloc<U>(ln_mean, ln_mean->numel() * sizeof(U));
      auto *ln_var_data =
          dev_ctx.template Alloc<U>(ln_var, ln_var->numel() * sizeof(U));
      auto *ln_out_data =
          dev_ctx.template Alloc<T>(ln_out, ln_out->numel() * sizeof(T));
L
Li Min 已提交
270

271 272 273 274 275 276 277 278
      layer_norm_compute.ComputeForward(x_data,
                                        ln_scale_data,
                                        ln_bias_data,
                                        ln_out_data,
                                        ln_mean_data,
                                        ln_var_data);
      qkv_compute.ComputeForward(
          qkv_weight, ln_out, qkv_bias, qkv_out, qkv_bias_out);
L
Li Min 已提交
279
    } else {
280 281
      qkv_compute.ComputeForward(
          qkv_weight, input_x, qkv_bias, qkv_out, qkv_bias_out);
L
Li Min 已提交
282
    }
283
    if (qkv_bias == nullptr) {
284 285 286 287 288 289 290 291 292 293 294 295
      fmha_ref_compute.ComputeForward(*qkv_out,
                                      cache_kv,
                                      src_mask,
                                      transpose_out_2,
                                      cache_kv_out,
                                      qk_out,
                                      src_mask_out,
                                      softmax_out,
                                      attn_dropout_mask_out,
                                      attn_dropout_out,
                                      qktv_out,
                                      fmha_out);
296
    } else {
297 298 299 300 301 302 303 304 305 306 307 308
      fmha_ref_compute.ComputeForward(*qkv_bias_out,
                                      cache_kv,
                                      src_mask,
                                      transpose_out_2,
                                      cache_kv_out,
                                      qk_out,
                                      src_mask_out,
                                      softmax_out,
                                      attn_dropout_mask_out,
                                      attn_dropout_out,
                                      qktv_out,
                                      fmha_out);
309
    }
310

L
Li Min 已提交
311 312 313
    // fmha_out: [batch_size, seq_len, num_head, head_dim]
    // weight:   [embed_dim, embed_dim]
    // out_linear_out: [batch_size, seq_len, embed_dim]
314 315
    out_linear_compute.ComputeForward(
        out_linear_weight, fmha_out, nullptr, out_linear_out, nullptr);
316 317 318
    // tensor model parallel
    AllReduce<T>(*out_linear_out, ring_id, ctx.cuda_device_context());

319 320
    bool add_residual = ctx.Attr<bool>("add_residual");
    const T *residual_ptr = add_residual ? x_data : nullptr;
L
Li Min 已提交
321 322 323
    if (pre_layer_norm) {
      // output = (residual + dropout(input + bias))
      fused_dropout_layernorm_helper.ResidualDropoutBias(
324 325 326 327 328 329
          ctx.cuda_device_context(),
          out_linear_out_data,
          residual_ptr,
          out_linear_bias_data,
          final_out_data,
          dropout_mask_out_data);
L
Li Min 已提交
330
    } else {
331
      // TODO(Xreki): support post layer_norm case when add_residual is false.
332 333
      PADDLE_ENFORCE_EQ(add_residual,
                        true,
334 335 336 337 338 339
                        platform::errors::InvalidArgument(
                            "Attribute add_residual is expected to be true "
                            "when pre_layer_norm is false."));

      const U *ln_scale_2_ptr = ln_scale_2 ? ln_scale_2->data<U>() : nullptr;
      const U *ln_bias_2_ptr = ln_bias_2 ? ln_bias_2->data<U>() : nullptr;
340 341 342 343 344 345 346
      T *bias_dropout_residual_out_ptr = dev_ctx.template Alloc<T>(
          bias_dropout_residual_out,
          bias_dropout_residual_out->numel() * sizeof(T));
      U *ln_mean_2_ptr =
          dev_ctx.template Alloc<U>(ln_mean_2, ln_mean_2->numel() * sizeof(U));
      U *ln_var_2_ptr =
          dev_ctx.template Alloc<U>(ln_var_2, ln_var_2->numel() * sizeof(U));
L
Li Min 已提交
347 348
      // output = layernorm(residual + dropout(input + bias))
      fused_dropout_layernorm_helper.LayernormResidualDropoutBias(
349 350 351 352 353 354 355 356 357 358 359
          ctx.cuda_device_context(),
          out_linear_out_data,
          residual_ptr,
          out_linear_bias_data,
          ln_scale_2_ptr,
          ln_bias_2_ptr,
          bias_dropout_residual_out_ptr,
          dropout_mask_out_data,
          final_out_data,
          ln_mean_2_ptr,
          ln_var_2_ptr);
L
Li Min 已提交
360
    }
L
Li Min 已提交
361 362 363
  }
};

364 365 366 367 368 369 370 371 372 373
template <typename T>
class FusedAttentionGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    using U = LayerNormParamType<T>;
    const auto pre_layer_norm = ctx.Attr<bool>("pre_layer_norm");
    const float epsilon = ctx.Attr<float>("epsilon");
    const float ln2epsilon = ctx.Attr<float>("ln_epsilon");

    float attn_dropout_prob = ctx.Attr<float>("attn_dropout_rate");
374
    auto &dev_ctx = ctx.template device_context<phi::GPUContext>();
L
Li Min 已提交
375
    bool is_test_1 = ctx.Attr<bool>("is_test");
376 377 378 379 380 381 382
    auto &dropout_implementation_1 =
        ctx.Attr<std::string>("attn_dropout_implementation");
    bool is_upscale_in_train_1 =
        (dropout_implementation_1 == "upscale_in_train");
    auto *seed_1 = ctx.HasInput("Seed1") ? ctx.Input<Tensor>("Seed1") : nullptr;
    bool is_fix_seed_1 = ctx.Attr<bool>("attn_dropout_fix_seed");
    int seed_val_1 = ctx.Attr<int>("attn_dropout_seed");
383
    int ring_id = ctx.Attr<int>("ring_id");
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404

    // get inputs.
    auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    auto *d_y_data = d_y->data<T>();

    // fw input
    auto *input_x = ctx.Input<Tensor>("X");
    auto *ln_scale = ctx.Input<Tensor>("LnScale");
    auto *ln_2_scale = ctx.Input<Tensor>("Ln2Scale");
    auto *x_data = input_x->data<T>();
    auto *ln_scale_data = (ln_scale == nullptr ? nullptr : ln_scale->data<U>());
    auto *ln_2_scale_data =
        (ln_2_scale == nullptr ? nullptr : ln_2_scale->data<U>());
    // fw parameters.
    auto *src_mask = ctx.Input<Tensor>("SrcMask");
    auto *qkv_weight = ctx.Input<Tensor>("QKVW");
    auto *qkv_bias = ctx.Input<Tensor>("QKVBias");
    auto *out_linear_weight = ctx.Input<Tensor>("OutLinearW");
    auto *out_linear_bias = ctx.Input<Tensor>("OutLinearBias");
    auto *src_mask_data = (src_mask == nullptr ? nullptr : src_mask->data<T>());
    auto *qkv_weight_data = qkv_weight->data<T>();
405
    auto *qkv_bias_data = (qkv_bias == nullptr) ? nullptr : qkv_bias->data<T>();
406
    auto *out_linear_weight_data = out_linear_weight->data<T>();
407 408
    auto *out_linear_bias_data =
        (out_linear_bias == nullptr) ? nullptr : out_linear_bias->data<T>();
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429

    // fw output
    auto *fmha_out = ctx.Input<Tensor>("FMHAOut");
    auto *transpose_out_2 = ctx.Input<Tensor>("TransposeOut2");
    auto *qk_out = ctx.Input<Tensor>("QKOut");
    auto *qktv_out = ctx.Input<Tensor>("QKTVOut");
    auto *softmax_out = ctx.Input<Tensor>("SoftmaxOut");
    auto *attn_dropout_mask_out = ctx.Input<Tensor>("AttnDropoutMaskOut");
    auto *attn_dropout_out = ctx.Input<Tensor>("AttnDropoutOut");
    auto *src_mask_out = ctx.Input<Tensor>("SrcMaskOut");
    auto *out_linear_out = ctx.Input<Tensor>("OutLinearOut");
    auto *ln_2_mean = ctx.Input<Tensor>("Ln2Mean");
    auto *ln_2_var = ctx.Input<Tensor>("Ln2Variance");
    auto *dropout_mask_out = ctx.Input<Tensor>("DropoutMaskOut");
    auto *bias_dropout_residual_out =
        ctx.Input<Tensor>("BiasDropoutResidualOut");
    auto *fmha_out_data = fmha_out->data<T>();
    auto *transpose_out_2_data = transpose_out_2->data<T>();
    auto *qk_out_data = qk_out->data<T>();
    auto *qktv_out_data = qktv_out->data<T>();
    auto *softmax_out_data = softmax_out->data<T>();
430 431
    auto *src_mask_out_data =
        (src_mask == nullptr) ? nullptr : src_mask_out->data<T>();
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
    auto *out_linear_out_data = out_linear_out->data<T>();
    auto *dropout_mask_out_data = dropout_mask_out->data<uint8_t>();

    // output's grad
    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_qkv_out = ctx.Output<Tensor>(framework::GradVarName("QKVOut"));
    auto *d_qkv_bias_out =
        ctx.Output<Tensor>(framework::GradVarName("QKVBiasOut"));
    auto *d_qktv_out = ctx.Output<Tensor>(framework::GradVarName("QKTVOut"));
    auto *d_transpose_out_2 =
        ctx.Output<Tensor>(framework::GradVarName("TransposeOut2"));
    auto *d_qk_out = ctx.Output<Tensor>(framework::GradVarName("QKOut"));
    auto *d_softmax_out =
        ctx.Output<Tensor>(framework::GradVarName("SoftmaxOut"));
    auto *d_attn_dropout_out =
        ctx.Output<Tensor>(framework::GradVarName("AttnDropoutOut"));
    auto *d_src_mask_out =
        ctx.Output<Tensor>(framework::GradVarName("SrcMaskOut"));
    auto *d_fmha_out = ctx.Output<Tensor>(framework::GradVarName("FMHAOut"));
    auto *d_out_linear_out =
        ctx.Output<Tensor>(framework::GradVarName("OutLinearOut"));
    auto *d_bias_dropout_residual_out =
        ctx.Output<Tensor>(framework::GradVarName("BiasDropoutResidualOut"));
455
    auto *d_x_data = dev_ctx.template Alloc<T>(d_x, d_x->numel() * sizeof(T));
456 457 458 459
    // when qkv_bias is not nullptr, d_qkv_out is equals to d_qkv_bias_out, the
    // space can be reused.
    auto *d_qkv_out_data = (d_qkv_bias_out != nullptr)
                               ? nullptr
460 461
                               : dev_ctx.template Alloc<T>(
                                     d_qkv_out, d_qkv_out->numel() * sizeof(T));
462 463 464
    auto *d_qkv_bias_out_data =
        (d_qkv_bias_out == nullptr)
            ? nullptr
465 466 467 468 469 470 471 472 473 474 475 476
            : dev_ctx.template Alloc<T>(d_qkv_bias_out,
                                        d_qkv_bias_out->numel() * sizeof(T));
    auto *d_qktv_out_data =
        dev_ctx.template Alloc<T>(d_qktv_out, d_qktv_out->numel() * sizeof(T));
    auto *d_transpose_out_2_data = dev_ctx.template Alloc<T>(
        d_transpose_out_2, d_transpose_out_2->numel() * sizeof(T));
    auto *d_qk_out_data =
        dev_ctx.template Alloc<T>(d_qk_out, d_qk_out->numel() * sizeof(T));
    auto *d_softmax_out_data = dev_ctx.template Alloc<T>(
        d_softmax_out, d_softmax_out->numel() * sizeof(T));
    auto *d_attn_dropout_out_data = dev_ctx.template Alloc<T>(
        d_attn_dropout_out, d_attn_dropout_out->numel() * sizeof(T));
477
    auto *d_src_mask_out_data =
478 479 480 481 482 483 484 485
        (src_mask == nullptr)
            ? nullptr
            : dev_ctx.template Alloc<T>(d_src_mask_out,
                                        d_src_mask_out->numel() * sizeof(T));
    auto *d_fmha_out_data =
        dev_ctx.template Alloc<T>(d_fmha_out, d_fmha_out->numel() * sizeof(T));
    auto *d_out_linear_out_data = dev_ctx.template Alloc<T>(
        d_out_linear_out, d_out_linear_out->numel() * sizeof(T));
486 487 488 489 490 491 492 493 494 495

    // parameter grad
    auto *d_qkv_weight = ctx.Output<Tensor>(framework::GradVarName("QKVW"));
    auto *d_qkv_bias = ctx.Output<Tensor>(framework::GradVarName("QKVBias"));
    auto *d_out_linear_weight =
        ctx.Output<Tensor>(framework::GradVarName("OutLinearW"));
    auto *d_out_linear_bias =
        ctx.Output<Tensor>(framework::GradVarName("OutLinearBias"));
    auto *d_ln_2_scale = ctx.Output<Tensor>(framework::GradVarName("Ln2Scale"));
    auto *d_ln_2_bias = ctx.Output<Tensor>(framework::GradVarName("Ln2Bias"));
496

497 498 499 500 501 502 503 504 505
    auto *d_qkv_weight_data = dev_ctx.template Alloc<T>(
        d_qkv_weight, d_qkv_weight->numel() * sizeof(T));
    auto *d_qkv_bias_data =
        (d_qkv_bias == nullptr)
            ? nullptr
            : dev_ctx.template Alloc<T>(d_qkv_bias,
                                        d_qkv_bias->numel() * sizeof(T));
    auto *d_out_linear_weight_data = dev_ctx.template Alloc<T>(
        d_out_linear_weight, d_out_linear_weight->numel() * sizeof(T));
506
    auto *d_out_linear_bias_data =
507 508
        (d_out_linear_bias == nullptr)
            ? nullptr
509 510
            : dev_ctx.template Alloc<T>(d_out_linear_bias,
                                        d_out_linear_bias->numel() * sizeof(T));
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525

    const auto input_x_dims = input_x->dims();
    const auto qkv_w_dims = qkv_weight->dims();

    int batch_size = input_x_dims[0];
    int max_seq_len = input_x_dims[1];
    int dim_embed = input_x_dims[2];
    int num_head = qkv_w_dims[1];
    int dim_head = qkv_w_dims[2];

    int bsz_seq = batch_size * max_seq_len;
    int hidden_size = num_head * dim_head;
    int output_size = 3 * hidden_size;
    int input_size = dim_embed;

526
    bool add_residual = ctx.Attr<bool>("add_residual");
527
    Tensor d_residual;
528 529 530
    T *d_residual_data = nullptr;
    if (add_residual) {
      d_residual.Resize(input_x_dims);
531 532
      d_residual_data = dev_ctx.template Alloc<T>(
          &d_residual, d_residual.numel() * sizeof(T));
533
    }
534 535 536

    bool transA = false;
    bool transB = true;
537
    bool compute_qkv_bias = qkv_bias ? true : false;
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
    auto layer_norm_compute = AttnLayerNorm<T>(
        ctx.cuda_device_context(), epsilon, bsz_seq, dim_embed);
    auto qkv_compute = AttnMatMul<T>(ctx.cuda_device_context(),
                                     transA,
                                     transB,
                                     bsz_seq,
                                     output_size,
                                     input_size,
                                     compute_qkv_bias);
    AttnDropoutParam attn_dropout_param(is_test_1,
                                        dropout_implementation_1,
                                        attn_dropout_prob,
                                        is_upscale_in_train_1,
                                        is_fix_seed_1,
                                        seed_val_1,
                                        seed_1);
    auto fmha_ref_compute = FMHARef<T>(ctx.cuda_device_context(),
                                       batch_size,
                                       max_seq_len,
                                       num_head,
                                       dim_head,
                                       attn_dropout_param);
560 561 562
    output_size = hidden_size;
    transA = false;
    transB = false;
563
    bool compute_bias = false;
564
    // (b*s, num_head * dim_head) * (num_head * dim_head, dim_embed)
565 566 567 568 569 570 571
    auto out_linear_compute = AttnMatMul<T>(ctx.cuda_device_context(),
                                            transA,
                                            transB,
                                            bsz_seq,
                                            input_size,
                                            output_size,
                                            compute_bias);
572 573
    DropoutParam dropout_param2(ctx, 0);
    FusedDropoutLayerNormHelper<T, uint8_t> fused_dropout_layernorm_helper(
574 575 576 577
        ctx.cuda_device_context(),
        bsz_seq,
        dim_embed,
        dropout_param2,
578 579
        ln2epsilon);

L
Li Min 已提交
580 581
    if (pre_layer_norm) {
      fused_dropout_layernorm_helper.ResidualDropoutBiasGrad(
582 583 584 585 586 587
          ctx.cuda_device_context(),
          d_y_data,
          dropout_mask_out_data,
          d_out_linear_out_data,
          d_residual_data,
          d_out_linear_bias_data);
L
Li Min 已提交
588 589 590 591 592 593
    } else {
      auto *ln_2_mean_data = ln_2_mean->data<U>();
      auto *ln_2_var_data = ln_2_var->data<U>();
      auto *bias_dropout_residual_out_data =
          bias_dropout_residual_out->data<T>();
      auto *d_ln_2_scale_data =
594 595
          (d_ln_2_scale == nullptr
               ? nullptr
596 597
               : dev_ctx.template Alloc<U>(d_ln_2_scale,
                                           d_ln_2_scale->numel() * sizeof(U)));
L
Li Min 已提交
598
      auto *d_ln_2_bias_data =
599 600
          (d_ln_2_bias == nullptr
               ? nullptr
601 602 603 604 605
               : dev_ctx.template Alloc<U>(d_ln_2_bias,
                                           d_ln_2_bias->numel() * sizeof(U)));
      auto *d_bias_dropout_residual_out_data = dev_ctx.template Alloc<T>(
          d_bias_dropout_residual_out,
          d_bias_dropout_residual_out->numel() * sizeof(T));
L
Li Min 已提交
606 607

      fused_dropout_layernorm_helper.LayernormResidualDropoutBiasGrad(
608 609 610 611 612 613 614 615 616 617 618 619 620
          ctx.cuda_device_context(),
          d_y_data,
          bias_dropout_residual_out_data,
          dropout_mask_out_data,
          ln_2_scale_data,
          ln_2_mean_data,
          ln_2_var_data,
          d_bias_dropout_residual_out_data,
          d_ln_2_scale_data,
          d_ln_2_bias_data,
          d_out_linear_out_data,
          d_out_linear_bias_data,
          d_residual_data);
L
Li Min 已提交
621
    }
622

623 624 625 626 627 628
    out_linear_compute.ComputeBackward(fmha_out,
                                       out_linear_weight,
                                       d_out_linear_out,
                                       d_fmha_out,
                                       d_out_linear_weight,
                                       nullptr);
L
Li Min 已提交
629

630
    if (qkv_bias != nullptr) {
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
      fmha_ref_compute.ComputeBackward(*transpose_out_2,
                                       src_mask,
                                       *softmax_out,
                                       *attn_dropout_mask_out,
                                       *attn_dropout_out,
                                       *qk_out,
                                       *src_mask_out,
                                       *d_fmha_out,
                                       d_qktv_out,
                                       d_attn_dropout_out,
                                       d_softmax_out,
                                       d_src_mask_out,
                                       d_qk_out,
                                       d_transpose_out_2,
                                       nullptr,
                                       d_qkv_bias_out);
647
    } else {
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
      fmha_ref_compute.ComputeBackward(*transpose_out_2,
                                       src_mask,
                                       *softmax_out,
                                       *attn_dropout_mask_out,
                                       *attn_dropout_out,
                                       *qk_out,
                                       *src_mask_out,
                                       *d_fmha_out,
                                       d_qktv_out,
                                       d_attn_dropout_out,
                                       d_softmax_out,
                                       d_src_mask_out,
                                       d_qk_out,
                                       d_transpose_out_2,
                                       nullptr,
                                       d_qkv_out);
664
    }
665 666

    if (pre_layer_norm) {
667 668 669 670 671 672 673 674 675 676
      auto *ln_mean = ctx.Input<Tensor>("LnMean");
      auto *ln_var = ctx.Input<Tensor>("LnVariance");
      auto *ln_out = ctx.Input<Tensor>("LnOut");
      auto *ln_mean_data = ln_mean->data<U>();
      auto *ln_var_data = ln_var->data<U>();
      auto *ln_out_data = ln_out->data<T>();

      auto *d_ln_out = ctx.Output<Tensor>(framework::GradVarName("LnOut"));
      auto *d_ln_scale = ctx.Output<Tensor>(framework::GradVarName("LnScale"));
      auto *d_ln_bias = ctx.Output<Tensor>(framework::GradVarName("LnBias"));
677 678
      auto *d_ln_out_data =
          dev_ctx.template Alloc<T>(d_ln_out, d_ln_out->numel() * sizeof(T));
679
      auto *d_ln_scale_data =
680 681 682 683
          (d_ln_scale == nullptr
               ? nullptr
               : dev_ctx.template Alloc<U>(d_ln_scale,
                                           d_ln_scale->numel() * sizeof(U)));
684
      auto *d_ln_bias_data =
685 686 687 688
          (d_ln_bias == nullptr
               ? nullptr
               : dev_ctx.template Alloc<U>(d_ln_bias,
                                           d_ln_bias->numel() * sizeof(U)));
689
      if (qkv_bias != nullptr) {
690 691 692 693 694 695
        qkv_compute.ComputeBackward(ln_out,
                                    qkv_weight,
                                    d_qkv_bias_out,
                                    d_ln_out,
                                    d_qkv_weight,
                                    d_qkv_bias);
696
      } else {
697 698
        qkv_compute.ComputeBackward(
            ln_out, qkv_weight, d_qkv_out, d_ln_out, d_qkv_weight, d_qkv_bias);
699
      }
700 701
      // tensor model parallel
      AllReduce<T>(*d_ln_out, ring_id, ctx.cuda_device_context());
702 703 704 705 706 707 708 709
      layer_norm_compute.ComputeBackward(x_data,
                                         d_ln_out_data,
                                         ln_scale_data,
                                         ln_mean_data,
                                         ln_var_data,
                                         d_x_data,
                                         d_ln_scale_data,
                                         d_ln_bias_data);
710
    } else {
711
      if (qkv_bias != nullptr) {
712 713
        qkv_compute.ComputeBackward(
            input_x, qkv_weight, d_qkv_bias_out, d_x, d_qkv_weight, d_qkv_bias);
714
      } else {
715 716
        qkv_compute.ComputeBackward(
            input_x, qkv_weight, d_qkv_out, d_x, d_qkv_weight, d_qkv_bias);
717
      }
718 719
      // tensor model parallel
      AllReduce<T>(*d_x, ring_id, ctx.cuda_device_context());
720
    }
721 722 723 724 725

    if (add_residual) {
      // gradient accumulation
      std::vector<const Tensor *> ins = {&d_residual, d_x};
      std::vector<Tensor *> outs = {d_x};
726 727
      phi::funcs::ElementwiseKernel<T>(
          ctx.cuda_device_context(), ins, &outs, phi::funcs::AddFunctor<T>());
728
    }
729 730 731
  }
};

L
Li Min 已提交
732 733 734 735 736
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;
737 738
REGISTER_OP_CUDA_KERNEL(fused_attention,
                        ops::FusedAttentionOpKernel<float>,
L
Li Min 已提交
739 740
                        ops::FusedAttentionOpKernel<double>,
                        ops::FusedAttentionOpKernel<plat::float16>);
741 742 743 744
REGISTER_OP_CUDA_KERNEL(fused_attention_grad,
                        ops::FusedAttentionGradKernel<float>,
                        ops::FusedAttentionGradKernel<double>,
                        ops::FusedAttentionGradKernel<plat::float16>);