tensorrt_engine_op.h 8.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once

#ifdef PADDLE_WITH_CUDA

G
gongweibao 已提交
19 20 21
#include <string>
#include <vector>

N
nhzlx 已提交
22
#include "paddle/fluid/framework/op_registry.h"
23 24
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/inference/analysis/helper.h"
N
nhzlx 已提交
25
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
26 27 28
#include "paddle/fluid/inference/tensorrt/engine.h"

namespace paddle {
29 30

DECLARE_int32(tensorrt_engine_batch_size);
31 32
DECLARE_int32(tensorrt_max_batch_size);
DECLARE_int32(tensorrt_workspace_size);
33

34 35
namespace operators {

N
nhzlx 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
using FluidDT = framework::proto::VarType_Type;
using TRT_DT = nvinfer1::DataType;

namespace {

TRT_DT FluidDataType2TRT(FluidDT type) {
  switch (type) {
    case FluidDT::VarType_Type_FP32:
      return TRT_DT::kFLOAT;
    case FluidDT::VarType_Type_INT32:
      return TRT_DT::kINT32;
    default:
      return TRT_DT::kINT32;
  }
  PADDLE_THROW("unkown type");
  return TRT_DT::kINT32;
}

nvinfer1::Dims Vec2TRT_Dims(const std::vector<int64_t>& shape) {
  PADDLE_ENFORCE_GT(shape.size(), 1UL,
                    "TensorRT' tensor input requires at least 2 dimensions");
  PADDLE_ENFORCE_LE(shape.size(), 4UL,
                    "TensorRT' tensor input requires at most 4 dimensions");
59 60 61 62
  PADDLE_ENFORCE(shape.size() == 4UL || shape.size() == 2UL);
  if (shape.size() == 4UL)
    return nvinfer1::DimsCHW(shape[1], shape[2], shape[3]);
  return nvinfer1::DimsCHW(shape[1], 1, 1);
N
nhzlx 已提交
63 64 65 66
}

}  // namespace

Y
Yan Chunwei 已提交
67 68 69
using inference::Singleton;
using inference::tensorrt::TRT_EngineManager;

70 71 72 73 74 75 76 77 78
class TensorRTEngineOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {}

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
79
    auto input0 = ctx.Inputs("Xs").front();
80
    framework::OpKernelType kt = framework::OpKernelType(
81 82 83 84
        framework::ToDataType(ctx.scope()
                                  .FindVar(input0)
                                  ->GetMutable<framework::LoDTensor>()
                                  ->type()),
N
nhzlx 已提交
85
        ctx.GetPlace());
86 87 88 89 90 91 92 93
    return kt;
  }
};

template <typename DeviceContext, typename T>
class TensorRTEngineKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
Y
Yan Chunwei 已提交
94 95
    auto engine_name = context.Attr<std::string>("engine_uniq_key");
    if (!Singleton<TRT_EngineManager>::Global().HasEngine(engine_name)) {
96 97
      Prepare(context);
    }
Y
Yan Chunwei 已提交
98
    auto* engine = Singleton<TRT_EngineManager>::Global().Get(engine_name);
99 100
    auto input_names = context.op().Inputs("Xs");
    PADDLE_ENFORCE(!input_names.empty(), "should pass more than one inputs");
101
    PADDLE_ENFORCE_LE(FLAGS_tensorrt_engine_batch_size,
102
                      FLAGS_tensorrt_max_batch_size);
103

104 105 106 107 108 109 110 111
    std::vector<std::string> output_maps =
        context.Attr<std::vector<std::string>>("output_name_mapping");

    auto params = context.Attr<std::vector<std::string>>("parameters");
    std::unordered_set<std::string> parameters;
    for (const auto& param : params) {
      parameters.insert(param);
    }
112 113
    // Convert input tensor from fluid to engine.
    for (const auto& x : context.Inputs("Xs")) {
114
      if (parameters.count(x)) continue;
115
      // convert input and copy to TRT engine's buffer
116 117
      auto& t = inference::analysis::GetFromScope<framework::LoDTensor>(
          context.scope(), x);
118
      if (platform::is_cpu_place(t.place())) {
Y
Yan Chunwei 已提交
119 120
        engine->SetInputFromCPU(x, static_cast<const void*>(t.data<void>()),
                                t.memory_size());
121
      } else {
Y
Yan Chunwei 已提交
122 123
        engine->SetInputFromGPU(x, static_cast<const void*>(t.data<void>()),
                                t.memory_size());
124 125 126
      }
    }
    // Execute the engine.
127 128
    PADDLE_ENFORCE_GT(FLAGS_tensorrt_engine_batch_size, 0);
    engine->Execute(FLAGS_tensorrt_engine_batch_size);
129

130
    // Convert output tensor from engine to fluid
131
    int output_index = 0;
N
nhzlx 已提交
132
    VLOG(4) << "TensorRT Engine Op Outputs:";
133
    for (const auto& y : context.Outputs("Ys")) {
N
nhzlx 已提交
134
      VLOG(4) << y;
135
      // convert output and copy to fluid.
136
      nvinfer1::ITensor* trt_t = engine->GetITensor(output_maps[output_index]);
137 138
      auto dims = trt_t->getDimensions();
      // Use the output ITensor's dims to reshape the Fluid Tensor.
139 140 141 142 143 144
      // The ITensor doesn't contain the batch size dim.
      std::vector<int> ddim;
      ddim.push_back(FLAGS_tensorrt_engine_batch_size);
      for (int i = 0; i < dims.nbDims; i++) {
        ddim.push_back(dims.d[i]);
      }
145 146 147 148

      auto* fluid_v = context.scope().FindVar(y);
      PADDLE_ENFORCE_NOT_NULL(fluid_v, "no output variable called %s", y);
      auto* fluid_t = fluid_v->GetMutable<framework::LoDTensor>();
N
nhzlx 已提交
149

150
      fluid_t->Resize(framework::make_ddim(ddim));
151

152 153 154 155
      // TODO(Superjomn) find some way to determine which device to output the
      // tensor.
      // if (platform::is_cpu_place(fluid_t->place())) {
      // TODO(Superjomn) change this float to dtype size.
N
nhzlx 已提交
156 157
      auto size = inference::analysis::AccuDims(dims.d, dims.nbDims) *
                  FLAGS_tensorrt_engine_batch_size;
N
nhzlx 已提交
158 159 160 161 162
      engine->GetOutputInGPU(
          output_maps[output_index],
          fluid_t->mutable_data<float>(platform::CUDAPlace(
              boost::get<platform::CUDAPlace>(context.GetPlace()).device)),
          size * sizeof(float));
N
nhzlx 已提交
163

164
      output_index += 1;
165
    }
166

Y
Yan Chunwei 已提交
167
    cudaStreamSynchronize(*engine->stream());
168 169 170
  }

 protected:
N
nhzlx 已提交
171 172 173 174 175
  void Prepare(const framework::ExecutionContext& context) const {
    VLOG(4) << "Prepare engine";
    // Get the ProgramDesc and pass to convert.
    framework::proto::BlockDesc block_desc;
    block_desc.ParseFromString(context.Attr<std::string>("subgraph"));
176 177
    int max_batch = FLAGS_tensorrt_max_batch_size;
    auto max_workspace = FLAGS_tensorrt_workspace_size;
N
nhzlx 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
    auto params = context.Attr<std::vector<std::string>>("parameters");
    std::unordered_set<std::string> parameters;
    for (const auto& param : params) {
      parameters.insert(param);
    }

    std::vector<std::string> output_maps =
        context.Attr<std::vector<std::string>>("output_name_mapping");

    // TODO(Superjomn) replace this with a different stream
    auto* engine = Singleton<TRT_EngineManager>::Global().Create(
        max_batch, max_workspace, nullptr /*engine hold its own stream*/,
        context.Attr<std::string>("engine_uniq_key"),
        boost::get<platform::CUDAPlace>(context.GetPlace()).device);

    engine->InitNetwork();

    framework::BlockDesc block(nullptr /*programdesc*/, &block_desc);
    VLOG(4) << "parsed var size " << block.AllVars().size();
    // Add inputs
    VLOG(4) << "declare inputs";
    for (auto& input : context.Inputs("Xs")) {
      if (parameters.count(input)) continue;
      VLOG(4) << "declare input " << input;
      auto* var = block.FindVar(input);
      // TensorRT engine need to create parameters. The parameter's description
      // should be set in
      PADDLE_ENFORCE(var, "no variable called %s", input);
      PADDLE_ENFORCE_EQ(var->GetType(), FluidDT::VarType_Type_LOD_TENSOR,
                        "TensorRT engine only takes LoDTensor as input");
      auto shape = var->GetShape();
      // For the special batch_size placeholder -1, drop it and pass the real
      // shape of data.
      // TODO(Superjomn) fix this with batch broadcast, or it can't handle
      // variational batch size.
      if (shape[0] == -1) {
        shape[0] = FLAGS_tensorrt_engine_batch_size;
      }
      engine->DeclareInput(
          input, FluidDataType2TRT(
                     var->Proto()->type().lod_tensor().tensor().data_type()),
          Vec2TRT_Dims(shape));
    }

    inference::Singleton<inference::tensorrt::OpConverter>::Global()
        .ConvertBlock(block_desc, parameters, context.scope(), engine);

    // Add outputs
    for (auto& output : output_maps) {
      engine->DeclareOutput(output);
    }

    engine->FreezeNetwork();
  }
232 233 234 235 236 237
};

}  // namespace operators
}  // namespace paddle

#endif  // PADDLE_WITH_CUDA