learning_rate_scheduler.py 44.5 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

M
minqiyang 已提交
15
import math
16
import warnings
M
minqiyang 已提交
17

H
HongyuJia 已提交
18
import paddle
M
minqiyang 已提交
19
from .. import unique_name
20 21
from ..framework import Variable
from ..data_feeder import check_type
M
minqiyang 已提交
22

23
__all__ = [
24 25 26 27 28 29 30 31 32 33 34 35
    'NoamDecay',
    'PiecewiseDecay',
    'NaturalExpDecay',
    'ExponentialDecay',
    'InverseTimeDecay',
    'PolynomialDecay',
    'CosineDecay',
    'LinearLrWarmup',
    'ReduceLROnPlateau',
    'StepDecay',
    'MultiStepDecay',
    'LambdaDecay',
36
]
M
minqiyang 已提交
37 38


39
class LearningRateDecay:
M
minqiyang 已提交
40 41
    """
    Base class of learning rate decay
42

43 44 45
    Define the common interface of an LearningRateDecay.
    User should not use this class directly,
    but need to use one of it's implementation.
M
minqiyang 已提交
46 47
    """

M
minqiyang 已提交
48 49 50
    def __init__(self, begin=0, step=1, dtype='float32'):
        self.step_num = begin
        self.step_size = step
M
minqiyang 已提交
51 52 53 54 55
        self.dtype = dtype

    def __call__(self):
        lr = self.step()
        if isinstance(lr, float):
M
minqiyang 已提交
56
            lr = self.create_lr_var(lr)
M
minqiyang 已提交
57
        self.step_num += self.step_size
M
minqiyang 已提交
58 59
        return lr

M
minqiyang 已提交
60
    def create_lr_var(self, lr):
61 62 63
        """
        convert lr from float to variable

64
        Args:
65 66 67 68
            lr: learning rate
        Returns:
            learning rate variable
        """
M
minqiyang 已提交
69
        from .. import layers
70

71
        lr = paddle.static.create_global_var(
M
minqiyang 已提交
72 73 74 75
            name=unique_name.generate("learning_rate"),
            shape=[1],
            value=float(lr),
            dtype=self.dtype,
76 77
            persistable=False,
        )
M
minqiyang 已提交
78
        return lr
M
minqiyang 已提交
79

80
    # Note: If you want to change what optimizer.state_dict stores, just overwrite this functions,
81
    # "self.step_num" will be stored by default.
82 83 84 85 86 87 88 89 90 91 92 93 94
    def state_dict(self):
        """
        Returns the state of the scheduler as a :class:`dict`.

        It is a subset of self.__dict__ .
        """
        self._state_keys()
        state_dict = {}
        for key in self.keys:
            if key not in self.__dict__:
                continue
            value = self.__dict__[key]
            if isinstance(value, Variable):
95 96 97 98
                assert (
                    value.size == 1
                ), "size of Variable in state_dict must be 1"
                value = float(value)
99 100 101 102 103 104 105 106 107 108
            state_dict[key] = value

        return state_dict

    def _state_keys(self):
        """
        set the keys in self.__dict__ that are needed to be saved.
        """
        self.keys = ['step_num']

109
    def set_state_dict(self, state_dict):
110 111 112 113 114 115 116 117 118
        """
        Loads the schedulers state.
        """
        self._state_keys()
        for key in self.keys:
            if key in state_dict:
                self.__dict__[key] = state_dict[key]
            else:
                raise RuntimeError(
119 120 121 122
                    "Please check whether state_dict is correct for optimizer. Can't find [ {} ] in state_dict".format(
                        key
                    )
                )
123 124 125 126 127
        if len(state_dict) > len(self.keys):
            warnings.warn(
                "There are some unused values in state_dict. Maybe the optimizer have different 'LearningRateDecay' when invoking state_dict and set_dict"
            )

128 129 130
    # [aliases] Compatible with old method names
    set_dict = set_state_dict

M
minqiyang 已提交
131 132 133 134
    def step(self):
        raise NotImplementedError()


M
minqiyang 已提交
135
class PiecewiseDecay(LearningRateDecay):
136
    """
137
    :api_attr: imperative
138

D
DuYao 已提交
139
    Piecewise decay scheduler.
140 141 142 143 144

    The algorithm can be described as the code below.

    .. code-block:: text

D
DuYao 已提交
145 146 147 148 149 150 151 152 153 154
        boundaries = [10000, 20000]
        values = [1.0, 0.5, 0.1]
        if global_step < 10000:
            learning_rate = 1.0
        elif 10000 <= global_step < 20000:
            learning_rate = 0.5
        else:
            learning_rate = 0.1

    Parameters:
155
        boundaries(list): A list of steps numbers. The type of element in the list is python int.
D
DuYao 已提交
156 157
        values(list): A list of learning rate values that will be picked during
            different step boundaries. The type of element in the list is python float.
T
tianshuo78520a 已提交
158
        begin(int): The begin step to initialize the global_step in the description above.
D
DuYao 已提交
159
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
160
            The default value is 1.
D
DuYao 已提交
161 162
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
163

164
    Returns:
D
DuYao 已提交
165
        None.
166

167 168 169 170
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
171
          import paddle
172 173 174
          boundaries = [10000, 20000]
          values = [1.0, 0.5, 0.1]
          with fluid.dygraph.guard():
175
              emb = paddle.nn.Embedding(10, 10)
176
              optimizer = fluid.optimizer.SGD(
177 178
                 learning_rate=fluid.dygraph.PiecewiseDecay(boundaries, values, 0),
                 parameter_list = emb.parameters() )
179 180
    """

M
minqiyang 已提交
181
    def __init__(self, boundaries, values, begin, step=1, dtype='float32'):
182
        super().__init__(begin, step, dtype)
M
minqiyang 已提交
183 184 185 186 187
        self.boundaries = boundaries
        self.values = values

        self.vars = []
        for value in values:
188
            self.vars.append(value)
M
minqiyang 已提交
189 190

    def step(self):
M
minqiyang 已提交
191 192
        for i in range(len(self.boundaries)):
            if self.step_num < self.boundaries[i]:
M
minqiyang 已提交
193
                return self.vars[i]
194
        return self.create_lr_var(self.vars[len(self.values) - 1])
195 196 197


class NaturalExpDecay(LearningRateDecay):
198
    r"""
199 200
    :api_attr: imperative

201
    Applies natural exponential decay to the initial learning rate.
202

D
DuYao 已提交
203
    The algorithm can be described as following.
204

D
DuYao 已提交
205 206
    .. math::

207
        decayed\_learning\_rate = learning\_rate * e^{y}
D
DuYao 已提交
208 209 210 211 212 213 214 215 216 217 218

    If staircase is set to False, then:

    .. math::

        y = - decay\_rate * \\frac{global\_step}{decay\_steps}

    If staircase is set to True, then:

    .. math::

219
        y = - decay\_rate * math.floor(\\frac{global\_step}{decay\_steps})
D
DuYao 已提交
220 221

    Parameters:
222 223
        learning_rate(Variable|float): The initial learning rate. If the type
            is Variable, it's a tensor with shape [1], the data type can be
D
DuYao 已提交
224 225 226
            float32 or float64. It also can be set to python int number.
        decay_steps(int): The decay step size. It determines the decay cycle.
        decay_rate(int): The decay rate.
227
        staircase(bool, optional): If set to True, decay the learning rate at discrete intervals. The
D
DuYao 已提交
228 229 230
            default value is False.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
231
            The default value is 1.
D
DuYao 已提交
232 233
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
234

235
    Returns:
D
DuYao 已提交
236
        None.
237

238 239 240
    Examples:
        .. code-block:: python

241
            import paddle.fluid as fluid
242
            import paddle
243 244
            base_lr = 0.1
            with fluid.dygraph.guard():
245
                emb = paddle.nn.Embedding(10, 10)
246 247 248 249 250 251 252
                sgd_optimizer = fluid.optimizer.SGD(
                        learning_rate=fluid.dygraph.NaturalExpDecay(
                            learning_rate=base_lr,
                            decay_steps=10000,
                            decay_rate=0.5,
                            staircase=True),
                        parameter_list=emb.parameters())
253 254 255

    """

256 257 258 259 260 261 262 263 264 265
    def __init__(
        self,
        learning_rate,
        decay_steps,
        decay_rate,
        staircase=False,
        begin=0,
        step=1,
        dtype='float32',
    ):
266
        super().__init__(begin, step, dtype)
267 268 269 270 271 272 273 274
        self.learning_rate = learning_rate
        self.decay_steps = decay_steps
        self.decay_rate = decay_rate
        self.staircase = staircase

    def step(self):
        div_res = self.create_lr_var(self.step_num / self.decay_steps)
        if self.staircase:
275 276
            div_res = paddle.floor(div_res)
        decayed_lr = self.learning_rate * paddle.exp(
277 278
            -1 * self.decay_rate * div_res
        )
279 280 281 282 283

        return decayed_lr


class ExponentialDecay(LearningRateDecay):
284
    r"""
285 286
    :api_attr: imperative

287 288
    Applies exponential decay to the learning rate.

D
DuYao 已提交
289
    The algorithm can be described as following.
290

D
DuYao 已提交
291
    .. math::
292

293
        decayed\_learning\_rate = learning\_rate * decay\_rate ^ y
D
DuYao 已提交
294 295 296 297 298

    If staircase is set to False, then:

    .. math::

299
        y = \\frac{global\_step}{decay\_steps}
D
DuYao 已提交
300 301 302 303 304 305 306 307 308

    If staircase is set to True, then:

    .. math::

        y = math.floor(\\frac{global\_step}{decay\_steps})


    Parameters:
309 310
        learning_rate(Variable|float): The initial learning rate. If the type
            is Variable, it's a tensor with shape [1], the data type can be
D
DuYao 已提交
311 312 313
            float32 or float64. It also can be set to python int number.
        decay_steps(int): The decay step size. It determines the decay cycle.
        decay_rate(float): The decay rate.
314
        staircase(bool, optional): If set to True, decay the learning rate at discrete intervals. The
D
DuYao 已提交
315 316 317
            default value is False.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
318
            The default value is 1.
D
DuYao 已提交
319 320
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
321

322
    Returns:
D
DuYao 已提交
323
        None.
324

325 326 327 328 329 330 331
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          base_lr = 0.1
          with fluid.dygraph.guard():
              sgd_optimizer = fluid.optimizer.SGD(
332 333 334 335 336
                    learning_rate=fluid.dygraph.ExponentialDecay(
                        learning_rate=base_lr,
                        decay_steps=10000,
                        decay_rate=0.5,
                        staircase=True))
337 338 339

    """

340 341 342 343 344 345 346 347 348 349
    def __init__(
        self,
        learning_rate,
        decay_steps,
        decay_rate,
        staircase=False,
        begin=0,
        step=1,
        dtype='float32',
    ):
350
        super().__init__(begin, step, dtype)
351 352 353 354 355 356 357 358
        self.learning_rate = learning_rate
        self.decay_steps = decay_steps
        self.decay_rate = decay_rate
        self.staircase = staircase

    def step(self):
        div_res = self.create_lr_var(self.step_num / self.decay_steps)
        if self.staircase:
359
            div_res = paddle.floor(div_res)
360 361 362 363 364 365 366

        decayed_lr = self.learning_rate * (self.decay_rate**div_res)

        return decayed_lr


class InverseTimeDecay(LearningRateDecay):
367
    r"""
368 369
    :api_attr: imperative

370 371
    Applies inverse time decay to the initial learning rate.

D
DuYao 已提交
372 373 374 375 376
    The algorithm can be described as following.
    If staircase is set to False, then:

    .. math::

377
        decayed\_learning\_rate = \\frac{learning\_rate}{1 + decay\_rate * \\frac{global\_step}{decay\_step}}
D
DuYao 已提交
378 379 380 381 382 383 384 385

    If staircase is set to True, then:

    .. math::

        decayed\_learning\_rate = \\frac{learning\_rate}{1 + decay\_rate * math.floor(\\frac{global\_step}{decay\_step})}

    Parameters:
386 387
        learning_rate(Variable|float): The initial learning rate. If the type
            is Variable, it's a tensor with shape [1], the data type can be
D
DuYao 已提交
388 389 390
            float32 or float64. It also can be set to python int number.
        decay_steps(int): The decay step size. It determines the decay cycle.
        decay_rate(float): The decay rate.
391
        staircase(bool, optional): If set to True, decay the learning rate at discrete intervals. The
D
DuYao 已提交
392 393 394
            default value is False.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
395
            The default value is 1.
396
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be
D
DuYao 已提交
397
            'float32', 'float64'. The default value is 'float32'.
398

399
    Returns:
D
DuYao 已提交
400
        None.
401

402 403 404 405
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
406
          import paddle
407 408
          base_lr = 0.1
          with fluid.dygraph.guard():
409
              emb = paddle.nn.Embedding(10, 10)
410
              sgd_optimizer = fluid.optimizer.SGD(
411 412 413 414 415
                  learning_rate=fluid.dygraph.InverseTimeDecay(
                        learning_rate=base_lr,
                        decay_steps=10000,
                        decay_rate=0.5,
                        staircase=True),
416
                  parameter_list = emb.parameters())
417 418 419

    """

420 421 422 423 424 425 426 427 428 429
    def __init__(
        self,
        learning_rate,
        decay_steps,
        decay_rate,
        staircase=False,
        begin=0,
        step=1,
        dtype='float32',
    ):
430
        super().__init__(begin, step, dtype)
431 432 433 434 435 436 437 438
        self.learning_rate = learning_rate
        self.decay_steps = decay_steps
        self.decay_rate = decay_rate
        self.staircase = staircase

    def step(self):
        div_res = self.create_lr_var(self.step_num / self.decay_steps)
        if self.staircase:
439
            div_res = paddle.floor(div_res)
440 441 442 443 444 445 446

        decayed_lr = self.learning_rate / (1 + self.decay_rate * div_res)

        return decayed_lr


class PolynomialDecay(LearningRateDecay):
447
    r"""
448 449
    :api_attr: imperative

450 451
    Applies polynomial decay to the initial learning rate.

D
DuYao 已提交
452 453 454 455 456 457
    The algorithm can be described as following.

    If cycle is set to True, then:

    .. math::

458
        decay\_steps & = decay\_steps * math.ceil(\\frac{global\_step}{decay\_steps})
459

D
DuYao 已提交
460 461 462 463 464 465
        decayed\_learning\_rate & = (learning\_rate-end\_learning\_rate)*(1-\\frac{global\_step}{decay\_steps})^{power}+end\_learning\_rate

    If cycle is set to False, then:

    .. math::

466
        global\_step & = min(global\_step, decay\_steps)
D
DuYao 已提交
467 468 469 470

        decayed\_learning\_rate & = (learning\_rate-end\_learning\_rate)*(1-\\frac{global\_step}{decay\_steps})^{power}+end\_learning\_rate

    Parameters:
471 472
        learning_rate(Variable|float): The initial learning rate. If the type
            is Variable, it's a tensor with shape [1], the data type can be
D
DuYao 已提交
473
            float32 or float64. It also can be set to python int number.
474
        decay_steps(int): The decay step size. It determines the decay cycle.
D
DuYao 已提交
475 476 477 478 479
        end_learning_rate(float, optional): The minimum final learning rate. The default value is 0.0001.
        power(float, optional): Power of polynomial. The default value is 1.0.
        cycle(bool, optional): If set true, decay the learning rate every decay_steps. The default value is False.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
480
            The default value is 1.
D
DuYao 已提交
481 482
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
483

484
    Returns:
D
DuYao 已提交
485
        None.
486

487 488 489 490
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
491
          import paddle
492 493 494 495
          start_lr = 0.01
          total_step = 5000
          end_lr = 0
          with fluid.dygraph.guard():
496
              emb = paddle.nn.Embedding(10, 10)
497 498
              optimizer  = fluid.optimizer.SGD(
                  learning_rate = fluid.dygraph.PolynomialDecay(
499 500
                  start_lr, total_step, end_lr, power=1.0),
                  parameter_list = emb.parameters())
501 502 503

    """

504 505 506 507 508 509 510 511 512 513 514
    def __init__(
        self,
        learning_rate,
        decay_steps,
        end_learning_rate=0.0001,
        power=1.0,
        cycle=False,
        begin=0,
        step=1,
        dtype='float32',
    ):
515
        super().__init__(begin, step, dtype)
516 517 518 519 520 521 522
        self.learning_rate = learning_rate
        self.decay_steps = decay_steps
        self.end_learning_rate = end_learning_rate
        self.power = power
        self.cycle = cycle

    def step(self):
M
minqiyang 已提交
523 524
        tmp_step_num = self.step_num
        tmp_decay_steps = self.decay_steps
525
        if self.cycle:
526
            div_res = paddle.ceil(
527 528
                self.create_lr_var(tmp_step_num / float(self.decay_steps))
            )
529

M
minqiyang 已提交
530 531
            if tmp_step_num == 0:
                div_res = self.create_lr_var(1.0)
M
minqiyang 已提交
532
            tmp_decay_steps = self.decay_steps * div_res
533
        else:
534
            tmp_step_num = self.create_lr_var(
535 536 537 538
                tmp_step_num
                if tmp_step_num < self.decay_steps
                else self.decay_steps
            )
M
minqiyang 已提交
539

540 541 542
        decayed_lr = (self.learning_rate - self.end_learning_rate) * (
            (1 - tmp_step_num / tmp_decay_steps) ** self.power
        ) + self.end_learning_rate
M
minqiyang 已提交
543
        return decayed_lr
544

M
minqiyang 已提交
545 546

class CosineDecay(LearningRateDecay):
547
    r"""
548 549
    :api_attr: imperative

550 551
    Applies cosine decay to the learning rate.

D
DuYao 已提交
552
    The algorithm can be described as following.
553 554 555

    .. math::

D
DuYao 已提交
556
        decayed\_learning\_rate = learning\_rate * 0.5 * (math.cos(global\_step * \\frac{math.pi}{step\_each\_epoch} ) + 1)
557

D
DuYao 已提交
558
    Parameters:
559 560
        learning_rate(Variable|float): The initial learning rate. If the type
            is Variable, it's a tensor with shape [1], the data type can be
D
DuYao 已提交
561 562 563 564 565
            float32 or float64. It also can be set to python int number.
        step_each_epoch(int): The number of steps in an epoch.
        epochs(int): The number of epochs.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
566
            The default value is 1.
D
DuYao 已提交
567 568
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
569

570
    Returns:
D
DuYao 已提交
571
        None.
572

573
    Examples:
574
        .. code-block:: python
575

576
            base_lr = 0.1
577 578
            with fluid.dygraph.guard():
                optimizer  = fluid.optimizer.SGD(
579 580
                    learning_rate = fluid.dygraph.CosineDecay(
                            base_lr, 10000, 120) )
581 582
    """

583 584 585 586 587 588 589 590 591
    def __init__(
        self,
        learning_rate,
        step_each_epoch,
        epochs,
        begin=0,
        step=1,
        dtype='float32',
    ):
592
        super().__init__(begin, step, dtype)
M
minqiyang 已提交
593 594 595 596 597
        self.learning_rate = learning_rate
        self.step_each_epoch = step_each_epoch
        self.epochs = epochs

    def step(self):
598
        cur_epoch = paddle.floor(
599 600 601 602 603
            self.create_lr_var(self.step_num / self.step_each_epoch)
        )
        decayed_lr = (
            self.learning_rate
            * 0.5
604
            * (paddle.cos(cur_epoch * math.pi / self.epochs) + 1)
605
        )
M
minqiyang 已提交
606 607 608 609
        return decayed_lr


class NoamDecay(LearningRateDecay):
610
    r"""
611 612
    :api_attr: imperative

613
    Applies Noam decay to the initial learning rate.
D
DuYao 已提交
614 615 616 617 618

    The algorithm can be described as following.

    .. math::

619
        decayed\_learning\_rate = learning\_rate * d_{model}^{-0.5} * min(global\_step^{-0.5}, global\_step * warmup\_steps^{-1.5})
D
DuYao 已提交
620

621
    Please reference `attention is all you need <https://arxiv.org/pdf/1706.03762.pdf>`_
D
DuYao 已提交
622 623

    Parameters:
624
        d$_{model}$(Variable|int): The dimensionality of input and output feature vector of model. If type is Variable,
D
DuYao 已提交
625
            it's a tensor with shape [1] and the data type can be int32 or int64. The type can also be python int.
626
        warmup_steps(Variable|int): The number of warmup steps. A super parameter. If type is Variable,
D
DuYao 已提交
627 628 629
            it's a tensor with shape [1] and the data type can be int32 or int64. The type can also be python int.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
630
            The default value is 1.
D
DuYao 已提交
631 632
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
633 634 635
        learning_rate(Variable|float|int): The initial learning rate. If the type
            is Variable, it's a tensor with shape [1], the data type can be
            float32 or float64. It also can be set to python int number. Default 1.0
636

637
    Returns:
D
DuYao 已提交
638
        None.
639

640 641 642 643
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
644
          import paddle
645 646 647
          warmup_steps = 100
          learning_rate = 0.01
          with fluid.dygraph.guard():
648
              emb = paddle.nn.Embedding(10, 10)
649 650 651
              optimizer  = fluid.optimizer.SGD(
                  learning_rate = fluid.dygraph.NoamDecay(
                         1/(warmup_steps *(learning_rate ** 2)),
652 653
                         warmup_steps),
                  parameter_list = emb.parameters())
654 655
    """

656 657 658 659 660 661 662 663 664
    def __init__(
        self,
        d_model,
        warmup_steps,
        begin=1,
        step=1,
        dtype='float32',
        learning_rate=1.0,
    ):
665
        super().__init__(begin, step, dtype)
666
        self.learning_rate = learning_rate
M
minqiyang 已提交
667 668 669 670 671
        self.d_model = d_model
        self.warmup_steps = warmup_steps

    def step(self):
        from .. import layers
672

M
minqiyang 已提交
673 674
        a = self.create_lr_var(self.step_num**-0.5)
        b = self.create_lr_var((self.warmup_steps**-1.5) * self.step_num)
675
        lr_value = (
676
            self.learning_rate * (self.d_model**-0.5) * paddle.minimum(a, b)
677
        )
M
minqiyang 已提交
678
        return lr_value
H
hong 已提交
679 680 681 682


class LinearLrWarmup(LearningRateDecay):
    """
683 684
    :api_attr: imperative

H
hong 已提交
685 686
    This operator use the linear learning rate warm up strategy to adjust the learning rate preliminarily before the normal learning rate scheduling.
    For more information, please refer to `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/abs/1812.01187>`_
687

H
hong 已提交
688
    When global_step < warmup_steps, learning rate is updated as:
689

H
hong 已提交
690
    .. code-block:: text
691

H
hong 已提交
692 693
            linear_step = end_lr - start_lr
            lr = start_lr + linear_step * (global_step / warmup_steps)
694

H
hong 已提交
695
    where start_lr is the initial learning rate, and end_lr is the final learning rate;
696

H
hong 已提交
697
    When global_step >= warmup_steps, learning rate is updated as:
698

H
hong 已提交
699
    .. code-block:: text
700

H
hong 已提交
701
            lr = learning_rate
702

H
hong 已提交
703
    where lr is the learning_rate after warm-up.
704

H
hong 已提交
705 706 707 708 709 710 711
    Args:
        learning_rate (Variable|float): Learning_rate after warm-up, it could be 1D-Tensor or single value with the data type of float32.
        warmup_steps (int): Steps for warm up.
        start_lr (float): Initial learning rate of warm up.
        end_lr (float): Final learning rate of warm up.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
712
            The default value is 1.
H
hong 已提交
713 714
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
715

H
hong 已提交
716 717
    Returns:
        Variable: Warm-up learning rate with the same data type as learning_rate.
718 719


H
hong 已提交
720
    Examples:
721

H
hong 已提交
722
    .. code-block:: python
723

H
hong 已提交
724
        import paddle.fluid as fluid
725 726

        learning_rate = 0.1
H
hong 已提交
727
        warmup_steps = 50
728
        start_lr = 0
H
hong 已提交
729 730
        end_lr = 0.1

731
        with fluid.dygraph.guard():
H
hong 已提交
732
            lr_decay = fluid.dygraph.LinearLrWarmup( learning_rate, warmup_steps, start_lr, end_lr)
733 734


H
hong 已提交
735 736
    """

737 738 739 740 741 742 743 744 745 746
    def __init__(
        self,
        learning_rate,
        warmup_steps,
        start_lr,
        end_lr,
        begin=1,
        step=1,
        dtype='float32',
    ):
747
        super().__init__(begin, step, dtype)
748 749 750 751 752
        type_check = (
            isinstance(learning_rate, float)
            or isinstance(learning_rate, int)
            or isinstance(learning_rate, LearningRateDecay)
        )
H
hong 已提交
753 754
        if not type_check:
            raise TypeError(
755 756 757 758
                "the type of learning_rate should be [int, float or LearningRateDecay], the current type is {}".format(
                    learning_rate
                )
            )
H
hong 已提交
759 760
        self.learning_rate = learning_rate
        self.warmup_steps = warmup_steps
761
        self.start_lr = start_lr
762 763 764 765 766 767
        assert (
            end_lr > start_lr
        ), "end_lr {} must be greater than start_lr {}".format(end_lr, start_lr)
        self.lr_ratio_before_warmup = (float(end_lr) - float(start_lr)) / float(
            warmup_steps
        )
H
hong 已提交
768 769 770 771 772 773 774

    def step(self):
        base_lr = self.learning_rate
        if isinstance(self.learning_rate, LearningRateDecay):
            base_lr = base_lr()

        from .. import layers
775

H
hong 已提交
776
        if self.step_num < self.warmup_steps:
777
            return self.lr_ratio_before_warmup * self.step_num + self.start_lr
H
hong 已提交
778 779
        else:
            return base_lr
780 781 782 783


class ReduceLROnPlateau(LearningRateDecay):
    """
784 785
    :api_attr: imperative

786
    Reduce learning rate when ``loss`` has stopped descending. Models often benefit from reducing the learning rate
787 788
    by 2 to 10 times once model performance has no longer improvement.

789 790 791
    The ``loss`` is the one which has been pass into ``step`` , it must be 1-D Tensor with shape [1]. When ``loss``
    stop descending for a ``patience`` number of epochs, the learning rate will be reduced to ``learning_rate * decay_rate`` .
    (Specially, ``mode`` can also be set to ``'max`` , in this case, when ``loss`` stop ascending for a ``patience`` number
792 793 794 795 796 797 798
    of epochs, the learning rate will be reduced.)

    In addition, After each reduction, it will wait a ``cooldown`` number of epochs before resuming normal operation.

    Args:
        learning_rate (Variable|float|int): The initial learning rate. It can be set to python float or int number.
            If the type is Variable, it should be 1-D Tensor with shape [1], the data type can be 'float32' or 'float64'.
799 800
        mode (str, optional): ``'min'`` or ``'max'`` can be selected. Normally, it is ``'min'`` , which means that the
            learning rate will reduce when ``loss`` stops descending. Specially, if it's set to ``'max'`` ,  the learning
801
            rate will reduce when ``loss`` stops ascending. Default: ``'min'`` .
802
        decay_rate (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * decay_rate`` .
803
            It should be less than 1.0. Default: 0.1.
804
        patience (int, optional): When ``loss`` doesn't improve for this number of epochs, learing rate will be reduced.
805 806
            Default: 10.
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False``.
807
        threshold (float, optional): ``threshold`` and ``threshold_mode`` will determine the minimum change of ``loss`` .
808 809
            This make tiny changes of ``loss`` will be ignored. Default: 1e-4.
        threshold_mode (str, optional): ``'rel'`` or ``'abs'`` can be selected. In ``'rel'`` mode, the minimum change of ``loss``
810
            is ``last_loss * threshold`` , where ``last_loss`` is ``loss`` in last epoch. In ``'abs'`` mode, the minimum
811 812 813 814 815 816
            change of ``loss`` is ``threshold`` . Default: ``'rel'`` .
        cooldown (int, optional): The number of epochs to wait before resuming normal operation. Default: 0.
        min_lr (float, optional): The lower bound of the learning rate after reduction. Default: 0.
        eps (float, optional): Minimal decay applied to lr. If the difference between new and old lr is smaller than eps, the update is
            ignored. Default: 1e-8.
        dtype (str, optional): The data type used to create the learning rate variable. The data type can be set as
817 818
            'float32', 'float64'. Default: 'float32'.

819 820 821 822
    Returns:
        Reduced learning rate.

    Examples:
823

824 825 826
    .. code-block:: python

        import paddle.fluid as fluid
827
        import paddle
828 829 830 831
        import numpy as np

        with fluid.dygraph.guard():
            x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
832
            linear = paddle.nn.Linear(10, 10)
833 834 835 836 837 838
            input = fluid.dygraph.to_variable(x)

            reduce_lr = fluid.dygraph.ReduceLROnPlateau(
                                    learning_rate = 1.0,
                                    decay_rate = 0.5,
                                    patience = 5,
839
                                    verbose = True,
840 841 842 843 844 845 846 847 848
                                    cooldown = 3)
            adam = fluid.optimizer.Adam(
                learning_rate = reduce_lr,
                parameter_list = linear.parameters())

            for epoch in range(10):
                total_loss = 0
                for bath_id in range(5):
                    out = linear(input)
849
                    loss = paddle.mean(out)
850 851
                    total_loss += loss
                    adam.minimize(loss)
852

853 854 855 856 857
                avg_loss = total_loss/5

                # adjust learning rate according to avg_loss
                reduce_lr.step(avg_loss)
                lr = adam.current_step_lr()
858
                print("current avg_loss is %s, current lr is %s" % (float(avg_loss), lr))
859 860 861

    """

862 863 864 865 866 867 868 869 870 871 872 873 874 875
    def __init__(
        self,
        learning_rate,
        mode='min',
        decay_rate=0.1,
        patience=10,
        verbose=False,
        threshold=1e-4,
        threshold_mode='rel',
        cooldown=0,
        min_lr=0,
        eps=1e-8,
        dtype='float32',
    ):
876
        super().__init__(dtype=dtype)
877 878 879 880 881 882 883 884 885
        mode = mode.lower()
        if mode not in ['min', 'max']:
            raise ValueError('mode ' + mode + ' is unknown!')
        self.mode = mode

        if decay_rate >= 1.0:
            raise ValueError(
                'new_lr = origin_lr * decay_rate and decay_rate should be < 1.0.'
            )
886
        self.decay_rate = self.create_lr_var(decay_rate)
887 888 889

        threshold_mode = threshold_mode.lower()
        if threshold_mode not in ['rel', 'abs']:
890 891 892
            raise ValueError(
                'threshold mode ' + threshold_mode + ' is unknown!'
            )
893
        self.threshold_mode = threshold_mode
894 895 896 897 898 899
        check_type(
            learning_rate,
            'learning_rate',
            (float, int, Variable),
            'ReduceLROnPlateau',
        )
900 901 902
        if not isinstance(learning_rate, (float, int, Variable)):
            raise TypeError(
                "The type of 'learning_rate' in 'ReduceLROnPlateau' must be 'float, int, Variable', but received %s."
903 904
                % type(learning_rate)
            )
905 906 907 908 909 910 911 912 913 914 915 916 917

        self.learning_rate = learning_rate
        self.verbose = verbose
        self.patience = patience
        self.threshold = threshold
        self.threshold_mode = threshold_mode
        self.cooldown = cooldown
        self.min_lr = self.create_lr_var(min_lr)
        self.eps = eps

        self.cooldown_counter = 0
        self.best_loss = None
        self.num_bad_epochs = 0
918 919
        self.epoch_num = 0

920
    # "cooldown_counter / best_loss / num_bad_epochs / epoch_num / learning_rate" will be stored.
921 922
    def _state_keys(self):
        self.keys = [
923 924 925 926 927
            'cooldown_counter',
            'best_loss',
            'num_bad_epochs',
            'epoch_num',
            'learning_rate',
928
        ]
929 930

    def __call__(self):
931 932
        if not isinstance(self.learning_rate, Variable):
            self.learning_rate = self.create_lr_var(self.learning_rate)
933 934 935 936
        return self.learning_rate

    def step(self, loss):
        """
937
        It should be invoked on each epoch. Update the learning rate in optimizer according to ``loss`` .
938 939 940
        The new learning rate will take effect on next call to ``optimizer.minimize`` .

        Args:
941 942 943
            loss (Variable): A ``Variable`` that will be monitored to determine whether the learning rate will reduce.
                If it stop descending for a ``patience`` number of epochs, the learning rate will reduce. It should
                be 1-D Tensor with shape [1].
944 945 946
                Specially, if ``mode`` has been set to ``'max'`` ,  the learning rate will reduce when it stops ascending.
        Returns:
            None
947

948 949 950 951 952 953
        Examples:
            Please refer to the example of current LearningRateDecay.
        """

        # loss must be 1-D Tensor with shape [1]
        check_type(loss, 'loss', Variable, 'ReduceLROnPlateau.step')
954 955 956 957 958 959 960
        assert len(loss.shape) == 1 and loss.shape[0] == 1, (
            "the loss.shape "
            "should be (1L,), but the current loss.shape is {}. Maybe that "
            "you should call paddle.mean to process it first.".format(
                loss.shape
            )
        )
961

962
        self.epoch_num += 1
963 964 965 966 967 968 969 970 971 972 973 974
        if self.cooldown_counter > 0:
            self.cooldown_counter -= 1
        else:
            if self.best_loss is None or self._is_better(loss, self.best_loss):
                self.best_loss = loss
                self.num_bad_epochs = 0
            else:
                self.num_bad_epochs += 1

            if self.num_bad_epochs > self.patience:
                self.cooldown_counter = self.cooldown
                self.num_bad_epochs = 0
H
HongyuJia 已提交
975
                new_lr = paddle.maximum(
976 977
                    self.learning_rate * self.decay_rate, self.min_lr
                )
978 979
                if self.learning_rate - new_lr > self.eps:
                    if self.verbose:
980 981
                        print(
                            'Epoch {}: reducing learning rate from {} to {}.'.format(
982 983 984
                                self.epoch_num,
                                float(self.learning_rate),
                                float(new_lr),
985 986
                            )
                        )
987 988 989 990 991 992 993 994 995 996 997 998 999 1000
                    self.learning_rate = new_lr

    def _is_better(self, current, best):
        if self.mode == 'min' and self.threshold_mode == 'rel':
            return current < best - best * self.threshold

        elif self.mode == 'min' and self.threshold_mode == 'abs':
            return current < best - self.threshold

        elif self.mode == 'max' and self.threshold_mode == 'rel':
            return current > best + best * self.threshold

        else:
            return current > best + self.threshold
1001 1002 1003 1004 1005 1006 1007


class _LearningRateEpochDecay(LearningRateDecay):
    """
    :api_attr: imperative

    Base class of learning rate decay, which is updated each epoch.
1008

1009 1010 1011 1012 1013 1014 1015 1016 1017
    Define the common interface of an _LearningRateEpochDecay.
    User should not use this class directly,
    but need to use one of it's implementation. And invoke method: `epoch()` each epoch.
    """

    def __init__(self, learning_rate, dtype=None):
        if not isinstance(learning_rate, (float, int)):
            raise TypeError(
                "The type of 'learning_rate' must be 'float, int', but received %s."
1018 1019
                % type(learning_rate)
            )
1020 1021
        if learning_rate < 0:
            raise ValueError("Invalid learning rate: {}".format(learning_rate))
1022 1023 1024 1025

        self.base_lr = float(learning_rate)

        self.epoch_num = -1
1026
        self.dtype = dtype
1027 1028 1029 1030 1031 1032
        if dtype is None:
            self.dtype = "float32"
        self.learning_rate = self.create_lr_var(self.base_lr)

        self.epoch()

1033 1034
    # For those subclass who overload _LearningRateEpochDecay, "self.epoch_num/learning_rate" will be stored by default.
    # you can change it for your subclass.
1035 1036 1037
    def _state_keys(self):
        self.keys = ['epoch_num', 'learning_rate']

1038
    def __call__(self):
1039
        """
1040 1041
        Return last computed learning rate on current epoch.
        """
1042 1043
        if not isinstance(self.learning_rate, Variable):
            self.learning_rate = self.create_lr_var(self.learning_rate)
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
        return self.learning_rate

    def epoch(self, epoch=None):
        """
        compueted learning_rate and update it when invoked.
        """
        if epoch is None:
            self.epoch_num += 1
        else:
            self.epoch_num = epoch

        self.learning_rate = self.get_lr()

    def get_lr(self):
        raise NotImplementedError


class StepDecay(_LearningRateEpochDecay):
    """
    :api_attr: imperative

    Decays the learning rate of ``optimizer`` by ``decay_rate`` every ``step_size`` number of epoch.

1067
    The algorithm can be described as the code below.
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081

    .. code-block:: text

        learning_rate = 0.5
        step_size = 30
        decay_rate = 0.1

        learning_rate = 0.5     if epoch < 30
        learning_rate = 0.05    if 30 <= epoch < 60
        learning_rate = 0.005   if 60 <= epoch < 90
        ...

    Parameters:
        learning_rate (float|int): The initial learning rate. It can be set to python float or int number.
1082
        step_size (int): Period of learning rate decay.
1083
        decay_rate (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * decay_rate`` .
1084 1085 1086 1087 1088 1089 1090
            It should be less than 1.0. Default: 0.1.

    Returns:
        None.

    Examples:
        .. code-block:: python
1091

1092 1093
            import paddle.fluid as fluid
            import numpy as np
1094
            import paddle
1095 1096
            with fluid.dygraph.guard():
                x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
1097
                linear = paddle.nn.Linear(10, 10)
1098 1099 1100 1101 1102 1103 1104
                input = fluid.dygraph.to_variable(x)
                scheduler = fluid.dygraph.StepDecay(0.5, step_size=3)
                adam = fluid.optimizer.Adam(learning_rate = scheduler, parameter_list = linear.parameters())

                for epoch in range(9):
                    for batch_id in range(5):
                        out = linear(input)
1105
                        loss = paddle.mean(out)
1106
                        adam.minimize(loss)
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
                    scheduler.epoch()

                    print("epoch:{}, current lr is {}" .format(epoch, adam.current_step_lr()))
                    # epoch:0, current lr is 0.5
                    # epoch:1, current lr is 0.5
                    # epoch:2, current lr is 0.5
                    # epoch:3, current lr is 0.05
                    # epoch:4, current lr is 0.05
                    # epoch:5, current lr is 0.05
                    # epoch:6, current lr is 0.005
                    # epoch:7, current lr is 0.005
                    # epoch:8, current lr is 0.005

    """

    def __init__(self, learning_rate, step_size, decay_rate=0.1):
        if not isinstance(step_size, int):
            raise TypeError(
1125 1126 1127
                "The type of 'step_size' must be 'int', but received %s."
                % type(step_size)
            )
1128 1129 1130 1131 1132
        if decay_rate >= 1.0:
            raise ValueError('decay_rate should be < 1.0.')

        self.step_size = step_size
        self.decay_rate = decay_rate
1133
        super().__init__(learning_rate)
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146

    def get_lr(self):
        decay_rate = self.create_lr_var(self.decay_rate)
        i = self.epoch_num // self.step_size
        return self.base_lr * (decay_rate**i)


class MultiStepDecay(_LearningRateEpochDecay):
    """
    :api_attr: imperative

    Decays the learning rate of ``optimizer`` by ``decay_rate`` once ``epoch`` reaches one of the milestones.

1147
    The algorithm can be described as the code below.
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161

    .. code-block:: text

        learning_rate = 0.5
        milestones = [30, 50]
        decay_rate = 0.1
        if epoch < 30:
            learning_rate = 0.5
        elif epoch < 50:
            learning_rate = 0.05
        else:
            learning_rate = 0.005

    Parameters:
1162
        learning_rate (float|int): The initial learning rate. It can be set to python float or int number.
1163
        milestones (tuple|list): List or tuple of each boundaries. Must be increasing.
1164
        decay_rate (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * decay_rate`` .
1165 1166 1167 1168 1169 1170 1171
            It should be less than 1.0. Default: 0.1.

    Returns:
        None.

    Examples:
        .. code-block:: python
1172

1173 1174
            import paddle.fluid as fluid
            import numpy as np
1175
            import paddle
1176 1177
            with fluid.dygraph.guard():
                x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
1178
                linear = paddle.nn.Linear(10, 10)
1179 1180 1181 1182 1183 1184 1185
                input = fluid.dygraph.to_variable(x)
                scheduler = fluid.dygraph.MultiStepDecay(0.5, milestones=[3, 5])
                adam = fluid.optimizer.Adam(learning_rate = scheduler, parameter_list = linear.parameters())

                for epoch in range(6):
                    for batch_id in range(5):
                        out = linear(input)
1186
                        loss = paddle.mean(out)
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
                        adam.minimize(loss)
                    scheduler.epoch()

                    print("epoch:{}, current lr is {}" .format(epoch, adam.current_step_lr()))
                    # epoch:0, current lr is 0.5
                    # epoch:1, current lr is 0.5
                    # epoch:2, current lr is 0.5
                    # epoch:3, current lr is 0.05
                    # epoch:4, current lr is 0.05
                    # epoch:5, current lr is 0.005

    """

    def __init__(self, learning_rate, milestones, decay_rate=0.1):
        if not isinstance(milestones, (tuple, list)):
            raise TypeError(
                "The type of 'milestones' in 'MultiStepDecay' must be 'tuple, list', but received %s."
1204 1205
                % type(milestones)
            )
1206

1207 1208
        if not all(
            [
1209 1210
                milestones[i] < milestones[i + 1]
                for i in range(len(milestones) - 1)
1211 1212
            ]
        ):
1213 1214 1215 1216 1217 1218
            raise ValueError('The elements of milestones must be incremented')
        if decay_rate >= 1.0:
            raise ValueError('decay_rate should be < 1.0.')

        self.milestones = milestones
        self.decay_rate = decay_rate
1219
        super().__init__(learning_rate)
1220 1221 1222 1223 1224 1225 1226

    def get_lr(self):
        decay_rate = self.create_lr_var(self.decay_rate)
        for i in range(len(self.milestones)):
            if self.epoch_num < self.milestones[i]:
                return self.base_lr * (decay_rate**i)

1227
        return self.base_lr * (decay_rate ** len(self.milestones))
1228 1229 1230 1231 1232 1233 1234 1235 1236


class LambdaDecay(_LearningRateEpochDecay):
    """
    :api_attr: imperative

    Sets the learning rate of ``optimizer`` to the initial lr times a multiplicative factor, and this multiplicative
    factor is computed by function ``lr_lambda`` . ``lr_lambda`` is funciton which receives ``epoch`` .

1237
    The algorithm can be described as the code below.
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249

    .. code-block:: text

        learning_rate = 0.5        # init learning_rate
        lr_lambda = lambda epoch: 0.95 ** epoch

        learning_rate = 0.5        # epoch 0
        learning_rate = 0.475      # epoch 1
        learning_rate = 0.45125    # epoch 2

    Parameters:
        learning_rate (float|int): The initial learning rate. It can be set to python float or int number.
1250
        lr_lambda (function): A function which computes a multiplicative factor given an integer parameter ``epoch`` , and
1251
            then multiply the initial learning rate by this multiplicative factor.
1252

1253 1254 1255 1256 1257
    Returns:
        None.

    Examples:
        .. code-block:: python
1258

1259 1260
            import paddle.fluid as fluid
            import numpy as np
1261
            import paddle
1262 1263
            with fluid.dygraph.guard():
                x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
1264
                linear = paddle.nn.Linear(10, 10)
1265 1266 1267 1268 1269 1270 1271
                input = fluid.dygraph.to_variable(x)
                scheduler = fluid.dygraph.LambdaDecay(0.5, lr_lambda=lambda x: 0.95**x)
                adam = fluid.optimizer.Adam(learning_rate = scheduler, parameter_list = linear.parameters())

                for epoch in range(6):
                    for batch_id in range(5):
                        out = linear(input)
1272
                        loss = paddle.mean(out)
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
                        adam.minimize(loss)
                    scheduler.epoch()

                    print("epoch:%d, current lr is %f" .format(epoch, adam.current_step_lr()))
                    # epoch:0, current lr is 0.5
                    # epoch:1, current lr is 0.475
                    # epoch:2, current lr is 0.45125

    """

    def __init__(self, learning_rate, lr_lambda):
        if not callable(lr_lambda):
            raise TypeError(
                "The type of 'lr_lambda' in 'LambdaDecay' must be 'function', but received %s."
1287 1288
                % type(lr_lambda)
            )
1289 1290

        self.lr_lambda = lr_lambda
1291
        super().__init__(learning_rate)
1292 1293 1294 1295 1296

    def get_lr(self):
        base_lr = self.create_lr_var(self.base_lr)

        return self.base_lr * self.lr_lambda(self.epoch_num)