optimizer.py 10.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.fluid.optimizer import Optimizer
from paddle.fluid.regularizer import L1DecayRegularizer
from paddle.fluid.regularizer import L2DecayRegularizer
from paddle.fluid import core
18
from paddle.fluid import framework
19
from paddle.fluid.framework import program_guard
20 21 22 23
from paddle.fluid import unique_name
from paddle.fluid import layers
from paddle.fluid.layer_helper import LayerHelper
import warnings
W
wanghuancoder 已提交
24
from paddle import _C_ops
25 26 27 28 29

__all__ = ['Momentum']


class Momentum(Optimizer):
30
    r"""
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

        &\quad   param = param - (gradient + mu * velocity) * learning\_rate

        & else:

        &\quad   param = param - learning\_rate * velocity

    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
        momentum (float): Momentum factor
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
        use_nesterov (bool, optional): Enables Nesterov momentum, default is false.
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
67 68 69
        multi_precision (bool, optional): Whether to use multi-precision during weight updating. Default is false.
        rescale_grad (float, optional): Multiply the gradient with `rescale_grad` before updating. \
            Often choose to be ``1.0/batch_size``.
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import numpy as np

            paddle.enable_static()

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = paddle.static.data(name='x', shape=[1, 13], dtype='float32')
                y = paddle.static.data(name='y', shape=[1], dtype='float32')
                linear = paddle.nn.Linear(13, 1)
                y_predict = linear(x)
                cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
                avg_cost = paddle.mean(cost)

                moment_optimizer = fluid.contrib.optimizer.Momentum(learning_rate=0.001, momentum=0.9)
                moment_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(paddle.static.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

    """
    _velocity_acc_str = "velocity"

    def __init__(self,
                 learning_rate,
                 momentum,
                 parameter_list=None,
                 use_nesterov=False,
                 regularization=None,
                 grad_clip=None,
114 115
                 multi_precision=False,
                 rescale_grad=1.0,
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
                 name=None):
        assert learning_rate is not None
        assert momentum is not None
        predicate = lambda regular: isinstance(regular, L2DecayRegularizer)
        py_regular = None if predicate(regularization) else regularization
        super(Momentum, self).__init__(
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=py_regular,
            grad_clip=grad_clip,
            name=name)
        self.type = "momentum"
        self._momentum = momentum
        self._use_nesterov = bool(use_nesterov)
        self._regularization_method = ""
        self._regularization_coeff = 0
        if (isinstance(regularization, L2DecayRegularizer)):
            self._regularization_method = "l2_decay"
            self._regularization_coeff = regularization._regularization_coeff
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
        self._multi_precision = multi_precision
        self._rescale_grad = rescale_grad
        self._master_weights = {}

    def _create_master_weight(self, param):
        assert isinstance(self.helper, LayerHelper)

        var_name = param.name + "_fp32_master"
        var_name = unique_name.generate(var_name)
        var = layers.create_global_var(
            name=var_name,
            shape=param.shape,
            value=0,
            dtype='float32',
            persistable=True)
        block = self.helper.startup_program.global_block()
        block.append_op(
            type="cast",
            inputs={"X": [param]},
            outputs={"Out": [var]},
            attrs={
                "in_dtype": param.dtype,
                "out_dtype": core.VarDesc.VarType.FP32
            })
        self._master_weights[param.name] = var
        return var

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
        find_master = self._multi_precision and param.dtype == core.VarDesc.VarType.FP16
        target_param = self._master_weights[
            param.name] if find_master else param
        target_name = target_param.name
        if (name not in self._accumulators or
                target_name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, target_name))
        return self._accumulators[name][target_name]
183 184 185 186 187

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
188 189 190 191 192 193 194 195 196
            if self._multi_precision and p.dtype == core.VarDesc.VarType.FP16:
                master_p = self._create_master_weight(p)
                self._add_accumulator(self._velocity_acc_str, master_p)
                continue
            if p.dtype == core.VarDesc.VarType.FP16 and not self._multi_precision:
                warnings.warn(
                    "Accumulating with FP16 in optimizer can lead to poor accuracy or slow convergence."
                    "Consider using multi_precision=True option of the Momentum optimizer."
                )
197 198 199 200 201 202 203 204 205 206
            self._add_accumulator(self._velocity_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        lr = self._create_param_lr(param_and_grad)

        if framework.in_dygraph_mode():
W
wanghuancoder 已提交
207
            _, _ = _C_ops.momentum(
208 209 210 211 212 213 214
                param_and_grad[0], param_and_grad[1], velocity_acc, lr,
                param_and_grad[0], velocity_acc, 'mu', self._momentum,
                'use_nesterov', self._use_nesterov, 'regularization_method',
                self._regularization_method, 'regularization_coeff',
                self._regularization_coeff)
            return None

215 216 217 218
        find_master = self._multi_precision and param_and_grad[
            0].dtype == core.VarDesc.VarType.FP16
        master_weight = (self._master_weights[param_and_grad[0].name]
                         if find_master else None)
219 220 221 222
        attrs = {
            "mu": self._momentum,
            "use_nesterov": self._use_nesterov,
            "regularization_method": self._regularization_method,
223 224 225
            "regularization_coeff": self._regularization_coeff,
            "multi_precision": find_master,
            "rescale_grad": self._rescale_grad
226 227 228 229 230 231 232 233 234 235 236
        }
        inputs = {
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
            "Velocity": [velocity_acc],
            "LearningRate": [lr]
        }
        outputs = {
            "ParamOut": [param_and_grad[0]],
            "VelocityOut": [velocity_acc]
        }
237 238 239 240 241

        if find_master:
            inputs["MasterParam"] = master_weight
            outputs["MasterParamOut"] = master_weight

242 243 244 245 246 247 248 249 250
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
            stop_gradient=True)

        return momentum_op