tiny_runtime.cc 4.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
// Copyright (c) 2021 CINN Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <dlfcn.h>
#include <omp.h>

#include <algorithm>
#include <map>
#include <memory>
#include <thread>
#include <vector>

#include "cinn_runtime.h"

extern "C" {
int max_num_workers = std::thread::hardware_concurrency();
// move to standlone file
struct param_context_t {
  int major_v;
  int minor_v;
  std::vector<uint8_t> buf;
  std::vector<std::vector<uint8_t>> temporary;
  std::map<std::string, cinn_pod_value_t> name2podvalue;
  std::vector<std::string> instructions;
  std::vector<int> inst_argc;
  std::vector<cinn_pod_value_t *> inst_argv;
};

void *load_program(const char *paramfile) {
  FILE *f = fopen(paramfile, "r");
  fseek(f, 0, SEEK_END);
  int fsize = ftell(f);
  rewind(f);
  if (fsize < 32) {
    fclose(f);
    return nullptr;
  }

  std::unique_ptr<param_context_t> ctx(new param_context_t{});
  int alignment = std::max(alignof(cinn_pod_value_t), alignof(cinn_buffer_t));
  ctx->buf.resize(fsize + alignment);
  uint8_t *buf = ctx->buf.data();
  if ((uintptr_t)buf % alignment) {
    buf = buf + alignment - ((uintptr_t)buf % alignment);
  }
  fread(buf, 1, fsize, f);
  fclose(f);

  if (std::string(buf, buf + 4) != "CINN") {
    // TODO LOG fatal
    return nullptr;
  }
  // TODO check param file version
  ctx->major_v = *(int *)(buf + 4);
  ctx->minor_v = *(int *)(buf + 8);

  int *namelist_pos   = (int *)(buf + 16);
  int *podvalue_pos   = (int *)(buf + *namelist_pos);
  int *persistent_pos = (int *)(buf + *podvalue_pos);
  int *inst_pos       = (int *)(buf + *persistent_pos);
  if (fsize < *inst_pos) {
    return nullptr;
  }

  int namelen = namelist_pos[1];
  std::vector<const char *> namev(namelen);
  std::map<std::string, int> name2index;
  for (int i = 0; i < namelen; i++) {
    int offset           = (namelist_pos + 2)[i];
    namev[i]             = (char *)(buf + offset);
    name2index[namev[i]] = i;
  }

  cinn_buffer_t *cb = (cinn_buffer_t *)(buf + podvalue_pos[1]);
  for (int i = 0; i < namelen; i++) {
    // currently only CPU device is supported, so just use malloc
    if (cb[i].memory) {
      cb[i].memory = buf + (uintptr_t)cb[i].memory;
    } else {
      int alignment = cb[i].align;
      if (alignment == 0) {
        alignment = 4;
      }
      ctx->temporary.emplace_back(alignment + cb[i].memory_size);
      uint8_t *tbuf = ctx->temporary.back().data();
      if ((uintptr_t)tbuf % alignment) {
        tbuf = tbuf + alignment - ((uintptr_t)tbuf % alignment);
      }
      cb[i].memory = tbuf;
    }
    ctx->name2podvalue[namev[i]] = cinn_pod_value_t(cb + i);
  }
  for (int i = 0; i < inst_pos[1]; i++) {
    const char *inst = (const char *)(buf + inst_pos[2 + i * 3 + 0]);
    ctx->instructions.push_back(inst);
    int instargc = inst_pos[2 + i * 3 + 1];
    ctx->inst_argc.push_back(instargc);
    cinn_pod_value_t *argv = (cinn_pod_value_t *)(buf + inst_pos[2 + i * 3 + 2]);
    for (int i = 0; i < instargc; i++) {
      int idx = (uintptr_t)((cinn_buffer_t *)argv[i]);
      cinn_value_t tmp_v;
      tmp_v.v_handle = &cb[idx];
      argv[i].set_value(tmp_v);
    }
    ctx->inst_argv.push_back(argv);
  }
  return ctx.release();
}

int set_maxconcurrency(int c) {
  int old_c       = max_num_workers;
  max_num_workers = c;
  return old_c;
}

typedef void (*func_t)(cinn_pod_value_t *, int);
void run_program(void *ctx) {
  param_context_t *pc = (param_context_t *)ctx;
  for (int i = 0; i < pc->instructions.size(); i++) {
    const char *sym = pc->instructions[i].c_str();
    void *p         = dlsym(RTLD_DEFAULT, sym);
    func_t f        = (func_t)p;
    f(pc->inst_argv[i], pc->inst_argc[i]);
  }
}

cinn_pod_value_t *get_pod_value(void *ctx, const char *tname) {
  param_context_t *pc = (param_context_t *)ctx;
  if (pc->name2podvalue.find(tname) != pc->name2podvalue.end()) {
    return &pc->name2podvalue[tname];
  }
  return nullptr;
}

typedef int (*FCINNParallelLambda)(int task_id, int num_task, void *datas);
int cinn_backend_parallel_launch(FCINNParallelLambda flambda, void *datas, int num_task) {
  int num_workers = max_num_workers;
  if (num_task == 0) num_task = num_workers;
  omp_set_num_threads(num_task);
#pragma omp parallel num_threads(num_task)
  {
    int thread_num = omp_get_thread_num();
    (*flambda)(thread_num, num_task, datas);
  }
  return 0;
}
}