conv_compute.cc 6.7 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <Eigen/Core>
#include <string>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/lite/core/types.h"
#include "paddle/fluid/lite/operators/conv_op.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/depthwise_conv.h"
#include "paddle/fluid/operators/math/im2col.h"
#include "paddle/fluid/operators/math/vol2col.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace x86 {

inline bool IsExpand(const std::vector<int64_t>& filter_dim,
                     const std::vector<int>& strides,
                     const std::vector<int>& paddings,
                     const std::vector<int>& dilations) {
  bool filter_1 = true, strides_1 = true, padding_0 = true, dilation_1 = true;
  for (size_t j = 0; j < strides.size(); ++j) {
    filter_1 = filter_1 && (static_cast<int>(filter_dim[j + 2]) == 1);
    strides_1 = strides_1 && (strides[j] == 1);
    padding_0 = padding_0 && (paddings[j] == 0);
    dilation_1 = dilation_1 && (dilations[j] == 1);
  }
  return !(filter_1 && strides_1 && padding_0 && dilation_1);
}

template <typename T>
class Conv2dCompute : public KernelLite<TARGET(kX86), PRECISION(kFloat)> {
 public:
  using param_t = operators::ConvParam;
  void Run() override {
    auto& param = *param_.get_mutable<operators::ConvParam>();
    lite::Tensor filter = *param.filter;
    param.output->template mutable_data<T>();

    const int batch_size = static_cast<int>(param.x->dims()[0]);

    std::vector<int64_t> filter_shape_vec(filter.dims().Vectorize());
    std::vector<int64_t> output_shape_vec(param.output->dims().Vectorize());

    size_t data_dim = filter_shape_vec.size() - 2;
    std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
    col_shape_vec[0] = param.x->dims()[1] / param.groups;
    for (size_t j = 0; j < data_dim; ++j) {
      col_shape_vec[j + 1] = filter_shape_vec[j + 2];
      col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
    }
    lite::DDim col_shape(col_shape_vec);
    lite::DDim col_matrix_shape = col_shape.Flattern2D(data_dim + 1);
    bool is_expand = IsExpand(filter_shape_vec, param.strides, param.paddings,
                              param.dilations);

    lite::Tensor col;
    lite::Tensor col_matrix;
    if (is_expand) {
      col.Resize(col_shape);
      col_matrix.ShareDataWith(col);
      col_matrix.Resize(col_matrix_shape);
    }
    lite::DDim input_shape = param.x->dims().Slice(1, param.x->dims().size());

    lite::DDim filter_matrix_shape(std::vector<int64_t>{
        filter.dims()[0], filter.dims().production() / filter.dims()[0]});
    filter.Resize(filter_matrix_shape);

    lite::DDim output_matrix_shape(std::vector<int64_t>{
        param.output->dims()[1],
        param.output->dims().production() /
            (param.output->dims()[0] * param.output->dims()[1])});

    int in_step = static_cast<int>(param.x->dims()[1]) / param.groups;
    int out_step = static_cast<int>(param.output->dims()[1]) / param.groups;

    paddle::operators::math::Vol2ColFunctor<platform::CPUDeviceContext, T>
        vol2col;
    paddle::operators::math::Im2ColFunctor<
        paddle::operators::math::ColFormat::kCFO, platform::CPUDeviceContext, T>
        im2col;
    auto blas = paddle::operators::math::GetBlas<platform::CPUDeviceContext, T>(
        platform::CPUDeviceContext());
    for (int i = 0; i < batch_size; i++) {
      lite::Tensor in_batch;
      in_batch.ShareDataWith(
          param.x->raw_tensor().Slice(i, i + 1).Resize(input_shape.data()));
      lite::Tensor out_batch;
      out_batch.ShareDataWith(param.output->raw_tensor().Slice(i, i + 1).Resize(
          input_shape.data()));

      for (int g = 0; g < param.groups; g++) {
        lite::Tensor in_slice;
        in_slice.ShareDataWith(
            in_batch.raw_tensor().Slice(g * in_step, (g + 1) * in_step));

        if (!is_expand) {
          col.ShareDataWith(in_slice);
          col_matrix.ShareDataWith(col);
          col_matrix.Resize(col_matrix_shape);
        } else if (data_dim == 2U) {
          // im2col
          im2col(platform::CPUDeviceContext(), in_slice.raw_tensor(),
                 param.dilations, param.strides,
                 std::vector<int>{param.paddings[0], param.paddings[1],
                                  param.paddings[0], param.paddings[1]},
                 &(col.raw_tensor()));
        } else if (data_dim == 3U) {
          // vol2col
          vol2col(platform::CPUDeviceContext(), in_slice.raw_tensor(),
                  param.dilations, param.strides, param.paddings,
                  &(col.raw_tensor()));
        }

        // gemm
        lite::Tensor out_slice;
        out_slice.ShareDataWith(
            out_batch.raw_tensor().Slice(g * out_step, (g + 1) * out_step));
        lite::Tensor filter_slice;
        filter_slice.ShareDataWith(
            filter.raw_tensor().Slice(g * out_step, (g + 1) * out_step));
        blas.MatMul(filter_slice.raw_tensor(), false, col_matrix.raw_tensor(),
                    false, T(1.0), &(out_slice.raw_tensor()), T(0.0));
      }
    }
  }

  virtual ~Conv2dCompute() = default;
};

}  // namespace x86
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(conv2d, kX86, kFloat, kNCHW,
                     paddle::lite::kernels::x86::Conv2dCompute<float>, def)
    .BindInput("Input", {LiteType::GetTensorTy(TARGET(kX86))})
    .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kX86))})
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kX86))})
    .BindInput("Input", {LiteType::GetTensorTy(TARGET(kX86))})
    .BindOutput("Output", {LiteType::GetTensorTy(TARGET(kX86))})
    .Finalize();

REGISTER_LITE_KERNEL(depthwise_conv2d, kX86, kFloat, kNCHW,
                     paddle::lite::kernels::x86::Conv2dCompute<float>, def)
    .BindInput("Input", {LiteType::GetTensorTy(TARGET(kX86))})
    .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kX86))})
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kX86))})
    .BindInput("Input", {LiteType::GetTensorTy(TARGET(kX86))})
    .BindOutput("Output", {LiteType::GetTensorTy(TARGET(kX86))})
    .Finalize();