test_frontend.py 6.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
#!/usr/bin/env python3

# Copyright (c) 2021 CINN Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.fluid as fluid
from cinn.frontend import *
from cinn import Target
from cinn.framework import *
import unittest
import cinn
from cinn import runtime
from cinn import ir
from cinn import lang
from cinn.common import *
import numpy as np
import sys

assert len(sys.argv) == 1 + 2 + 1  # model and enable_gpu count
enable_gpu = sys.argv.pop()
multi_fc_model_dir = sys.argv.pop()
naive_model_dir = sys.argv.pop()
""" class TestFrontend(unittest.TestCase):
    def setUp(self):
        if enable_gpu == "ON":
            self.target = DefaultNVGPUTarget()
        else:
            self.target = DefaultHostTarget()

    def paddle_verify(self, result):
        paddle.enable_static()

        a = static.data(name='A', shape=[24, 56, 56], dtype='float32')
        b = static.data(name='B', shape=[24, 56, 56], dtype='float32')
        c = paddle.add(a, b)
        d = paddle.nn.functional.relu(c)
        e = paddle.nn.initializer.NumpyArrayInitializer(
            np.array(result[2]).reshape((144, 24, 1, 1)).astype("float32"))
        f = static.nn.conv2d(
            input=d,
            num_filters=144,
            filter_size=1,
            stride=1,
            padding=0,
            dilation=1,
            param_attr=e)
        g = paddle.scale(f, scale=2.0, bias=0.5)
        res = paddle.nn.functional.softmax(g, axis=1)

        exe = static.Executor(paddle.CPUPlace())
        exe.run(static.default_startup_program())

        x = np.array(result[0]).reshape((1, 24, 56, 56)).astype("float32")
        y = np.array(result[1]).reshape((1, 24, 56, 56)).astype("float32")
        output = exe.run(feed={"A": x, "B": y}, fetch_list=[res])
        output = np.array(output).reshape(-1)
        print("result in paddle_verify: \n")
        for i in range(0, output.shape[0]):
            if np.abs(output[i] - result[len(result) - 1][i]) > 1e-4:
                print("Error! ", i, "-th data has diff with target data:\n",
                      output[i], " vs: ", result[len(result) - 1][i],
                      ". Diff is: ", output[i] - result[len(result) - 1][i])
        self.assertTrue(
            np.allclose(result[len(result) - 1], output, atol=1e-4))

    def test_basic(self):
        prog = Program()

        a = Variable("A").set_type(Float(32)).set_shape([1, 24, 56, 56])
        b = Variable("B").set_type(Float(32)).set_shape([1, 24, 56, 56])
        c = prog.add(a, b)
        d = prog.relu(c)
        e = Variable("E").set_type(Float(32)).set_shape([144, 24, 1, 1])
        f = prog.conv2d(d, e, {
            "stride": [1, 1],
            "dilation": [1, 1],
            "padding": [0, 0]
        })
        g = prog.scale(f, {"scale": 2.0, "bias": 0.5})
        h = prog.softmax(g, {"axis": 1})

        self.assertEqual(prog.size(), 5)
        # print program
        for i in range(prog.size()):
            print(prog[i])
        tensor_data = [
            np.random.random([1, 24, 56, 56]).astype("float32"),
            np.random.random([1, 24, 56, 56]).astype("float32"),
            np.random.random([144, 24, 1, 1]).astype("float32")
        ]
        result = prog.build_and_get_output(self.target, [a, b, e], tensor_data,
                                           [h])
        result[0].set_type(Float(32))
        result = result[0].numpy(self.target).reshape(-1)
        tensor_data.append(result)
        self.paddle_verify(tensor_data) """


class TestLoadPaddleModel_FC(unittest.TestCase):
    def setUp(self):
        if enable_gpu == "ON":
            self.target = DefaultNVGPUTarget()
        else:
            self.target = DefaultHostTarget()

        self.model_dir = naive_model_dir

    def get_paddle_inference_result(self, model_dir, data):
        config = fluid.core.AnalysisConfig(model_dir)
        config.disable_gpu()
        config.switch_ir_optim(False)
        self.paddle_predictor = fluid.core.create_paddle_predictor(config)
        data = fluid.core.PaddleTensor(data)
        results = self.paddle_predictor.run([data])

        return results[0].as_ndarray()

    def test_model(self):
        np.random.seed(0)
        self.x_shape = [4, 30]
        x_data = np.random.random(
            self.x_shape).astype("float16").astype("float32")
        print('x_data', x_data)

        self.executor = Interpreter(["A"], [self.x_shape])
        self.executor.load_paddle_model(self.model_dir, self.target, False)
        a_t = self.executor.get_tensor("A")
        a_t.from_numpy(x_data, self.target)

        self.executor.run()

        out = self.executor.get_tensor("fc_0.tmp_2")
        target_data = self.get_paddle_inference_result(self.model_dir, x_data)
        print("target_data's shape is: ", target_data.shape)
        out_np = out.numpy(self.target)
        print("cinn data's shape is: ", out_np.shape)

        self.assertTrue(np.allclose(out_np, target_data, atol=1e-4))


class TestLoadPaddleModel_MultiFC(unittest.TestCase):
    def setUp(self):
        if enable_gpu == "ON":
            self.target = DefaultNVGPUTarget()
        else:
            self.target = DefaultHostTarget()

        self.model_dir = multi_fc_model_dir

    def get_paddle_inference_result(self, model_dir, data):
        config = fluid.core.AnalysisConfig(model_dir)
        config.disable_gpu()
        config.switch_ir_optim(False)
        self.paddle_predictor = fluid.core.create_paddle_predictor(config)
        data = fluid.core.PaddleTensor(data)
        results = self.paddle_predictor.run([data])

        return results[0].as_ndarray()

    def test_model(self):
        np.random.seed(0)
        self.x_shape = [8, 64]
        x_data = np.random.random(self.x_shape).astype("float32")

        self.executor = Interpreter(["A"], [self.x_shape])
        self.executor.load_paddle_model(self.model_dir, self.target, False)
        a_t = self.executor.get_tensor("A")
        a_t.from_numpy(x_data, self.target)

        self.executor.run()

        out = self.executor.get_tensor("fc_5.tmp_2")
        target = self.get_paddle_inference_result(self.model_dir, x_data)

        self.assertTrue(np.allclose(out.numpy(self.target), target, atol=1e-4))


if __name__ == "__main__":
    unittest.main()