process_mesh.py 9.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
16 17 18

import numpy as np

19
import paddle
20
from paddle.fluid import core
21

22 23 24
# Use to store the previous and current process mesh
_g_previous_process_mesh = None
_g_current_process_mesh = None
25 26


27 28 29
def get_current_process_mesh():
    global _g_current_process_mesh
    return _g_current_process_mesh
30 31


32 33 34 35 36
def set_current_process_mesh(process_mesh):
    global _g_previous_process_mesh
    global _g_current_process_mesh
    _g_previous_process_mesh = _g_current_process_mesh
    _g_current_process_mesh = process_mesh
37 38


39 40 41 42
def reset_current_process_mesh():
    global _g_previous_process_mesh
    global _g_current_process_mesh
    _g_current_process_mesh = _g_previous_process_mesh
43

44

45
class ProcessMesh(core.ProcessMesh):
46
    """
47
    The `ProcessMesh` object describes the Cartesian topology of the used processes.
48

49
    Args:
50
        mesh (list|numpy.array): an n-dimensional array describes the topology
51 52 53
            of the processes.
        dim_names (list, optional): the i-th element of this list gives the name of the
            i-th dimension of the mesh.
54

55 56 57 58
    Examples:
        .. code-block:: python

            import paddle
59

60 61
            mesh = auto.ProcessMesh([[2, 4, 5], [0, 1, 3]], dim_names=["x", "y"])
            assert mesh.shape == [2, 3]
62
            assert mesh.process_ids == [2, 4, 5, 0, 1, 3]
63 64 65

    """

66 67 68 69 70 71 72 73
    def __init__(self, mesh=None, dim_names=None, shape=None, process_ids=None):
        # Use shape and process_ids just for compatibility
        # Users should not use these directly
        if mesh is None:
            assert shape is not None
            assert process_ids is not None
            mesh = np.array(process_ids).reshape(shape)

74
        if not isinstance(mesh, list) and not isinstance(mesh, np.ndarray):
75
            raise ValueError(
76 77
                'The mesh must be an instance of list or np.ndarray.'
            )
78 79 80
        if isinstance(mesh, list):
            mesh = np.array(mesh)

81 82 83
        if dim_names is not None and not isinstance(dim_names, list):
            raise ValueError('The dim_names must be an instance of list.')

84 85 86 87
        self._mesh = mesh
        self._shape = list(self._mesh.shape)
        self._process_ids = self._mesh.flatten().tolist()

88 89 90 91 92 93
        assert all(
            isinstance(p, int) for p in self._process_ids
        ), "All elements of the mesh must be integer"
        assert (
            min(self._process_ids) >= 0
        ), 'All elements of the mesh must be >= 0.'
94 95
        unique_process_ids = set(self._process_ids)
        assert len(unique_process_ids) == len(
96 97
            self._process_ids
        ), 'All elements of the mesh must be unique.'
98 99

        if dim_names is not None:
100 101 102
            assert len(dim_names) == len(
                self._shape
            ), "The length of dims_names must be same as the shape of the mesh."
103 104 105 106
            self._dim_names = copy.deepcopy(dim_names)
        else:
            self._dim_names = ["d" + str(i) for i in range(len(self._shape))]
        unique_dim_names = set(self._dim_names)
107 108 109
        assert len(unique_dim_names) == len(
            self._dim_names
        ), 'All dim_names {} must be unique.'.format(dim_names)
110

111 112 113 114 115
        # Follow the requirement for using pybind11
        core.ProcessMesh.__init__(
            self, self._shape, self._process_ids, self._dim_names
        )

116
        # Store all process meshes
117
        from .dist_context import get_default_distributed_context
118

119 120
        default_dist_cxt = get_default_distributed_context()
        default_dist_cxt.add_process_mesh(self)
121
        # Add new processes to process group 0
122
        from .process_group import get_process_group
123

124
        pg0 = get_process_group(0)
125
        pg0.add_ranks(self.process_ids)
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152

    @property
    def mesh(self):
        """
        Get the underlying mesh of ProcessMesh.
        """
        return self._mesh

    def __getitem__(self, index):
        if isinstance(index, tuple):
            new_dim_names = []
            for i, item in enumerate(index):
                if isinstance(item, slice):
                    new_dim_names.append(self._dim_names[i])
            new_mesh = self._mesh[index]
            if new_mesh.shape:
                return ProcessMesh(new_mesh, new_dim_names)
            else:
                # Wrap a scalar into a list but without dim_names
                return ProcessMesh([new_mesh])
        elif isinstance(index, slice):
            new_mesh = self._mesh[index]
            new_dim_names = self._dim_names
            return ProcessMesh(new_mesh, new_dim_names)
        else:
            new_mesh = self._mesh[index]
            new_dim_names = self._dim_names[1:]
153 154 155 156
            if new_mesh.shape:
                return ProcessMesh(new_mesh, new_dim_names)
            else:
                return ProcessMesh([new_mesh])
157 158 159

    def __enter__(self):
        set_current_process_mesh(self)
160
        default_prog = paddle.static.default_main_program()
161 162 163 164 165 166
        cur_block = default_prog.current_block()
        self._old_var_names = list(cur_block.vars.keys())
        self._old_op_size = len(cur_block.ops)

    def __exit__(self, exc_type, exc_value, exc_traceback):
        from .dist_op import DistributedOperator
167
        from .dist_tensor import DistributedTensor
168

169
        default_prog = paddle.static.default_main_program()
170 171 172 173
        cur_block = default_prog.current_block()
        new_var_names = list(cur_block.vars.keys())
        new_op_size = len(cur_block.ops)
        from .dist_context import get_default_distributed_context
174

175 176 177 178 179
        default_dist_ctx = get_default_distributed_context()
        for name in new_var_names:
            if name not in self._old_var_names:
                tensor = cur_block.vars[name]
                dist_tensor = default_dist_ctx.get_dist_tensor_for_program(
180 181
                    tensor
                )
182
                if dist_tensor is None:
183 184
                    dist_tensor = DistributedTensor(cur_block.vars[name])
                    dist_tensor.dist_attr.process_mesh = self
185 186 187 188 189 190 191 192 193 194 195
                    dist_tensor.dist_attr.mark_annotated("process_mesh")
                    default_dist_ctx.add_dist_tensor_for_program(dist_tensor)
                else:
                    if dist_tensor.dist_attr.process_mesh is None:
                        dist_tensor.dist_attr.process_mesh = self
                        dist_tensor.dist_attr.mark_annotated("process_mesh")

        for idx in range(self._old_op_size, new_op_size):
            op = cur_block.ops[idx]
            dist_op = default_dist_ctx.get_dist_op_for_program(op)
            if dist_op is None:
196 197
                dist_op = DistributedOperator(op)
                dist_op.dist_attr.process_mesh = self
198 199 200 201 202 203 204
                dist_op.dist_attr.mark_annotated("process_mesh")
                default_dist_ctx.add_dist_op_for_program(dist_op)
            else:
                if dist_op.dist_attr.process_mesh is None:
                    dist_op.dist_attr.process_mesh = self
                    dist_op.dist_attr.mark_annotated("process_mesh")
        reset_current_process_mesh()
205

206 207 208 209 210 211 212
    def __deepcopy__(self, memo):
        if id(self) in memo:
            return memo[id(self)]
        new_process_mesh = ProcessMesh(np.array(self.mesh), self.dim_names)
        memo[id(self)] = new_process_mesh
        return new_process_mesh

213
    def __eq__(self, other):
214
        if not isinstance(other, (ProcessMesh, core.ProcessMesh)):
215
            return False
216
        if self.shape != other.shape or self.process_ids != other.process_ids:
217 218 219 220 221 222 223
            return False
        return True

    def __ne__(self, other):
        return not self.__eq__(other)

    def __str__(self):
224
        str = "shape {}, process_ids {}, dim_nams {}".format(
225 226
            self.shape, self.process_ids, self.dim_names
        )
227
        return str
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275


def compute_compatible_process_mesh(process_mesh_list):
    """Compute the compatible process mesh given a list of process meshes."""
    if not process_mesh_list:
        return None

    def _compute_compatible_process_mesh_of_two(pm1, pm2):
        if pm1 is None:
            return True, pm2
        if pm2 is None:
            return True, pm1
        if pm1 == pm2:
            return True, pm1
        if pm1.process_ids == pm2.process_ids:
            if len(pm1.shape) >= len(pm2.shape):
                return True, pm1
            else:
                return True, pm2
        process_set1 = set(pm1.process_ids)
        process_set2 = set(pm2.process_ids)
        if process_set1.issubset(process_set2):
            return True, pm2
        if process_set2.issubset(process_set1):
            return True, pm1
        return False, None

    compatible_result = None
    for process_mesh in process_mesh_list:
        compatible, compatible_result = _compute_compatible_process_mesh_of_two(
            compatible_result, process_mesh
        )
        if not compatible:
            return None
    return copy.deepcopy(compatible_result)


def merge_process_meshes(process_meshes):
    """Merge a list of process meshes."""
    merged_process_mesh = None
    merged_process_ids = set()
    for process_mesh in process_meshes:
        if process_mesh is not None:
            process_ids = set(process_mesh.process_ids)
            merged_process_ids = merged_process_ids.union(process_ids)
    if len(merged_process_ids) != 0:
        merged_process_mesh = ProcessMesh(list(merged_process_ids))
    return merged_process_mesh